RU2579713C2 - Способ изготовления фильтрующего материала - Google Patents

Способ изготовления фильтрующего материала Download PDF

Info

Publication number
RU2579713C2
RU2579713C2 RU2013151117/02A RU2013151117A RU2579713C2 RU 2579713 C2 RU2579713 C2 RU 2579713C2 RU 2013151117/02 A RU2013151117/02 A RU 2013151117/02A RU 2013151117 A RU2013151117 A RU 2013151117A RU 2579713 C2 RU2579713 C2 RU 2579713C2
Authority
RU
Russia
Prior art keywords
powder
metal
mcm
mesh
particle size
Prior art date
Application number
RU2013151117/02A
Other languages
English (en)
Other versions
RU2013151117A (ru
Inventor
Виктор Иванович Новиков
Евгений Михайлович Соловьев
Original Assignee
Виктор Иванович Новиков
Евгений Михайлович Соловьев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Иванович Новиков, Евгений Михайлович Соловьев filed Critical Виктор Иванович Новиков
Priority to RU2013151117/02A priority Critical patent/RU2579713C2/ru
Publication of RU2013151117A publication Critical patent/RU2013151117A/ru
Application granted granted Critical
Publication of RU2579713C2 publication Critical patent/RU2579713C2/ru

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

Изобретение относится к технологии изготовления фильтрующего материала, в частности, для фильтрации жидкостей, очистки газовых потоков и других процессов разделения. В качестве подложки используют металлическую сетку с размерами ячейки в интервале от 2 до 10 мкм и толщиной не более 200 мкм, на которую наносят подслой из металлического порошка со средним размером частиц не более 10 мкм, проводят сушку и спекание металлического порошка на сетке. На полученной подложке формируют селективный керамический слой толщиной не более 10 мкм со средним размером пор не более 0,2 мкм путем нанесения слоя суспензии, состоящей из смесевой композиции керамических порошков со средним размером частиц не более 0,2 мкм и ее высушивания. Полученный материал отжигают при температуре, составляющей 0,5-0,7 от температуры плавления наиболее легкоплавкого компонента смесевой композиции керамических порошков. Обеспечивается повышение пористости и гибкости фильтрующего материала. 3 з.п. ф-лы, 4 пр.

Description

Изобретение относится к технологии изготовления фильтрующего материала для изготовления пористых металлических мембран или фильтров, предназначенных для фильтрации жидкостей, очистки газовых потоков и других подобных процессов разделения.
Известен способ изготовления фильтрующего материала, состоящий в том, что на пористой металлической подложке с размерами пор не более 30 мкм и толщиной не более 250 мкм формируют селективный слой из керамики толщиной не более 10 мкм со средним размером пор не более 0,2 мкм путем нанесения слоя суспензии из порошков оксидов, нитридов, карбидов и других со средним размером частиц не более 0,5 мкм, ее сушки, прикатывания при давлении 50-100 МПа и спекания при температуре в пределах 0,3-0,5 от температуры плавления порошка (патент RU 2040371). В случае использования для селективного слоя порошка материала из группы оксидов, нитридов или карбидов в суспензию вводят дополнительно не более 1 мас.% порошка металла, из которого изготовлена подложка. Полученные этим способом фильтрующие материалы могут быть использованы при давлениях до 0,6 МПа, они обладают некоторой пластичностью и высокой стойкостью к истиранию в случае разделения сред, содержащих абразивные материалы. Однако полученные таким способом фильтрующие материалы имеют недостаточную гибкость, что не позволяет использовать их в установках с рулонными фильтрующими модулями, а также при изготовлении мембран сложной гофрированной формы.
Известен способ изготовления фильтрующего материала, в соответствии с которым на пористую металлическую подложку наносят слой суспензии из порошка с частицами оксидов, нитридов, карбидов сферической формы и средним размером не менее 0,5 мкм. Полученный слой высушивают, прикатывают при давлении 50-100 МПа, а затем заготовку пропитывают водным раствором, содержащим 7,5 мас.% К2Cr2О7 и 2,5 мас.% Na2MoO4, сушат при температуре 150-200°C, а затем отжигают при температуре 0,3-0,5 от температуры плавления порошка с формированием селективного слоя не более 10 мкм со средним размером пор не более 0,2 мкм (патент RU 2424083). В соответствии с этим способом керамический слой формируют на пористой металлической подложке, которая изготовлена из таких металлов, как титан, железо, никель, серебро или из коррозионно-стойких сплавов на основе этих металлов.
Полученный таким способом фильтрующий материал позволяет значительно повысить прочность самого селективного слоя и его износостойкость к истиранию. Однако с помощью этого способа не удается получить фильтрующий материал с высокими характеристиками гибкости, что ограничивает возможность его использования при изготовлении мембран сложной формы. Кроме того, недостатком полученных с помощью этого способа фильтрующих материалов является их низкая пористость, которая в селективном слое не превышает 30%, а в самой металлической подложке не превышает 35%. Такие характеристики пористости существенно снижают проницаемость фильтрующих материалов, что существенно ограничивает возможность их использования для ряда технологических процессов, связанных с обработкой значительного объема текущей среды, например для процессов тонкой очистки газов.
Задачей изобретения является расширение области применения фильтрующих материалов.
Поставленная задача решается за счет получения технического результата, который состоит в повышении пористости и гибкости фильтрующего материала.
Технический результат достигается тем, что способ изготовления фильтрующего материала осуществляется следующим образом: в качестве подложки для формирования селективного слоя используют металлическую сетку с размерами ячейки в интервале от 2 до 10 мкм и толщиной не более 200 мкм, на сетку наносят подслой из металлического порошка со средним размером частиц не более 10 мкм, проводят сушку и спекание металлического порошка на сетке, затем на полученной металлической подложке формируют селективный керамический слой толщиной не более 10 мкм со средним размером пор не более 0,2 мкм, причем формирование селективного слоя проводят путем нанесения на подложку слоя суспензии, состоящей из смесевых композиций керамических порошков со средним размером частиц не более 0,2 мкм, высушивания суспензии и отжига фильтрующего материала при температуре от 0,5 до 0,7 от температуры плавления наиболее легкоплавкого компонента смесевой композиции порошков.
В соответствии с частным вариантом выполнения способа технический результат достигается тем, что для исключения эффекта растрескивания керамического селективного слоя при спекании керамический селективный слой наносится в виде смесевой композиции порошков керамик, в которой содержание каждого компонента в композиции порошков составляет не менее 25 мас.%.
В частном варианте выполнения способа технический результат достигается тем, что используют смесевую композицию керамических порошков, содержащую несколько фракций порошков, состоящих из оксидов, или нитридов, или карбидов, или боридов.
В другом частном варианте реализации способа металлический подслой наносят на металлическую сетку методом прокачки через нее водно-спиртовой суспензии металлического порошка при перепаде давления около 0,05 МПа, а затем проводят сушку и спекание порошка на сетке при температуре около 0,8 от температуры плавления металлического порошка.
Сущность предлагаемого способа состоит в установленной авторами совокупности существенных и частных признаков (режимов технологических операций и свойств исходных материалов), позволяющих получить гибкие фильтрующие материалы с селективным слоем, имеющим высокую и однородную пористость с размером пор не более 0,2 мкм. Эта совокупность признаков способа базируется на использовании для изготовления фильтрующих материалов смесевых композиций ультрадисперсных керамических порошков с существенно различающимися свойствами, в частности температурами спекания.
Предлагаемый способ изготовления фильтрующего материала позволяет получить фильтрующий материал, состоящий из металлической сетчатой подложки с размерами ячейки не более 10 мкм и толщиной не более 200 мкм и нанесенного на нее селективного слоя из керамики толщиной не более 10 мкм с размерами пор не более 0,2 мкм, причем для получения селективного слоя может быть использована широкая гамма смесевых композиций неорганических порошков и/или нанопорошков, выбранных из ряда оксиды, нитриды, карбиды или их смеси.
В соответствии с изобретением сетчатая металлическая подложка формируется предпочтительно из таких металлов, как титан, железо, никель, серебро, или их сплавов. Все эти металлы обладают высокой коррозионной стойкостью в агрессивных газообразных и жидких средах, которая необходима для использования мембран в большинстве технологических процессов разделения и очистки материалов. Основой металлической подложки является металлическая сетка толщиной не более 200 мкм со средним размером ячеек в интервале от 2 до 10 мкм.
Для создания металлической подложки с необходимыми свойствами и исключения продольного смещения проволочек отдельных элементов металлической сетки объем сетчатой структуры заполняется металлическим порошком с размером частиц порядка 10 мкм и с хорошей адгезией к металлической сетке. Такой порошок может быть выполнен, например, из металла, который по своему составу близок или идентичен материалу сетки. Порошок спекается с сеткой при температуре 0,8 от температуры плавления металла с формированием подложки для нанесения селективного слоя.
Керамическая смесевая композиция может быть составлена из порошков и/или нанопорошков, выбранных из ряда оксидов, нитридов, карбидов и их смесей. Выбор конкретного сочетания материалов смесевой композиции осуществляется в соответствии с условиями применения в конкретном технологическом процессе, а также с учетом коррозионной стойкости компонентов композиции в сочетании с хорошей адгезией к металлической сетчатой подложке.
В соответствии с предлагаемым способом керамический селективный слой наносится в виде смесевой композиции керамических порошков и/или нанопорошков, в которой содержание каждого компонента в композиции порошков составляет не менее 25 мас.%. В качестве смесевых композиций порошков используются, например, порошки, выбранные из ряда ТiO2, Al2O3, ZrО2, и другие. Использование такой композиции порошков позволяет исключить растрескивания керамического селективного слоя при спекании.
В соответствии с предлагаемым способом спекание керамического селективного слоя проводится при температурах от 0,5 до 0,7 от температуры плавления наиболее легкоплавкого компонента порошковой смеси. Это позволяет существенно повысить прочностные характеристики и абразивную стойкость селективного слоя фильтрующего материала. При этом отпадает необходимость пропитки керамического селективного слоя перед спеканием водными растворами бихромата калия и Na2MoO4, как это проводится в способах-аналогах для повышения свойств фильтрующего материала. Для получения керамического слоя используют порошки предпочтительно сферической формы, средний размер частиц которых не превышает 0,2 мкм. Использование порошков сферической формы улучшает гидростатические и гидродинамические характеристики материала, поскольку при спекании формируются поры с гладкой поверхностью.
Ниже приведены примеры практического осуществления способа.
Пример 1. Для изготовления металлической подложки используют тканную нержавеющую сетку В И С ТУ 14-697-2001 Ф 685 0.064/0.032 1000 толщиной 130 мкм со средним размером ячейки порядка 2 мкм. Готовят спиртовую суспензию нержавеющего порошка 316L со средним размером частиц 10 мкм при весовом соотношении твердое-жидкое 1:300. Полученную суспензию нержавеющего порошка наносят на сетку методом нафильтровывания при перепаде давления около 0,05 МПа при среднем расходе порошка 20-30 мг/см2. Полученную металлическую подложку сушат на воздухе и спекают в вакуумной печи при температуре 950-1050°C в течение 90-120 мин.
Для нанесения основного селективного слоя готовят спиртовую суспензию из смеси порошков оксида алюминия (Al2O3) и двуокиси титана со средним размером частиц порядка 0,08 мкм при их массовом соотношении соответственно 1:1. Полученную суспензию наносят на металлическую сетчатую подложку с подслоем из порошка 316L методом нафильтровывания в режиме принудительной прокачки суспензии при среднем расходе смеси порошков оксида алюминия и двуокиси титана от 8 до 10 мг/см2. Спекание материала селективного слоя проводят в течение 30-90 мин в вакуумной печи типа СШВ при вакууме не хуже 10-5 и при температуре около 1000-1050°C, что составляет примерно 0,6 от температуры плавления порошка диоксида титана (1855°C). В результате получают фильтрующий материал на основе селективного слоя, выполненного из подслоя нержавеющего порошка марки 316L со средним размером частиц примерно 10 мкм и основного слоя из смеси порошков оксида алюминия (Al2O3) и двуокиси титана при толщине селективного слоя от 7 до 10 мкм со средним размером пор 0,1 мкм и пористостью 55%.
Пластичность фильтрующего материала определяют известным методом сгиба на цилиндрах различных диаметров селективным слоем вовнутрь. Полученные результаты показали высокую пластичность полученного фильтрующего материала. Так, при получении из него трубчатой мембраны диаметром 4 мм с селективным слоем вовнутрь не наблюдалось отслоение керамического слоя, а основные структурные характеристики мембраны не отличались от характеристик фильтрующего материала.
Пример 2. В соответствии с заявляемым способом получают фильтрующий материал, который выполнен из сетки тканной нержавеющей ТУ 14-169-120-88 685 0.064/0.032 1000 толщиной 150 мкм со средним размером ячейки порядка 2 мкм, покрытой селективным слоем, выполненным из подслоя нержавеющего порошка марки 316L со средним размером частиц около 10 мкм и основного слоя из смеси порошков диоксида титана и диоксида циркония. Толщина селективного слоя составляет 7-10 мкм, средний размер пор составляет 0,08 мкм, а пористость - около 58%. Готовят спиртовую суспензию нержавеющего порошка 316L со средним размером частиц 10 мкм при весовом соотношении твердое-жидкое 1:300 и наносят на нержавеющую сетку методом нафильтровывания при перепаде давления 0,05 МПа и при среднем расходе порошка 20-30 мг/см. Полученный подслой сушат на воздухе и спекают в вакуумной печи при температуре 950-1050°C в течение 90-120 мин.
Для нанесения основного селективного слоя готовят спиртовую суспензию из смеси порошков диоксида титана и диоксида циркония с размером частиц не более 0,07 мкм при массовом соотношении порошков 1:3 соответственно. Суспензию наносят методом нафильтровывания в режиме принудительной прокачки суспензии через сетчатую основу с подслоем из порошка 316L при среднем расходе порошка 8-10 мг/см2. Спекание селективного слоя проводят в течение 30-90 мин в вакуумной печи типа СШВ при вакууме не хуже 10-5 и при температуре 1000-1050°C, что составляет около 0,6 от температуры плавления порошка двуокиси титана (1855°C).
Пластичность фильтрующего материала определяют известным методом сгиба на цилиндрах различных диаметров селективным слоем вовнутрь. Полученные результаты показали высокую пластичность полученного фильтрующего материала. Так, при получении из него трубчатой мембраны диаметром 5 мм с селективным слоем вовнутрь не наблюдалось отслоение керамического слоя, а основные структурные характеристики мембраны не отличались от характеристик фильтрующего материала.
Пример 3. В соответствии с заявляемым способом получают фильтрующий материал, который выполнен из тканной нержавеющей сетки С ТУ 14-4-432-94 450 09/0.55 1000 толщиной 200 мкм со средним размером ячейки порядка 3 мкм, покрытой селективным слоем, выполненным из подслоя нержавеющего порошка марки 316L со средним размером частиц примерно 10 мкм и основного слоя из смеси порошков оксида алюминия и диоксида титана при толщине селективного слоя 7-10 мкм со средним размером пор 0,15 мкм и пористостью порядка 55%.
Готовят спиртовую суспензию нержавеющего порошка 316L со средним размером частиц 10 мкм при массовом соотношении твердое-жидкое 1:300 и наносят ее на сетчатую нержавеющую подложку методом нафильтровывания при перепаде давления 0,05 МПа при среднем расходе порошка 20-30 мг/см2. Полученный подслой сушат на воздухе и спекают в вакуумной печи при температуре 950-1050°C в течение 90-120 мин.
Для нанесения основного селективного слоя готовят спиртовую суспензию из смеси порошков оксида алюминия (Al2O3) и диоксида титана с размером частиц 0,1 мкм при массовой соотношении порошков 1:2 соответственно. Суспензию наносят методом нафильтровывания в режиме принудительной прокачки суспензии через сетчатую подложку с подслоем из порошка 316L при среднем расходе порошка 8-10 мг/см2. Спекание материала селективного слоя проводят в течение 30-90 мин в вакуумной печи типа СШВ при вакууме не хуже 10-5 и при температуре 950-1000°C, что составляет около 0,5 от температуры плавления порошка диоксида титана ((1855°C).
Пластичность фильтрующего материала определяют, как в примере 1. Полученные результаты показали высокую пластичность полученного фильтрующего материала. Так, при получении из него трубчатой мембраны диаметром 6 мм с селективным слоем вовнутрь не наблюдалось отслоение керамического слоя, а основные структурные характеристики мембраны не отличались от характеристик фильтрующего материала.
Пример 4. В соответствии с заявляемым способом получают фильтрующий материал, который выполнен из сетки тканной нержавеющей ВИС ТУ 14-697-2001 Ф 685 0.064/0.032 1000 толщиной 130 мкм со средним размером ячейки порядка 2 мкм, покрытой селективным слоем, выполненным из подслоя нержавеющего порошка марки 316L со средним размером частиц примерно 10 мкм и основного слоя из смеси порошков оксида алюминия (Al2O3) и диоксида циркония при толщине селективного слоя 7-10 мкм, средним размером пор 0,07 мкм и пористости 60%.
Спиртовую суспензию нержавеющего порошка 316L со средним размером частиц 10 мкм, приготовленную в весовом соотношении твердое-жидкое 1:300, наносят на тканную нержавеющую сетку методом нафильтровывания при перепаде давления -0,05 МПа, при среднем расходе порошка 20-30 мг/см2. Полученный подслой сушат на воздухе и спекают в вакуумной печи при температуре 950-1050°C в течение 90-120 мин.
Для нанесения основного селективного слоя готовят спиртовую суспензию из смеси порошков оксида алюминия(Al2O3) и диоксида циркония с размером частиц 0,06 мкм при массовом соотношении 1:3 соответственно. Суспензию наносят методом нафильтровывания в режиме принудительной прокачки суспензии через сетчатую основу с подслоем порошка 316L при среднем расходе порошка 8-10 мг/см2. Спекание материала проводят в течение 30-90 мин в вакуумной печи типа СШВ при вакууме не хуже 10-5 и при температуре 1050°C-1100°C, что составляет примерно 0,55 от температуры плавления порошка оксида алюминия (2050°C).
Пластичность фильтрующего материала определяют, как в примере 1. Полученные результаты показали высокую пластичность полученного фильтрующего материала. Так при получении из него трубчатой мембраны диаметром 6 мм с селективным слоем вовнутрь не наблюдалось отслоение керамического слоя, а основные структурные характеристики мембраны не отличались от характеристик фильтрующего материала.
В приведенных примерах 1-4 осуществление способа измерения среднего размера пор и пористости проводилось известным методом ртутной порометрии в режиме автоматического измерения пористости и среднего размера пор на автоматическом поромере модели 9200. Определение распределения размеров пор проводилось стандартным методом измерения размера пор мембранных фильтров с помощью пузырьковой точки в соответствии со стандартом ASTM.-F-316 на приборе COULTER Porometer II.
Полученные результаты показывают, что предлагаемый способ позволяет получить фильтрующий материал с существенно увеличенными по сравнению с известными аналогами пористостью (на 30-35%) и проницаемостью (в 2-3 раза). Такие характеристики фильтрующего материала обеспечивают значительное улучшение гидростатических и гидродинамических характеристик фильтрующих устройств, выполненных на их основе.
Фильтрующий материал, полученный предлагаемым способом, обладает высокими характеристиками гибкости, которые близки к характеристикам гибкости его сетчатой основы. Это позволяет использовать фильтрующий материал в виде рулонных модулей значительных размеров, а также использовать для изготовления мембран со сложной гофрированной формой, что существенно расширяет сферу его использования. Фильтрующий материал из высокопористой гибкой керамики на сетчатой подложке обладает повышенной прочностью, что позволяет его использовать при давлениях до 1,0 МПа.

Claims (4)

1. Способ изготовления фильтрующего материала, включающий нанесение на металлическую пористую подложку селективного слоя на основе мелкодисперсных керамических порошков, сушку и отжиг, отличающийся тем, что в качестве подложки для формирования селективного слоя используют металлическую сетку с размерами ячейки в интервале от 2 до 10 мкм и толщиной не более 200 мкм, на которую наносят подслой из металлического порошка со средним размером частиц не более 10 мкм, проводят сушку и спекание металлического порошка на сетке, при этом формируют селективный керамический слой толщиной не более 10 мкм со средним размером пор не более 0,2 мкм путем нанесения на подложку слоя суспензии, состоящей из смесевой композиции керамических порошков со средним размером частиц не более 0,2 мкм, высушивания суспензии и отжига полученного материала при температуре, составляющей 0,5-0,7 от температуры плавления наиболее легкоплавкого компонента смесевой композиции керамических порошков.
2. Способ по п. 1, отличающийся тем, что используют смесевую композицию керамических порошков, в которой содержание каждого порошка составляет не менее 25 мас.%.
3. Способ по п. 1 или 2, отличающийся тем, что используют смесевую композицию керамических порошков, содержащую фракции порошков, выбранных из ряда оксидов, нитридов, карбидов или их смеси.
4. Способ по п. 1 или 2, отличающийся тем, что подслой из металлического порошка наносят на металлическую сетку методом прокачки через нее водно-спиртовой суспензии металлического порошка при перепаде давления около 0,05 МПа, а затем проводят сушку и спекание металлического порошка на сетке при температуре около 0,8 от температуры плавления металлического порошка.
RU2013151117/02A 2013-11-18 2013-11-18 Способ изготовления фильтрующего материала RU2579713C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013151117/02A RU2579713C2 (ru) 2013-11-18 2013-11-18 Способ изготовления фильтрующего материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013151117/02A RU2579713C2 (ru) 2013-11-18 2013-11-18 Способ изготовления фильтрующего материала

Publications (2)

Publication Number Publication Date
RU2013151117A RU2013151117A (ru) 2015-05-27
RU2579713C2 true RU2579713C2 (ru) 2016-04-10

Family

ID=53284737

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013151117/02A RU2579713C2 (ru) 2013-11-18 2013-11-18 Способ изготовления фильтрующего материала

Country Status (1)

Country Link
RU (1) RU2579713C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2635617C1 (ru) * 2016-12-23 2017-11-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" Способ изготовления фильтрующего материала

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107961593B (zh) * 2017-12-18 2023-09-22 四会市华通金属筛网制品有限公司 多层金属复合烧结网

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU485829A1 (ru) * 1973-04-02 1975-09-30 Горьковский политехнический институт им.А.А.Жданова Способ получени пористого фильтровального материала
US4613369A (en) * 1984-06-27 1986-09-23 Pall Corporation Porous metal article and method of making
RU2040371C1 (ru) * 1993-04-28 1995-07-25 Владимир Натанович Лаповок Способ изготовления фильтрующего материала
RU2424083C1 (ru) * 2009-12-28 2011-07-20 Федеральное государственное унитарное предприятие "Красная звезда" Способ изготовления фильтрующего материала

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU485829A1 (ru) * 1973-04-02 1975-09-30 Горьковский политехнический институт им.А.А.Жданова Способ получени пористого фильтровального материала
US4613369A (en) * 1984-06-27 1986-09-23 Pall Corporation Porous metal article and method of making
RU2040371C1 (ru) * 1993-04-28 1995-07-25 Владимир Натанович Лаповок Способ изготовления фильтрующего материала
RU2424083C1 (ru) * 2009-12-28 2011-07-20 Федеральное государственное унитарное предприятие "Красная звезда" Способ изготовления фильтрующего материала

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2635617C1 (ru) * 2016-12-23 2017-11-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" Способ изготовления фильтрующего материала

Also Published As

Publication number Publication date
RU2013151117A (ru) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5997818B2 (ja) 焼結結合した多孔質金属被覆
KR100966249B1 (ko) 관형의 수소 분리막체 및 그 제조방법
NL7803860A (nl) Werkwijze voor de vervaardiging van minerale poreuze en doordringbare membranen, die door een poreus substraat zijn ondersteund.
JPS61500221A (ja) 多孔性材料及び該材料から構成される管状フイルタ
WO2015027746A1 (zh) 粉末烧结金属多孔体、过滤元件及改善其渗透性的方法
JP2007301514A (ja) 水素分離材及びその製造方法
RU2579713C2 (ru) Способ изготовления фильтрующего материала
US11660556B2 (en) Filter comprising a coating layer of flake-like powders and a preparation method thereof
JP6667614B2 (ja) 多孔質支持体、多孔質支持体の製造方法、分離膜構造体及び分離膜構造体の製造方法
Souza et al. Preparation of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3–δ asymmetric structures by freeze-casting and dip-coating
WO2000045945A1 (fr) Procede de fabrication d'un filtre comportant un film poreux ceramique comme film de separation
Ha et al. The preparation and pore characteristics of an alumina coating on a diatomite-kaolin composite support layer
WO1993005190A1 (en) Process for producing porous metallic body
US9327245B2 (en) Metallic-ceramic composite membranes and methods for their production
JP2004521732A (ja) 等級順に配列した構造を備えたフィルター及びそれを製造するための方法。
JP2023021136A (ja) セラミックフィルタ
RU2424083C1 (ru) Способ изготовления фильтрующего материала
JPS58205504A (ja) 耐熱性多孔質膜
JP7191861B2 (ja) 一体式メンブレンろ過構造体
RU2040371C1 (ru) Способ изготовления фильтрующего материала
RU2616474C1 (ru) Фильтрующий материал и способ его изготовления
Mitin et al. Preparation of steel/titanium dioxide/titanium three-layer composite membranes
JPWO2019188962A1 (ja) 膜フィルタ用基材及びその製造方法
JP3481962B2 (ja) 金属多孔体フィルタの製造方法
JPH02153871A (ja) 無機多孔質構造体およびその製造法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161119