RU2519782C2 - Способ получения циклопропановых производных фуллеренов, применение органических производных фуллеренов в качестве материалов для электронных полупроводниковых устройств, органического полевого транзистора, органической фотовольтаической ячейки, органический полевой транзистор и органическая фотовольтаическая ячейка - Google Patents

Способ получения циклопропановых производных фуллеренов, применение органических производных фуллеренов в качестве материалов для электронных полупроводниковых устройств, органического полевого транзистора, органической фотовольтаической ячейки, органический полевой транзистор и органическая фотовольтаическая ячейка Download PDF

Info

Publication number
RU2519782C2
RU2519782C2 RU2011121963/04A RU2011121963A RU2519782C2 RU 2519782 C2 RU2519782 C2 RU 2519782C2 RU 2011121963/04 A RU2011121963/04 A RU 2011121963/04A RU 2011121963 A RU2011121963 A RU 2011121963A RU 2519782 C2 RU2519782 C2 RU 2519782C2
Authority
RU
Russia
Prior art keywords
fullerene
organic
general formula
fullerenes
materials
Prior art date
Application number
RU2011121963/04A
Other languages
English (en)
Other versions
RU2011121963A (ru
Inventor
Павел Анатольевич Трошин
Андрей Евгеньевич Горячев
Александр Валерьевич Мумятов
Владимир Федорович Разумов
Original Assignee
Учреждение Российской Академии Наук Институт Проблем Химической Физики Ран (Ипхф Ран)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской Академии Наук Институт Проблем Химической Физики Ран (Ипхф Ран) filed Critical Учреждение Российской Академии Наук Институт Проблем Химической Физики Ран (Ипхф Ран)
Priority to RU2011121963/04A priority Critical patent/RU2519782C2/ru
Publication of RU2011121963A publication Critical patent/RU2011121963A/ru
Application granted granted Critical
Publication of RU2519782C2 publication Critical patent/RU2519782C2/ru

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения циклопропановых производных фуллеренов общей формулы 2 путем нагревания немодифицированного фуллерена с тозилгидразоном в присутствии растворителя и основания. При этом процесс ведут с тозилгидразоном эфира α-кетоуксусной кислоты общей формулы 1
Figure 00000003
где в общих формулах 1 и 2 радикал R обозначает линейный или разветвленный алифатический радикал Cn, где n находится в пределах от 1 до 50; радикал R1 обозначает ароматический радикал С6; Fu представляет собой фуллерен С60 или фуллерен С70, или высший фуллерен С>70, или смесь фуллеренов С60 и С70 (суммарное содержание 95.0-99.999% по весу) и высших фуллеренов (С>70, содержание 0.001-5.0% по весу). Способ позволяет получать производные фуллеренов, содержащие в своей структуре сложноэфирную группу, непосредственно присоединенную к циклопропановому фрагменту на фуллереновой сфере, используя доступные эфиры α-кетоуксусной кислоты. Изобретение также относится к применению циклопропановых производных фуллеренов общей формулы 2 в качестве полупроводниковых материалов для электронных полупроводниковых устройств, материалов для органического полевого транзистора и материалов для органической фотовольтаической ячейки. 6 н.п. ф-лы, 13 ил., 3 пр.

Description

Изобретение относится к группе производных фуллеренов, обладающих полупроводниковыми свойствами n-типа (т.е. способных к эффективному электронному транспорту), что позволяет их применять при изготовлении полевых транзисторов и электронных чипов, а также любых других электронных устройств, в которых целесообразным является применение полупроводниковых материалов.
Органические полупроводники интенсивно исследуются с конца XIX века. Однако первые реальные практические приложения появились лишь в 1985-1987 гг. Тогда было показано, что на основе органических полупроводников могут быть созданы электронные устройства с планарным p-n гетеропереходом, в том числе высокоэффективные светоизлучающие диоды (ОСИДы) и солнечные батареи [1 - С.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett. 1987, 51, 913; 2 - C.W. Tang, Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183].
Особое внимание уделяется фуллеренам и их производным как перспективным материалам n-типа. Полевые транзисторы на основе немодифицированного фуллерена C60 показали подвижности носителей зарядов около 4-6 см2. B-1.c-1 [3 - Th. В. Singh, N.S. Sariciftci, Progress in plastic electronics devices, Annu. Rev. Mater. Res. 2006, 36, 199], а на основе органических производных фуллеренов - в пределах 0.01-0.1 см2.B-1.c-1 [3 - T.D. Anthopoulos, F.B. Kooistra, Н.J. Wondergem, D. Kronholm, J.C. Hummelen, D.M. de Leeuw, Air-stable n-channel organic transistors based on a soluble C-84 fullerene derivative. Adv. Mater. 2006, 18, 1679; 4 - T.D. Anthopoulos, D.M. de Leeuw, E. Cantatore, S. Setayesh, E.J. Meijer, C. Tanase, J.C. Hummelen, P.W.M. Blom, Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors. Appl. Phys. Lett. 2004, 85, 4205; 5 - G. Gelinck, P. Heremans, K. Nomoto, T.D. Anthopoulos, Adv. Mater. 2010, 22, 3778]. Соотношение токов во включенном и выключенном состоянии транзисторов достигает величин 106-108, что указывает на перспективы практического использования этих устройств.
Большой прогресс достигнут в разработке фуллерен-содержащих материалов для пластиковых солнечных батарей. В 2010 году были достигнуты к.п.д. преобразования энергии солнечного света около 7-8% на основе органических производных фуллеренов и сопряженных полимеров [6 - F.G. Brunetti, R. Kumar, F. Wudl, Organic electronics from perylene to organic photovoltaics: painting a brief history with a broad brush. J. Mater. Chem., 2010, 20, 2934]. В США в 2009 году запущены первые линии для производства солнечных батарей этого типа [7 - http://www.konarka.com/index.php/technology/roll-to-roll-manufacturing-process/].
Растет интерес к органическим фотодетекторам на основе фуллерен-содержащих материалов, имеющих широкий спектр возможных применений. На основе органических фотодетекторов созданы первые цифровые камеры и двумерные сканеры, в том числе, предназначенные для целей идентификации личности [8 - Т. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, T. Sakurai, Integration of Organic FETs With Organic Photodiodes for a Large Area, Flexible, and Lightweight Sheet Image Scanners. IEEE Trans. Electron. Dev. 2005, 52, 2502].
В последние годы идет непрекращающийся поиск новых фуллерен-содержащих материалов с улучшенными электронными и физико-химическими свойствами. Задачей изобретения является получение органических производных фуллеренов, применение их в качестве фуллерен-содержащих материалов в электронных полупроводниковых устройствах.
В заявляемом изобретении предложен новый способ получения органических производных фуллерен-содержащих материалов.
Прототипом предлагаемого способа получения производных фуллеренов является описанный ранее способ синтеза фуллерен-содержащих материалов - соединений [60]РСВМ и [70]РСВМ [8 - Preparation and Characterization of Fulleroid and Methanofullerene Derivatives].
Figure 00000001
Указанный способ основан на термическом присоединении к фуллереновому каркасу тозилгидразона, полученного из метилового эфира бензоилмасляной кислоты. Синтез соединения [60]РСВМ, который ведут с использованием тозилгидразона, полученного из метилового эфира бензоилмасляной кислоты, представлен на Фиг.1. Способ не позволяет получать производные фуллеренов, содержащие в своей структуре сложноэфирную группу, непосредственно присоединенную к циклопропановому фрагменту на фуллереновой сфере.
Метиловый эфир бензоилмасляной кислоты является известным химическим соединением, отличающимся молекулярной формулой C6H5C(O)(CH2)3COOMe.
Гидразоны - это большой класс органических соединений, отличающихся присутствием в их структуре фрагмента N-N=C.
Тозилгидразонами называют гидразоны, отличающиеся наличием в их составе тозильной группы, связанной с атомом азота: TsNH-N=C, где TS - обозначает тозильную группу.
Тозильной принято называть пара-толуолсульфонильную группу п-C6H4SO2.
Предлагаемый способ получения производных фуллеренов отличается тем, что в качестве прекурсоров для синтеза используются доступные эфиры α-кетоуксусных кислот общей формулы R1C(O)COOR (обозначены цифрой «1» на Фиг.2), которые в реакции с тозилгидразидом (соединение состава C6H5SO2NHNH2, обозначено как TSNHNH2 на Фиг.2) образуют тозилгидразоны общей формулы R1C(=N-NH-TS)COOR (обозначены как «1'» на Фиг.2). На второй стадии синтеза тозилгидразоны общей формулы R1C(=N-NH-TS)COOR взаимодействуют с фуллереном (обозначен как «Fu» на Фиг.2) в органическом растворителе (обозначен как «Solvent» на Фиг.2) в присутствии основания (обозначено как «Base» на Фиг.2) и превращаются в циклопропановые производные фуллеренов, имеющие состав Fu=C(R1)COOR и общую структурную формулу, обозначенную как «2» на Фиг.2. Расшифровка обозначений R, R1, Fu, Base и Solvent, использованных в вышеупомянутых формулах, приведено ниже.
В общих формулах эфира α-кетоуксусной кислоты (R1C(O)COOR или «1»), гидразона эфира α-кетоуксусной кислоты (R1C(=N-NH-TS)COOR или «1'»), циклопропанового производного фуллерена (Fu=C(R1)COOR или «2») радикал R обозначает линейный или разветвленный алифатический радикал Cn, где n находится в пределах от 1 до 50;
В общих формулах эфира α-кетоуксусной кислоты (R1C(O)COOR или «1»), гидразона эфира α-кетоуксусной кислоты (R1C(=N-NH-TS)COOR или «1'»), циклопропанового производного фуллерена (Fu=C(R1)COOR или «2») радикал R1 обозначает ароматический радикал Cn, где n находится в пределах от 1 до 12;
В общей формуле циклопропанового производного фуллерена (Fu=C(R1)COOR или «2») фрагмент Fu обозначает:
- углеродный каркас фуллерена C60, образующий циклопропановые фрагменты вместе с аддендами -(R1)C(COOR2)-;
- углеродный каркас фуллерена C70, образующий циклопропановые фрагменты вместе с аддендами -(R1)C(COOR2)-;
- углеродный каркас высшего фуллерена C>70, образующий циклопропановые фрагменты вместе с аддендами -(R1)C(COOR2)-;
- смесь фуллеренов C60 и C70 (суммарное содержание 95.0-99.999% по весу) и высших фуллеренов (C>70, содержание 0.001-5.0% по весу), модифицированная путем аннелирования циклопропановых фрагментов -(R1)C(COOR2)-.
Обозначение «Solvent» на Фиг.2 подразумевает любой растворитель.
Обозначение «Base» на Фиг.2 подразумевает любое органическое или неорганическое основание.
Циклопропановые производные фуллеренов общей формулы Fu=C(R1)COOR (формула «2» на Фиг.2) обладают рядом важных преимуществ по сравнению с описанным ранее аналогом - соединением [60]PCBM (Фиг.1). В частности, присутствие в соединениях 2 сложноэфирной группы -COOR, связанной непосредственно с циклопропановым аддендом на фуллереновом каркасе, позволяет:
- получать фуллеренсодержащие материалы, способные к образованию высокоупорядоченных пленок за счет ван-дер-ваальсовых взаимодействий линейных длинноцепочечных радикалов R и/или R1;
- эффективно очищать их методами колоночной хроматографии на силикагеле или аналогичной неподвижной нормальной фазе;
- менять растворимость соединений в органических растворителях в диапазоне от 10 до 200 г/л путем варьирования состава и строения солюбилизирующих радикалов R и R1;
Разработанный способ синтеза органических производных фуллеренов, основанный на использовании эфиров α-кетоуксусных кислот в качестве реагентов, позволил получить серию соединений 1a-g, молекулярные формулы которых представлены на Фиг.3. Состав и строение соединений однозначно доказаны методами ЯМР на ядрах 1H и 13C, двумерной корреляционной спектроскопии и масс-спектрометрии. Спектры отдельных соединений представлены на Фиг.4-7. В спектре 1H ЯМР соединения 2b на Фиг.4 символом «*» обозначен сигнал остаточных протонов растворителя (хлороформа), а символом «**» - сигналы воды в растворителе. В спектре 13C ЯМР соединения 2b на Фиг.5 арабскими цифрами показано отнесение наблюдаемых сигналов к определенным атомам углерода в молекуле производного фуллерена. Символом «*» отмечены сигналы растворителя (ацетон-Д6). Спектр ЯМР 1H соединения 2e представлен на Фиг.6. Арабскими цифрами показано отнесение сигналов, наблюдаемых в спектре, к конкретным функциональным группам в молекуле производного фуллерена. Спектр ЯМР 13C соединения 2e представлен на Фиг.7. Арабскими цифрами показано отнесение сигналов, наблюдаемых в спектре, к конкретным типам атомов углерода в молекуле производного фуллерена.
В данном изобретении предложено также применение соединений общей формулы 2 в полупроводниковой технике, полевых транзисторах, электронных схемах, фотодиодах, солнечных батареях. Прототипом указанного применения производных фуллеренов в органических тонкопленочных транзисторах является использование производного фуллерена РСВМ в аналогичных по структуре устройствах (Фиг.8) [10 - Т.D. Anthopoulos, С. Tanase, S. Setayesh, Е.J. Meijer, J.С. Hummelen, P.W.M. Blom, D.M. de Leeuw, Ambipolar organic field-effect transistors based on a solution-processed methanofullerene, Adv. Mater. 2004, 16, 2174]. Структура полевого транзистора, представленная на Фиг.8, включает нижний электрод-затвор (обозначен как «1» на Фиг.8), в качестве которого выступает допированный кремний, полупроводник затвор (обозначен как «2» на Фиг.8), роль которого играет тонкая пленка двуокиси кремния, верхние электроды сток (обозначены как «3» на Фиг.8) и исток (обозначены как «4» на Фиг.8), образованные напыленным на слой диэлектрика металлом, и полупроводником (обозначен как «5» на Фиг.8), в данном случае, органическим производным фуллерена [60]РСВМ (формула представлена на Фиг.1.
Прототипом использования производных фуллеренов в органических фотовольтаических ячейках является работа [11 - G. Yu, J. Gao, J.С. Hummelen, F. Wudl, A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science, 1995, 270, 1789], в которой описывается использование [60]РСВМ в качестве материала n-типа для построения органических фотовольтаических ячеек с объемным гетеропереходом (Фиг.9).
Пример 2 иллюстрирует использование производных фуллеренов общей формулы 2 в полевых транзисторах, схема которых представлена на Фиг.10. Транзистор состоит из подложки (1), в качестве которой можно использовать самые разнообразные органические и неорганические материалы, такие как стекло, бумага, полимерная пленка, пластик, кремний, германий, металлическая фольга и др., с нанесенным поверх нее нижним электродом - затвором (2). Затвор (2) может быть сформирован из любого электропроводящего материала с подходящей работой выхода электрона (менее 5.0 эВ). На затвор наносится слой диэлектрика (3), который может быть сформирован целиком из органического (белок, сахар, поливиниловый спирт, меламин, полианилин, сшитый силоксан и др.) или неорганического (оксиды алюминия, кремния, магния и др.) материалов, а также любой их комбинации (например оксид алюминия + поливиниловый спирт или оксид кремния + монослой н-октилфосфоновой кислоты).
Поверх диэлектрика (3) наносят слой полупроводникового материала (4), роль которого в нашем случае играет циклопропановое производное фуллерена общей формулы Fu=C(R1)COOR (формула «2» на Фиг.2). Поверх слоя полупроводника наносят металлические электроды сток (5) и исток (6), сформированные из любого проводящего материала с работой выхода ниже 5 эВ.
Для изготовленных на основе соединения 2b органических полевых транзисторов были измерены проходные и выходные характеристики. Изменение напряжения, приложенного к нижнему электроду устройства (затвору (2) на Фиг.10), позволяет модулировать в широких пределах ток, текущий между двумя верхними электродами (истоком (6) и стоком (5), показанными на Фиг.10). Проходные и выходные характеристики транзисторов на основе соединения 2b представлены на Фиг.11.
Пример 3 иллюстрирует использование соединений общей формулы 2 в качестве материалов для органических фотовольтаических ячеек, которые могут выполнять функцию фотодетекторов и/или солнечных батарей. Расположение слоев материалов в использованной конструкции фотовольтаической ячейки схематически показано на Фиг.12. Нижним слоем устройства является подложка (1), в качестве которой можно использовать самые разнообразные органические и неорганические материалы, такие как стекло, бумага, полимерная пленка, пластик, кремний, германий, металлическая фольга и др., с нанесенным поверх нее прозрачным электродом (2), образованным допированными оксидами металлов (оксид индия-олова ITO, оксид сурьмы-олова АТО, оксид олова, допированный фтором FTO) или тонкими металлическими слоями (серебро, золото и др.). Для обеспечения селективного сбора лишь одного типа носителей зарядов на прозрачный электрод наносится соответствующий буферный слой (3), проводящий либо дырки, либо электроны. К электрон-транспортным буферным слоям относятся оксиды титана и цинка и тонкие слои металлов с малой работой выхода электрона (Ca, Li, Sm). Дырочно-транспортные буферные слои обычно изготавливают из проводящих полимеров со значительной работой выхода электрона (PEDOT:PSS, допированный полианилин), оксидов металлов в высших степенях окисления (MoO3, WO3, NiO, V2O5) и др. На нижний буферный слой (3) наносят фотоактивный слой (4), представляющий собой смесь сопряженного полимера (в нашем случае - поли(3-пентилтиофена) Р3РТ) и циклопропанового производного фуллерена общей формулы Fu=C(R1)COOR (формула «2» на Фиг.2). Поверх фотоактивного слоя (4) наносят верхний буферный слой (5), комплементарный по своей функции буферному слою (3). Комплементарность подразумевает, что если слой (3) дырочно-проводящий, то слой (5) должен быть электрон-проводящим и наоборот. Последним функциональным слоем фотовольтаической ячейки является верхний электрод (6), который может быть сформирован из любого материала, обладающего электропроводностью не менее 500 См/см.
Вольтамперные характеристики солнечной батареи на основе соединения 2b и коммерчески доступного электронодонорного полимера поли(3-пентилтиофена) представлены на Фиг.13. Рассчитанная эффективность преобразования света для системы 2b/Р3РТ составляет 3.3%, что больше, чем для реперной системы [60]PCBM/P3PT (3.0%).
Заявляемое изобретение иллюстрируется, но не ограничивается следующими примерами.
Пример 1.
Фуллерен C60 (0.500 г, 0.69 ммоль) поместили в двугорлую колбу на 100 мл, снабженную обратным холодильником. Прибавили 70 мл 1.2-дихлорбензола, 1 ммоль гидразона соответствующего α-кетоэфира и 68 мг (1.26 ммоль) метилата натрия. После этого систему трижды вакуумировали и заполнили аргоном. Затем в токе аргона прибавили 7 мл пиридина и нагревали смесь при перемешивании на магнитной мешалке в течение 8 часов при температуре 120°C, после чего кипятили ее еще 12 часов с обратным холодильником (температура 175°C). Потом смесь охладили и упарили досуха на роторном испарителе, а остаток растворили в 50 мл хлорбензола и разбавили 600 мл петролейного эфира. Полученный раствор профильтровали и фильтрат нанесли на хроматографическую колонку. Вещество сорбировалось в верхней части колонки. Сначала колонку промыли смесью толуола и петролейного эфира в соотношении 30:170 для отделения непрореагировавшего фуллерена. Затем смесью толуола и петролейного эфира в варьируемых соотношениях от 50:150 до 70:130 элюировали целевой продукт. Полученной раствор производного фуллерена сконцентрировали в вакууме до объема 30 мл, после чего высадили вещество, добавив 90 мл метанола. Осадок отделили центрифугированием и промыли 3 раза метанолом и 2 раза диэтиловым эфиром, после чего высушили на воздухе. Выходы целевых продуктов 2a-f составляют 20-55%.
Соединение 2b. ЯМР 1H (600 МГц, CDCl3): 8.14 (д, 2H), 7.59 (м, 3H), 4.40 (т, 2H), 1.74 (м, 2H), 1.39 (м, 2.H), 0.94 (т, 3H) м. д. 13C ЯМР (CS2-ацетон-D6 10:1, 150 МГц), δ=14.18, 19.8, 31.19, 56.24, 66.47, 75.78, 125.45, 128.63, 128.77, 128.82, 129.4, 132.34, 132.59, 134.84, 137.88, 138.43, 141.04, 141.07, 142.06, 142.23, 142.29, 142.35, 142.99, 143.04, 143.06, 143.13, 143.19, 143.78, 143.98, 144.5, 144.52, 144.63, 144.72, 144.77, 144.83, 145.21, 145.25, 145.3, 145.49, 146.32, 147.68, 165.27 м.д.
Соединение 2e. ЯМР 1H (CDCl3, 600 МГц): δ=8.10 (д, 2H), 7.51 (м, 3H), 4.10 (д, 2H), 2.05 (м, 1H), 0.95 (д, 6H) м.д. ЯМР 13C (CS2-ацетон-D6, 150 МГц): δ=19.33, 21.82, 28.41, 29. сен, 29.22, 29.35, 29.47, 29.60, 29.73, 29.86, 56.21, 72.45, 75.74, 125.54, 128.41, 128.80, 129.13, 129.40, 132.35, 132.66, 137.98, 138.42, 141.04, 142.04, 142.22, 142.28, 142.33, 142.98, 143.02, 143.12, 143.19, 143.77, 143.97, 144.50, 144.62, 144.71, 144.77, 144.83, 145.20, 145.24, 145.30, 145.46, 146.31, 147.61, 165.20 м.д.
Соединение 2f. ЯМР 1H (600 МГц, CDCl3): 0.98 (т, 3H), 1.49 (м., 2H), 1.70 (м, 2H), 4.10 (т, 2H), 7.46 (т, 1H), 7.58 (т, 2H), 7.93 (уш. д., 2H) м.д.
Пример 2.
На основе фуллерен-содержащих материалов были изготовлены органические тонкопленочные полевые транзисторы, имеющие конструкцию, представленную на Фиг.10. В качестве подложки использовали стеклянные пластины толщиной 2 мм. На подложку в вакууме напыляли серебряный электрод - затвор транзистора. Поверх электрода наносили слой диэлектрика. В частности, из мезитиленового раствора наносили пленку смолы ВСВ (дивинилтетраметилдисилоксан-бис(бензоциклобутена)), которая при нагревании до 150°C полимеризуется с образованием трехмерной сшитой структуры. В качестве альтернативного органического диэлектрика использовали поливиниловый спирт, пленку которого формировали из водного раствора и затем сушили 12 часов при 60°C. Затем в инертной атмосфере наносили слой соединения фуллерена 1b путем полива из раствора в хлорбензоле. Полученные пленки сушили до удаления следов адсорбированного растворителя, после чего в вакууме напыляли серебряные электроды, формирующие канал транзистора - сток и исток.
При измерении проходной характеристики транзисторов (transfer), между электродами сток и исток прикладывалось постоянное напряжение Vds. При измерении проводилась развертка потенциала между стоком и затвором (Vgs) и регистрировался ток между истоком и стоком (Ids). Одновременно регистрировался ток утечки между истоком и затвором (Igs). Правильная работа транзистора предполагает его включение при определенном напряжении Vgs, что приводит к резкому увеличению Ids (обычно - на несколько порядков) при почти неизменном токе утечки Igs. Именно такое поведение наблюдалось для изготовленных транзисторов на основе соединения фуллерена 1b, о чем свидетельствуют результаты измерений, представленные на Фиг.11.
Пример 3
На основе фуллерен-содержащих материалов были изготовлены органические фотовольтаические ячейки, имеющие конструкцию, представленную на Фиг.12.
Подготовка подложек. В качестве подложек для изготовления фотовольтаических ячеек использовали специальные стеклянные пластины толщиной 1.1 мм, на одну сторону которых нанесен электропроводящий слой оксида индия-олова толщиной 100-200 нм. Коэффициент пропускания для таких подложек в видимом диапазоне составляет 80-87%. Для изготовления солнечных батарей подложки структурировали путем вытравливания слоя ITO с той стороны, с которой будут расположены контактные площадки верхних электродов.
Слой оксида индия-олова достаточно неравномерный по толщине. Для изготовления гомогенных тонких пленок фотоактивного композита необходимо предварительно устранить неровности подложки, для чего ее покрывали слоем дырочного проводника PEDOT-PSS. Перед нанесением PEDOT-PSS тщательно очищали стекло многократной промывкой в толуоле, ацетоне и изопропаноле под действием ультразвука. В отдельных случаях, для полного устранения загрязнений подложку обрабатывали кислородной плазмой.
Для нанесения слоя дырочного проводника использовали коммерчески доступный водный раствор PEDOT-PSS (Baytron РН, Cleveos PH). Этим раствором покрывали поверхность подложки, после чего основную часть его удаляли путем вращения подложки со скоростью 4000 об./мин. Часть препарата высыхала, образуя на подложке гомогенную пленку толщиной 50-60 нм. Подложки с пленками PEDOT-PSS сушили при температуре 150°C в течение 10 минут.
Нанесение фотоактивного слоя. Готовили рабочий раствор композита сопряженного полимера Р3РТ и соединения фуллерена. Для этого 8 мг соединения фуллерена и 12 мг Р3РТ растворяли в 1 мл хлорбензола при перемешивании в течение 48 часов. Приготовленный раствор фильтровали через мембранные фильтры (материал - PTFE) с размером пор 0.2-0.45 мкм. Это процедура позволяла полностью удалить все взвешенные частицы из раствора.
Для нанесения активного слоя, порцию раствора композита полимер/соединение фуллерена объемом 80 мкл выливали на поверхность пленки PEDOT-PSS, после чего образец вращали со скоростью 700-1000 об./мин в течение 2 минут. Толщина пленок менялась от образца к образцу в пределах 75-85 нм.
Термическая обработка фотоактивного слоя. После нанесения пленки композита Р3РТ/соединение фуллерена прогревали в течение 3 минут при температуре 155°C. В ходе прогрева происходило удаление следов растворителя, а также самоорганизация цепей полимера с образованием высокоупорядоченной кристаллической фазы, отличающейся хорошими зарядово-транспортными свойствами.
Напыление металлического электрода. На фотоактивный слой в вакууме 10-6 мм рт.ст. через специальную структурированную маску напыляли металлические электроды. Вначале наносили 10-20 нм кальция (электрон-селективный буферный слой), после чего поверх него напыляли металлическое серебро (80-90 нм). На одной подложке изготавливали 3 или 4 отдельных фотовольтаических элемента, каждый из которых имел площадь 0.5 см2.
Измерение вольтамперных характеристик. Вольтамперные характеристики измеряли с использованием стандартизованного солнечного симулятора (K.H.STEUERNAGEL Lichttechnik GmbH, SolarCellTest 575) со спектром, приближенным к AM 1.5G и источника-измерителя Kethley 2400. Световые и темновые вольтамперные кривые, полученные для солнечной батареи на основе 2b/Р3РТ, представлены на Фиг.13. Рассчитанная эффективность преобразования света для системы 2b/Р3РТ составляет 3.3%, что больше, чем для реперной системы [60]РСВМ/Р3РТ (3.0%).
Таким образом, заявляемое изобретение позволяет получать органические производные фуллеренов, которые с успехом могут быть использованы как фуллеренсодержащие материалы, способные к образованию высокоупорядоченных пленок. На основе этих материалов возможно создание широкого спектра материалов для электронных полупроводниковых устройств.

Claims (6)

1. Способ получения циклопропановых производных фуллеренов общей формулы 2
Figure 00000002

путем нагревания немодифицированного фуллерена с тозилгидразоном в присутствии растворителя и основания, отличающийся тем, что процесс ведут с тозилгидразоном эфира α-кетоуксусной кислоты общей формулы 1
Figure 00000003

- где в общих формулах 1 и 2 радикал R обозначает линейный или разветвленный алифатический радикал Cn, где n находится в пределах от 1 до 50;
- где в общих формулах 1 и 2 радикал R1 обозначает ароматический радикал С6;
- где в общей формуле 2 Fu представляет собой фуллерен С60 или фуллерен С70, или высший фуллерен С>70, или смесь фуллеренов С60 и С70 (суммарное содержание 95.0-99.999% по весу) и высших фуллеренов (С>70, содержание 0.001-5.0% по весу).
2. Применение циклопропановых производных фуллеренов Fu=C(R1)COOR общей формулы 2 по п.1 в качестве полупроводниковых материалов для электронных полупроводниковых устройств.
3. Применение циклопропановых производных фуллеренов Fu=C(R1)COOR общей формулы 2 по п.1 в качестве материалов для органического полевого транзистора.
4. Применение циклопропановых производных фуллеренов Fu=C(R1)COOR общей формулы 2 по п.1 в качестве материалов для органической фотовольтаической ячейки.
5. Органический полевой транзистор, содержащий слои подложки, диэлектрика и полупроводникового материала, а также нижний электрод (затвор) и верхние электроды (сток и исток), отличающийся тем, что в качестве полупроводникового материала используют циклопропановые производные фуллеренов Fu=C(R1)COOR общей формулы 2 по п.1.
6. Органическая фотовольтаическая ячейка, отличающаяся тем, что в качестве компонента активного слоя используют циклопропановые производные фуллеренов Fu=C(R1)COOR общей формулы 2 по п.1.
RU2011121963/04A 2011-06-01 2011-06-01 Способ получения циклопропановых производных фуллеренов, применение органических производных фуллеренов в качестве материалов для электронных полупроводниковых устройств, органического полевого транзистора, органической фотовольтаической ячейки, органический полевой транзистор и органическая фотовольтаическая ячейка RU2519782C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011121963/04A RU2519782C2 (ru) 2011-06-01 2011-06-01 Способ получения циклопропановых производных фуллеренов, применение органических производных фуллеренов в качестве материалов для электронных полупроводниковых устройств, органического полевого транзистора, органической фотовольтаической ячейки, органический полевой транзистор и органическая фотовольтаическая ячейка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011121963/04A RU2519782C2 (ru) 2011-06-01 2011-06-01 Способ получения циклопропановых производных фуллеренов, применение органических производных фуллеренов в качестве материалов для электронных полупроводниковых устройств, органического полевого транзистора, органической фотовольтаической ячейки, органический полевой транзистор и органическая фотовольтаическая ячейка

Publications (2)

Publication Number Publication Date
RU2011121963A RU2011121963A (ru) 2012-12-27
RU2519782C2 true RU2519782C2 (ru) 2014-06-20

Family

ID=49257147

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011121963/04A RU2519782C2 (ru) 2011-06-01 2011-06-01 Способ получения циклопропановых производных фуллеренов, применение органических производных фуллеренов в качестве материалов для электронных полупроводниковых устройств, органического полевого транзистора, органической фотовольтаической ячейки, органический полевой транзистор и органическая фотовольтаическая ячейка

Country Status (1)

Country Link
RU (1) RU2519782C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579148C1 (ru) * 2014-11-18 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Способ получения норборнензамещенных циклопропановых производных фуллеренов и полимеров на их основе
RU2711566C2 (ru) * 2016-12-28 2020-01-17 Общество с ограниченной ответственностью "ФУНКЦИОНАЛЬНЫЕ ОРГАНИЧЕСКИЕ МАТЕРИАЛЫ" (ООО "ФОМ") Способ получения циклопропановых производных фуллеренов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2287483C1 (ru) * 2005-07-15 2006-11-20 Институт Проблем Химической Физики Российской Академии Наук (Ипхф Ран) Производные фуллеренов, способ их получения и фотовольтаическое устройство
WO2009062457A1 (de) * 2007-11-13 2009-05-22 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Organischer feldeffekttransistor basierend auf einem löslichen fullerenderivat
WO2009062456A1 (de) * 2007-11-13 2009-05-22 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Photoelektrisches halbleiterbauelement, basierend auf einem löslichen fullerenderivat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2287483C1 (ru) * 2005-07-15 2006-11-20 Институт Проблем Химической Физики Российской Академии Наук (Ипхф Ран) Производные фуллеренов, способ их получения и фотовольтаическое устройство
WO2009062457A1 (de) * 2007-11-13 2009-05-22 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Organischer feldeffekttransistor basierend auf einem löslichen fullerenderivat
WO2009062456A1 (de) * 2007-11-13 2009-05-22 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Photoelektrisches halbleiterbauelement, basierend auf einem löslichen fullerenderivat

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.C.HUMMELEN ET AL., "Preparation and characterization of fulleroid and methanofullerene derivatives", The Journal of Organic Chemistry, 1995, vol.60, pp.532-538 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579148C1 (ru) * 2014-11-18 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Способ получения норборнензамещенных циклопропановых производных фуллеренов и полимеров на их основе
EA028192B1 (ru) * 2014-11-18 2017-10-31 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Способ получения норборнензамещенных циклопропановых производных фуллеренов и полимеров на их основе
RU2711566C2 (ru) * 2016-12-28 2020-01-17 Общество с ограниченной ответственностью "ФУНКЦИОНАЛЬНЫЕ ОРГАНИЧЕСКИЕ МАТЕРИАЛЫ" (ООО "ФОМ") Способ получения циклопропановых производных фуллеренов

Also Published As

Publication number Publication date
RU2011121963A (ru) 2012-12-27

Similar Documents

Publication Publication Date Title
Ahmed et al. Design of new electron acceptor materials for organic photovoltaics: synthesis, electron transport, photophysics, and photovoltaic properties of oligothiophene-functionalized naphthalene diimides
JP5431340B2 (ja) ピロロピロール誘導体、その製造及び使用
JP6073806B2 (ja) 含窒素芳香族化合物、有機半導体材料及び有機電子デバイス
US10312446B2 (en) Conductive polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof
Wu et al. Phenanthrene-functionalized 3, 6-dithiophen-2-yl-2, 5-dihydropyrrolo [3, 4–c] pyrrole-1, 4-diones as donor molecules for solution-processed organic photovoltaic cells
WO2010022058A1 (en) Active materials for photoelectric devices and devices that use the materials
JP5788489B2 (ja) 重合体および光電変換素子
JP6622229B2 (ja) N−フルオロアルキル置換されたジブロモナフタレンジイミドおよびそれらの半導体としての使用
US9362509B2 (en) Aryloxy-phthalocyanines of group IV metals
JP5978228B2 (ja) 有機半導体材料及び有機電子デバイス
JP2019068056A (ja) 光電変換素子
RU2519782C2 (ru) Способ получения циклопропановых производных фуллеренов, применение органических производных фуллеренов в качестве материалов для электронных полупроводниковых устройств, органического полевого транзистора, органической фотовольтаической ячейки, органический полевой транзистор и органическая фотовольтаическая ячейка
KR100907752B1 (ko) 신규 플러렌 유도체 및 이를 이용한 유기태양전지 소자
EP2905277A1 (en) 1',2',5'-trisubstituted Fulleropyrrolidines
Min et al. A star-shaped D–π–A small molecule based on a tris (2-methoxyphenyl) amine core for highly efficient solution-processed organic solar cells
KR101732522B1 (ko) 광전자 분야 어플리케이션용 높은 전도성과 흡수성을 가진 신규한 저분자/올리고머의 합성
KR101553806B1 (ko) 포스핀 옥사이드기를 포함하는 유기 반도체 화합물 및 이를 이용한 유기태양전지
Kumavat et al. Synthesis of D–D–A-type small organic molecules with an enlarged linker system towards organic solar cells and the effect of co-adsorbents on cell performance
Jo et al. 2-Hexylthieno [3, 2-b] thiophene-substituted Anthracene Derivatives for Organic Field Effect Transistors and Photovoltaic Cells
KR20190008657A (ko) 비대칭 알킬기가 치환된 유기 반도체 화합물 및 이를 포함하는 태양전지
KR101930279B1 (ko) 용해도를 증가시킨 페나진 유도체 및 이를 이용한 유기광전변환소자용 고분자
KR20140068953A (ko) 반전도성 [60]풀러렌 박막 및 그의 용도
CN109071782A (zh) 基于氟代苯并恶二唑的供体-受体聚合物在电子学和光子学中的应用
CN110536915B (zh) 用于电子和光子应用的垂直苯并二噻吩基给体-受体聚合物
Courté Synthesis and optoelectronic properties of quinoidal 2, 2', 6, 6'-tetraphenyldipyranylidene towards photovoltaic applications

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20130724

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20130910