RU2519076C2 - Мембранный фильтрующий элемент для очистки агрессивных жидкостей - Google Patents

Мембранный фильтрующий элемент для очистки агрессивных жидкостей Download PDF

Info

Publication number
RU2519076C2
RU2519076C2 RU2008136721/05D RU2008136721D RU2519076C2 RU 2519076 C2 RU2519076 C2 RU 2519076C2 RU 2008136721/05 D RU2008136721/05 D RU 2008136721/05D RU 2008136721 D RU2008136721 D RU 2008136721D RU 2519076 C2 RU2519076 C2 RU 2519076C2
Authority
RU
Russia
Prior art keywords
filter element
membrane
hollow porous
porous cylinder
membrane filter
Prior art date
Application number
RU2008136721/05D
Other languages
English (en)
Inventor
Петр Никифорович Мартынов
Геннадий Васильевич Григорьев
Радомир Шамильевич Асхадуллин
Виталий Владимирович Григоров
Иван Васильевич Ягодкин
Сергей Семенович Скворцов
Original Assignee
Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42136964&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2519076(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология" filed Critical Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология"
Application granted granted Critical
Publication of RU2519076C2 publication Critical patent/RU2519076C2/ru

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Abstract

Изобретение относится к мембранному фильтрующему элементу для очистки агрессивных жидкостей. Мембранный фильтрующий элемент состоит из полого пористого цилиндра 1 из керамического материала, днища 3 и крышки 4, установленных по торцам полого пористого цилиндра 1. На наружную поверхность полого пористого цилиндра 1 нанесена мембрана 5, которая выполнена из наноструктурного керамического материала в виде оксида алюминия (α-Аl2О3), сформированного в потоке частиц эрозионной алюминиевой плазмы в кислородной среде. Кроме того, фильтрующий элемент содержит перфорированную трубу 2, установленную внутри полого пористого цилиндра 1. Изобретение позволяет обеспечить эффективную очистку агрессивных жидкостей при заданном эксплуатационном ресурсе и позволяет подвергать фильтрующий элемент многократной регенерации. 5 з.п. ф-лы, 1 ил.

Description

Изобретение относится к фильтрующим элементам, предназначенным для очистки агрессивных жидкостей.
Известен фильтрующий элемент, состоящий из органической пористой подложки с нанесенной на ее поверхность фильтрующей мембраной, выполненной из одного из металлов Ti, Zr, Hf, Cr, Al, Ni и нержавеющей стали, либо их оксинитридов, либо их нитридов, имеющей низкую адгезию к осадкам очищаемой среды [Патент на изобретение РФ №2148679 «Фильтрующий элемент и способ его изготовления», МКИ7 С23С 14/20, опубликован 10.05.2000 г.]. При этом диаметр пор органической пористой подложки больше диаметра пор фильтрующей мембраны, а толщина фильтрующей мембраны составляет 7-10 мкм.
Недостатком известного устройства является относительно низкая коррозионная стойкость его материалов в агрессивных жидкостях.
Известен фильтроэлемент, выполненный из порошкового металлического материала методом порошковой металлургии, например из титана или его сплавов [Свидетельство на полезную модель №27498 «Фильтр», опубликован 10.02.2003 г.].
Известный элемент тонкой очистки жидкостей выполнен из измельченной титановой стружки или отходов титана и его сплавов. Конструкция и материал фильтроэлемента позволяет проводить очистку различных жидкостей (пищевых, технических, агрессивных и др.), при температурах до 250°С и выше, однако, он не обеспечивают очистку среды в режиме ультрафильтрации, не может быть использован для удаления из очищаемой жидкости взвесей, растворенных примесей, а также в нем использован принцип объемной фильтрации.
Недостатками известного технического решения являются:
- относительно низкая коррозионная стойкость в агрессивных жидкостях;
- относительно быстрое забивание фильтроэлемента, существенно уменьшающее эксплуатационный ресурс и требующее применения интенсивных методов восстановления (регенерации) его работоспособности;
- ограниченное число регенераций фильтроэлемента.
Наиболее близким по технической сущности к заявляемому техническому решению является патронный фильтрующий элемент, содержащий внутреннюю перфорированную трубку, сформированный вокруг нее гофрированный материал, соединенные торцевыми деталями [Патент РФ на изобретение №2183493 «Патронный фильтрующий элемент и фильтрующий материал для его изготовления». Опубликован 20.06.2002]. В данном элементе фильтрующий материал выполнен в виде гофрированной пористой пленки из политетрафторэтилена с внутренней профилированной поверхностью в виде выступов, перфорированная трубка и торцевые детали выполнены из политетрафторэтилена, при этом перфорированная трубка и гофрированная пористая пленка соединены с обеих сторон с торцевыми деталями посредством сварки.
Недостатком известного устройства являются:
- относительно быстрое забивание фильтроэлемента, существенно уменьшающее эксплуатационный ресурс и требующее применения интенсивных методов восстановления (регенерации) его работоспособности;
- ограниченное число регенераций фильтроэлемента.
Предложенное техническое решение позволяет исключить указанные недостатки, а именно, уменьшить забивание фильтроэлемента и увеличить число его регенераций.
Для устранения указанных недостатков в мембранном фильтрующем элементе для очистки агрессивных жидкостей, состоящем из полого пористого цилиндра, днища и крышки, установленных по торцам полого пористого цилиндра, мембраны, нанесенной на наружную поверхность полого пористого цилиндра, предлагается:
- устройство дополнительно снабдить перфорированной трубой и установить ее внутри полого пористого цилиндра, изготовленного из керамического материала;
- мембрану выполнить из наноструктурного керамического материала в виде оксида алюминия (α-Al2O3), сформированного в потоке частиц эрозионной алюминиевой плазмы в кислородной среде.
В частных случаях выполнения устройства предлагается:
- в полом пористом цилиндре и мембране обеспечить открытые пористости равные соответственно 40-45 об.% и 9-11 об.%;
- в полом пористом цилиндре и мембране создать сквозные поры с размером 3-5 мкм и 0,05-0,1 мкм соответственно;
- в качестве керамического материала полого пористого цилиндра использовать спеченную смесь порошка оксида алюминия (α-Аl2О3) и нанопорошка аэрогеля гидрооксида алюминия (AlOOH) в соотношении 94 об.% и 6 об.% соответственно;
- в качестве материала перфорированной трубы, днища и крышки использовать коррозионностойкие хромоникелевые стали - Х18Н10Т; 12Х18Н10Т;
- полый пористый цилиндр и перфорированную трубу установить относительно друг друга коаксиально.
Технический результат состоит в увеличении эксплуатационного ресурса мембранного фильтрующего элемента, расширении его функциональных возможностей за счет увеличения температуры (до 600°С) очистки жидкостей.
Сущность изобретения поясняется на фигуре, на которой представлено продольное осевое сечение мембранного фильтрующего элемента для очистки агрессивных жидкостей. На фигуре приняты следующие обозначения: 1 - полый пористый цилиндр; 2 - перфорированная труба; 3 - днище; 4 - крышка; 5 - мембрана.
Мембранный фильтрующий элемент для очистки агрессивных жидкостей состоит из полого пористого цилиндра 1, днища 3 и крышки 4, установленных по торцам полого пористого цилиндра 1, мембраны 5, нанесенной на наружную поверхность полого пористого цилиндра 1, и перфорированной трубы 2, установленной внутри полого пористого цилиндра 1, изготовленного из керамического материала.
Мембрана 5 выполнена из наноструктурного керамического материала оксида алюминия (α-Аl2O3) и сформирована потоком частиц эрозионной алюминиевой плазмы в кислородной среде.
Получение материала мембраны из оксида алюминия осуществляется путем создания в рабочей камере давления реакционного газа (кислорода) равного 10-4-10-3 мм рт.ст. Образовавшееся плазмохимическое соединение Аl2О3 под действием электрического поля осаждается на пористую подложку, образуя пористую мембрану.
В частных случаях выполнения устройства имеет место следующее.
Полый пористый цилиндр 1 и мембрана 5 имеют открытые пористости равные соответственно 40-45 об % и 9-11 об.% и сквозные поры с размером 3-5 мкм и 0,05-0,1 мкм соответственно.
Механические свойства полого пористого цилиндра 1 сильно зависят от величины открытой пористости керамического материала. Чем меньше открытая пористость, тем больше прочность керамики и, следовательно, больше устойчивость ее к температурным и механическим нагрузкам. 40% открытая пористость полого пористого цилиндра 1 является пороговой, ниже которой значения недопустимы, т.к. скачкообразно на порядки уменьшается производительность очистки агрессивных жидкостей керамическим мембранным фильтрующим элементом. Верхнее значение открытой пористости в 45 об.% ограничено условием формирования мембраны 5 на поверхности полого пористого цилиндра 1. Чтобы получать мембрану 5 с открытой пористостью 11 об.%, требуется иметь полый пористый цилиндр 1 с открытой пористостью не больше 45 об.%. Формирование мембраны 5 на полом цилиндре с открытой пористостью больше 45 об.% сопровождается ее осыпанием с поверхности. При этом брак готовой продукции достигает 5-8%, что недопустимо для серийного производства таких мембранных керамических элементов. Мембрана 5 с открытой пористостью меньше 9 об.% не позволяет достигать эксплуатационный ресурс фильтроэлемента по очистке агрессивных жидкостей в силу того, что число регенераций уменьшается в 2-3 раза.
Отношение максимального размера сквозных пор полого пористого цилиндра 1 к минимальному размеру сквозных пор мембраны 5 (5/0,05) равное 100 является предельно разрешенным по условиям оптимального согласования двух пористых материалов. Отношение минимального размера сквозных пор полого пористого цилиндра 1 к максимальному размеру сквозных пор мембраны 5 (3/0,1) равное 30 является предельно разрешенным по условию тонкости очистки агрессивных жидкостей; отношение ниже 30 недопустимо.
В качестве керамического материала полого пористого цилиндра 1 используют спеченную смесь порошка оксида алюминия (α-Аl2О3) и нанопорошка аэрогеля гидрооксида алюминия (АlOOН),. представленные в смеси в соотношении 94 об.% и 6 об.%.
При соотношении спеченной смеси 6 об.% АlOOH + 94 об.% α-Аl2О3 достигается условие достижения максимальной механической прочности полого пористого цилиндра 1 из оксида алюминия. Гидрооксид алюминия является легирующей добавкой для повышения устойчивости оксида алюминия к температурным и механическим нагрузкам.
В качестве материала перфорированной трубы 2, днища 3 и крышки 4 используют коррозионностойкие хромоникелевые стали - нержавеющая аустенитная сталь Х18Н10Т, аустенитно-мартенситная жаропрочная нержавеющая сталь 12Х18Н10Т.
Полый пористый цилиндр 1 и перфорированная труба 2 установлены относительно друг друга соосно. Соосность обеспечивает равномерность механической нагрузки на полый пористый цилиндр 1 и беспрепятственный вывод отфильтрованной агрессивной жидкости в накопительную емкость.
Пример конкретного исполнения устройства
Мембранный фильтрующий элемент выполнен следующим образом. Полый пористый цилиндр 1 выполнен из спеченной смеси порошка оксида алюминия (α-Аl2О3) и нанопорошка аэрогеля гидрооксида алюминия (АlOOH), представленные в смеси в соотношении 94 об.% и 6 об.%.
Днище 3, крышка 4 и перфорированная труба 2 изготовлены из хромоникелевой стали Х18Н10Т.
Мембрана 5 выполнена из наноструктурного керамического материала - оксида алюминия (α-Аl2О3).
Полый пористый цилиндр 1 и мембрана 5 имеют открытые пористости равные соответственно 42,5±2,5 об % и 10±1 об.% и размеры сквозных пор соответственно равные 4±1 мкм и 0,075±0,025 мкм.
Мембранный фильтрующий элемент использован при очистке 40% соляной кислоты при температуре 25°С в течение 120 час. После эксплуатации мембранного фильтрующего элемента в указанных условиях на поверхности мембраны 5 не обнаружены очаги общей коррозии. За время эксплуатации мембранного фильтрующего элемента очищено 11,3 м3 40% соляной кислоты и проведено 12 регенераций. После каждой регенерации производительность мембранного фильтрующего элемента восстанавливалась до начальной.
Таким образом, заявленный мембранный фильтрующий элемент обеспечивает эффективную очистку агрессивных жидкостей при заданном эксплуатационном ресурсе, возможность многократной регенерации.

Claims (6)

1. Мембранный фильтрующий элемент для очистки агрессивных жидкостей, состоящий из полого пористого цилиндра, днища и крышки, установленных по торцам полого пористого цилиндра, и мембраны, нанесенной на наружную поверхность полого пористого цилиндра, отличающийся тем, что устройство дополнительно снабжено перфорированной трубой, установленной внутри полого пористого цилиндра, изготовленного из керамического материала, мембрана выполнена из наноструктурного керамического материала в виде оксида алюминия (α-Аl2О3), сформированного в потоке частиц эрозионной алюминиевой плазмы в кислородной среде.
2. Мембранный фильтрующий элемент по п.1, отличающийся тем, что полый пористый цилиндр и мембрана имеют открытые пористости, равные соответственно 40-45 об.% и 9-11 об.%.
3. Мембранный фильтрующий элемент по п.1, отличающийся тем, что полый пористый цилиндр и мембрана имеют размер сквозных пор, соответственно равный 3-5 мкм и 0,05-0,1 мкм.
4. Мембранный фильтрующий элемент по п.1, отличающийся тем, что в качестве керамического материала полого пористого цилиндра используют спеченную смесь порошка оксида алюминия (α-Аl2О3) и нанопорошка аэрогеля гидрооксида алюминия (АlOOН), представленных в смеси в соотношении 94 об.% и 6 об.%.
5. Мембранный фильтрующий элемент по п.1, отличающийся тем, что в качестве материала перфорированной трубы, днища и крышки используют коррозионно-стойкие хромоникелевые стали - Х18Н10Т, 12Х18Н10Т.
6. Мембранный фильтрующий элемент по п.1, отличающийся тем, что полый пористый цилиндр и перфорированная труба установлены относительно друг друга коаксиально.
RU2008136721/05D 2008-09-15 2008-09-15 Мембранный фильтрующий элемент для очистки агрессивных жидкостей RU2519076C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008136721/15A RU2397802C2 (ru) 2008-09-15 2008-09-15 Мембранный фильтрующий элемент для очистки агрессивных жидкостей

Publications (1)

Publication Number Publication Date
RU2519076C2 true RU2519076C2 (ru) 2014-06-10

Family

ID=42136964

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2008136721/05D RU2519076C2 (ru) 2008-09-15 2008-09-15 Мембранный фильтрующий элемент для очистки агрессивных жидкостей
RU2008136721/15A RU2397802C2 (ru) 2008-09-15 2008-09-15 Мембранный фильтрующий элемент для очистки агрессивных жидкостей

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2008136721/15A RU2397802C2 (ru) 2008-09-15 2008-09-15 Мембранный фильтрующий элемент для очистки агрессивных жидкостей

Country Status (1)

Country Link
RU (2) RU2519076C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634449C2 (ru) * 2016-02-18 2017-10-30 Евгений Иванович Крамаренко Фильтр для очистки жидкостей и газов

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2536536C1 (ru) * 2013-10-14 2014-12-27 Закрытое Акционерное Общество "Уральские Инновационные Технологии" (ЗАО "УРАЛИНТЕХ") Способ получения пористого проницаемого керамического изделия

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2031891C1 (ru) * 1993-03-12 1995-03-27 Государственное малое научно-производственное предприятие "ВИАМ-41" Способ изготовления керамического фильтроэлемента
RU2073638C1 (ru) * 1994-06-10 1997-02-20 Татьяна Николаевна Добровольская Способ получения ультрадисперсных оксидов элементов
RU2183493C2 (ru) * 2000-06-30 2002-06-20 Астахов Евгений Юрьевич Патронный фильтрующий элемент и фильтрующий материал для его изготовления
RU27498U1 (ru) * 2002-10-18 2003-02-10 Закрытое акционерное общество "Дальневосточная технология" Фильтр

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2031891C1 (ru) * 1993-03-12 1995-03-27 Государственное малое научно-производственное предприятие "ВИАМ-41" Способ изготовления керамического фильтроэлемента
RU2073638C1 (ru) * 1994-06-10 1997-02-20 Татьяна Николаевна Добровольская Способ получения ультрадисперсных оксидов элементов
RU2183493C2 (ru) * 2000-06-30 2002-06-20 Астахов Евгений Юрьевич Патронный фильтрующий элемент и фильтрующий материал для его изготовления
RU27498U1 (ru) * 2002-10-18 2003-02-10 Закрытое акционерное общество "Дальневосточная технология" Фильтр

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634449C2 (ru) * 2016-02-18 2017-10-30 Евгений Иванович Крамаренко Фильтр для очистки жидкостей и газов

Also Published As

Publication number Publication date
RU2008136721A (ru) 2010-03-20
RU2397802C2 (ru) 2010-08-27

Similar Documents

Publication Publication Date Title
RU2607745C2 (ru) Фильтрационное устройство для высокоэффективного динамического разделения суспензии-жидкости и способ фильтрации для него
JP6023068B2 (ja) セラミックフィルタ
JP5810083B2 (ja) セラミックフィルタ
KR20160041945A (ko) 파티큘레이트 필터
RU2519076C2 (ru) Мембранный фильтрующий элемент для очистки агрессивных жидкостей
JP2018516168A (ja) 流動媒体を分離するための一体成形カラム構造体
KR20180086420A (ko) 여과재 및 이의 제조방법
RU96028U1 (ru) Мембранный фильтрующий элемент для очистки жидких и парогазовых сред
JP4912702B2 (ja) セラミックフィルタのシール方法
KR20170095331A (ko) SiC-나이트라이드 또는 SiC-옥시나이트라이드 복합막 여과기
RU2579713C2 (ru) Способ изготовления фильтрующего материала
US20040134850A1 (en) Filters
US20180312444A1 (en) Inorganic membrane filtration articles and methods thereof
CN204672146U (zh) 一种陶瓷膜过滤器
RU2616474C1 (ru) Фильтрующий материал и способ его изготовления
CN108025984B (zh) 制备含多孔α碳化硅的本体的方法和由该方法制备的本体
JP4458611B2 (ja) 多孔質炭化珪素フィルター
Mitin et al. Preparation of steel/titanium dioxide/titanium three-layer composite membranes
TW201402199A (zh) 過濾用過濾器
RU2678016C1 (ru) Фильтрующий элемент
CN202061438U (zh) 具有耐强水冲击和机械强度强的微孔陶瓷滤芯
WO2022038970A1 (ja) セラミック平膜
JP2005097699A (ja) 管状多孔質体
WO2013161506A1 (ja) ハニカム構造体及びハニカムフィルタ
JP2022035415A (ja) セラミック平膜

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner