WO2015027746A1 - 粉末烧结金属多孔体、过滤元件及改善其渗透性的方法 - Google Patents

粉末烧结金属多孔体、过滤元件及改善其渗透性的方法 Download PDF

Info

Publication number
WO2015027746A1
WO2015027746A1 PCT/CN2014/081163 CN2014081163W WO2015027746A1 WO 2015027746 A1 WO2015027746 A1 WO 2015027746A1 CN 2014081163 W CN2014081163 W CN 2014081163W WO 2015027746 A1 WO2015027746 A1 WO 2015027746A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
sintered metal
metal porous
powder sintered
powder
Prior art date
Application number
PCT/CN2014/081163
Other languages
English (en)
French (fr)
Inventor
高麟
汪涛
李波
Original Assignee
成都易态科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都易态科技有限公司 filed Critical 成都易态科技有限公司
Priority to US14/915,177 priority Critical patent/US10525390B2/en
Publication of WO2015027746A1 publication Critical patent/WO2015027746A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2031Metallic material the material being particulate
    • B01D39/2034Metallic material the material being particulate sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02232Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/002Alloys based on nickel or cobalt with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a powder sintered metal porous body, a filter element using the powder sintered metal porous body, and a method of improving the permeability of the powder sintered metal porous body.
  • powder sintered metal porous materials are a major filter material.
  • pore structure and chemical stability are the most important technical indicators for such materials.
  • the pore structure is the key factor affecting the material filtration precision, permeability and recoil regeneration ability. It is determined by the pore formation method in the preparation of powder sintered metal porous material; chemical stability is the corrosion resistance of the material under certain systems.
  • the key factor, etc. is determined by the chemical properties of the substance itself.
  • the pore-forming methods that have been applied in the preparation of powder sintered metal porous materials are mainly as follows: First, the pores are formed by chemical reaction, and the principle is based on the partial diffusion effect caused by the large difference in intrinsic diffusion coefficients of different elements, so that The Kirkendal l pores are produced in the material; second, the pores are physically deposited by the raw material particles; and third, the pores are removed by adding the components. Sintered porous materials formed based on the above different pore forming methods tend to have differentiated pore structures.
  • the technical problem to be solved by the present invention is to provide a powder sintered metal porous body which has a good overall performance, particularly a good corrosion resistance to hydrofluoric acid, and a filter element to which the same is applied.
  • the powder sintered metal porous body of the present invention has a porosity of 25 to 60%, an average pore diameter of 0.5 to 50 ⁇ , and the powder sintered metal porous body contains 23 to 40% by weight of Cu of the powder sintered metal porous body. 0 to 5% by weight of Si and the remaining weight of Ni, and the weight loss rate after immersion in a hydrofluoric acid solution having a mass fraction of 5% for 20 days at room temperature is 1% or less.
  • the powder sintered metal porous body may be composed of only two elements of Cu and Ni.
  • the phase of the powder sintered metal porous body is a (Cu, Ni) solid solution.
  • the powder sintered metal porous body may be composed of three elements of Cu, Si, and Ni.
  • the weight percentage of Si in the powder sintered metal porous body should not exceed 5%. 5 ⁇ 4 ⁇
  • the weight percentage of Si is further preferably 0. 5 ⁇ 4
  • the addition of Si to the powder sintered metal porous body can improve the corrosion resistance of the powder sintered metal porous body, particularly in an oxidizing medium system. If Si exceeds 5%, it will increase the sintering difficulty of the material.
  • powder sintered metal porous body in the present invention means a porous metal body prepared by sequentially molding and sintering a raw material powder.
  • Cu and Ni may be introduced into the powder sintered metal porous body by the Cu element powder and the Ni element powder doped into the raw material powder, or may be introduced by the Cu-Ni alloy powder in the raw material powder. Powder sintered metal porous body.
  • the "tortuous factor” is another important structural parameter reflecting the pore structure of the material in addition to the porosity and the average pore diameter. It is defined by the ratio of the shortest distance of the fluid flowing through the porous body to the thickness of the porous body, and is characterized by the porous body. The degree of bending of the three-dimensional connected pores. The closer the tortuosity factor is to 1, the smaller the shortest distance the fluid flows through the porous body, and the faster the penetration rate. Therefore, under the conditions of close porosity and average pore diameter, the powder sintered metal porous body obtained by using the Cu element powder and the Ni element powder has remarkably improved permeability and recoil regeneration ability.
  • the present invention will also provide a method for improving the permeability of the powder sintered metal porous body: the powder sintered metal porous body
  • the porosity is 25 to 60%, the average pore diameter is 0.5 to 50 ⁇ , and is composed of 23 to 40% by weight of Cu, 0 to 5% by weight of Si, and the remaining weight of Ni; wherein, Cu and Ni are respectively doped
  • the Cu element powder and the Ni element powder in the raw material powder are introduced into the powder sintered metal porous body, and the raw material powder is subjected to molding and sintering to prepare a powder sintered metal porous body, and when sintered, between 0! 5 ⁇ 1. 25 ⁇
  • the interdiffusion of the powder sintered metal porous body has a tortuous factor of 1. 02 ⁇ 1.
  • the filter element provided by the present invention is a filter element comprising the above-described powder sintered metal porous body.
  • the above-mentioned powder sintered metal porous body specifically means that the filter element may be composed of the above powder sintered metal porous body; or the powder sintered metal porous body is only used as a support layer of the filter element, the surface of the support layer There are also cases where a working layer for filtration or the like is attached.
  • the working layer When the working layer is adhered to the surface of the support layer, the working layer is preferably one of a nickel porous film and a nickel-based alloy porous film.
  • both the working layer and the support layer are nickel-based metal materials, the combination of the two is very high. Well, it will not be detached due to repeated recoil regeneration, etc., and the filter element can be kept for a long service life.
  • the "nickel-based alloy porous film” includes a porous film having the same chemical composition as that of the powder sintered metal porous body of the present invention.
  • the steps of a specific preparation method of the powder sintered metal porous body of the present invention include: 1) preparing a mixed powder: The Cu element powder having a particle diameter of -250 to +400 mesh and the Ni element powder having a particle diameter of -200 to +300 mesh have a weight percentage of Cu of 23 to 40% in the powder sintered metal porous body prepared by the preparation, and the balance is Ni 2) granulation, drying and molding: The pulverized powder containing the above-mentioned Cu element powder and Ni element powder is sequentially granulated and dried, and the drying temperature is set to 40 to 60 ° C, and the drying time is set. It is set to 4 ⁇ 8 hours, then cold-pressed, and kept under pressure of 80 ⁇ 200MPa for 20 ⁇ 80 seconds.
  • the compact After cold pressing, the compact is obtained.
  • the sintering system consists of the following three stages: First stage: The sintering temperature is raised from room temperature to 400 ⁇ 450 °C, the heating rate is controlled at 5 ⁇ 10 °C /min, and the temperature is kept at 400 ⁇ 450 °C for 120 ⁇ 240 minutes.
  • the second stage the sintering temperature is raised to 750 ⁇ 850 °C, the heating rate is controlled at 5 ⁇ 10 °C /min, and the temperature is kept at 750 ⁇ 850 °C for 90 ⁇ 180 minutes;
  • the third stage the sintering temperature is increased To 1000 ⁇ 1200 °C, the heating rate is controlled at 3 ⁇ 5 °C / min, and at 1000 ⁇ 1200 °C Incubation 180 ⁇ 300 min; furnace cooling after sintering to obtain a sintered powder metal porous body, the porous sintered metal powder body is composed of Cu, Ni element reaches its tortuosity 25 1. 02 ⁇ 1.
  • the further specific preparation method of the powder sintered metal porous body of the present invention comprises the following steps: 1) preparing a mixed powder: a Cu element powder having a particle diameter of -250 to +400 mesh, a Si element powder having a particle diameter of 3 to 10 ⁇ m, ⁇ 2%, the remainder is 0. 5 ⁇ 4%, the balance is 0. 5 ⁇ 4%, the rest is Ni ratio is mixed; 2) granulation, drying and molding: The powder containing the above-mentioned Cu element powder, Si element powder and Ni element powder is sequentially granulated and dried, and the drying temperature is set to 40 to 60 °.
  • the sintering system consists of the following three stages: First stage: The sintering temperature is raised from room temperature to 400 ⁇ 450 °C, the heating rate is controlled at 5 ⁇ 10 °C /min, and the temperature is maintained at 400 ⁇ 450 °C.
  • the second stage will be sintered
  • the temperature is raised to 750 ⁇ 850 °C, the heating rate is controlled at 5 ⁇ 10 °C /min, and the temperature is maintained at 750 ⁇ 850 °C for 120 ⁇ 240 minutes;
  • the third stage the sintering temperature is raised to 1000 ⁇ 1200 °C, The heating rate is controlled at 3 ⁇ 5 °C /min, and is kept at 1000 ⁇ 1200 °C for 180 ⁇ 300 minutes.
  • the powder sintered metal porous body is obtained by cooling with the furnace.
  • the powder sintered metal porous body is made of Cu, Si, 5 ⁇ 1. 25 ⁇
  • the powder sintered metal porous body has significantly improved permeability when Cu and Ni are respectively introduced into the powder sintered metal porous body by the Cu element powder and the Ni element powder doped into the raw material powder. And recoil regeneration ability.
  • the ratios of Cu and Ni in the raw materials of test A1 and test B1 were the same, except that the test A1 used Cu element powder and Ni element powder, and the test B1 used Cu-Ni alloy powder; the test A2 and the test B2 raw materials Cu, Ni, Si
  • the ratio is the same, the difference is that the test A2 uses Cu element powder, Si element powder and Ni element powder, while the test B2 uses Cu-Ni alloy powder and Si element powder; similarly, the ratio of Cu and Ni in the raw materials of test A3 and test B3 is the same.
  • the difference is that the test A3 uses Cu element powder and Ni element powder, and the test B3 uses Cu_Ni alloy powder.
  • Test A1 contains three parallel tests, namely " ⁇ 1-', "Al-2", “Al-3", and the test of the twist of Al The factor will take the average of the samples Al_l, A1, 2, Al-3;
  • Test A2 contains three parallel tests, namely "A2- 1", “A2- 2", “A2- 3", the twist of test A2 The factor will take the average of the samples A2-l, A2-2, A2-3;
  • test A3 contains three parallel tests, S ⁇ " ⁇ 3-', " ⁇ 3-2", “ ⁇ 3-3” .
  • the particle size of the Cu element powder used in Table 1 is _250 to +400 mesh, the particle size of the Ni element powder is -200 to +300 mesh, and the particle size of the Si element powder is 3 to 10 ⁇ m, Cu_Ni alloy.
  • the particle size of the powder is -200 to +300 mesh.
  • Table 1 Composition and content of raw materials used in the test
  • the raw materials of each test are mixed separately. After thorough mixing, in order to prevent segregation, the raw material powders of the other tests except the tests Bl and B3 were granulated, granulated and then dried, and the drying temperature was set to 55 ° C, and the drying time was set to 6 hours. After that, the raw material powders of each test were respectively placed in a uniform-sized isostatic pressing mold, and then these molds were respectively placed in a cold isostatic pressing machine, and held under a molding pressure of 100 MPa for 60 seconds, which was prepared after demolding. Corresponding numbered tubular compacts.
  • the sintering system of the Class A test consists of the following three stages: the first stage: the sintering temperature is raised from room temperature to 400 ⁇ 450 °C, the heating rate is controlled at 5 ⁇ 10 °C/min, and the temperature is maintained at 400 ⁇ 450 °C.
  • Second stage The sintering temperature is raised to 750 ⁇ 850 °C, the heating rate is controlled at 5 ⁇ 10 °C/min, and the temperature is maintained at 750 ⁇ 850 °C for 90 ⁇ 180 minutes; the third stage: The sintering temperature is raised to 1000 to 1200 ° C, the heating rate is controlled at 3 to 5 ° C / min, and the temperature is maintained at 1000 to 1200 ° C for 180 to 300 minutes; after sintering, the powder sintered metal porous body is obtained by cooling with a furnace.
  • the main purpose of the first stage is degreasing;
  • the second stage is the medium temperature solid solution stage, the main purpose is to promote the solid solution reaction between elements;
  • the third stage is the composition homogenization stage, the main purpose is the formation of uniformity and final performance.
  • the above sintering process It can be sintered by inert gas or vacuum sintered.
  • the sintering process parameters of the three stages in the sintering system of the A-type test are shown in Table 2.
  • the unit of heating rate in Table 2 is °C/min, and the unit of sintering time is minutes.
  • the sintering system of the sintering system of class B test is relatively simple (due to the use of alloy powder), which specifically increases the sintering temperature from room temperature to 1200 ° C, the heating rate is controlled at 5 ° C / min, and then at 1200 ° C Keep warm for 2 hours.
  • Sample A1 including Al-1, A1-2, A1-3
  • sample A2 including A2_l, A2-2, A2-3)
  • sample A3 including A3-l, A3-2, A3-3)
  • the crystal phases of the sample B1, the sample B2, and the sample B3 are all (Cu, Ni) solid solution.
  • the Si gap is solid solution in the Cu-Ni alloy. Therefore, the tensile strength of these samples is relatively high, and can basically reach 80 MPa or more.
  • the pore structure test results of the above samples are shown in Table 3.
  • the unit of thickness is mm
  • the unit of open porosity is %
  • the unit of average pore diameter is ⁇
  • the unit of porosity is %
  • the unit of permeability is (10).
  • the porosity, open porosity and average pore diameter of the material are determined by the bubble method; the permeability is specifically per square meter of the filtration area, and the pressure difference per pa is filtered and per second. Nitrogen (20 ° C) flux.
  • L is the material thickness and L' is the shortest distance through which the fluid flows through the porous medium.
  • is the open porosity (%) of the porous material
  • D is the average pore diameter (m)
  • K is the permeability (m 3 'm - 2 -s - Pa - ,
  • L is the material thickness (m)
  • is the fluid viscosity
  • the thickness, open porosity, average pore diameter, permeability and fluid viscosity data were obtained, and then the tortuosity factor was obtained according to the formula (3).
  • the viscosity of the fluid was calculated based on the viscosity of the nitrogen fluid at 20 °C.
  • Sample A1 including Al-1, A1-2, A1-3
  • sample A2 including A2_l, A2-2, A2-3)
  • sample A3 including A3-l, A3-2, A3-3)
  • the test results of the corrosion resistance of the sample B1, the sample B2, and the sample B3 are shown in Table 4.
  • “corrosion resistance 1” is specifically characterized by the weight loss rate after soaking for 20 days at room temperature in a hydrofluoric acid solution with a mass fraction of 5%
  • corrosion resistance 2 is specifically used at a mass fraction of 5%.
  • the hydrofluoric acid solution (which also contains 0.1 to 0.5 mol/L of Fe 3+ ) is characterized by the weight loss rate after soaking for 20 days at room temperature.
  • Table 4 Corrosion resistance test results of samples

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种粉末烧结金属多孔体及其制备方法,该多孔体由23-40wt%的Cu、0-5wt%的Si以及余量的Ni构成,其孔隙率为25-60%,平均孔径为0.5-50μm,曲折因子达1.02-1.25,且在浓度5%的氟氢酸溶液中室温浸泡20天后的失重率在1%以下。该多孔体通过分别引入Ni粉、Cu粉作为原料粉,之后成型烧结而制成。

Description

粉末烧结金属多孔体、 过滤元件及改 Λ雜性的方法 技术领域
本发明涉及一种粉末烧结金属多孔体、应用该粉末烧结金属多孔体的过滤元件以及改 善粉末烧结金属多孔体渗透性的方法。
背景技术
在无机膜分离领域, 粉末烧结金属多孔材料是一种主要的过滤材料。 通常来讲, 孔结 构和化学稳定性是这类材料最为重要的技术指标。 其中, 孔结构是影响材料过滤精度、 渗 透性能和反冲再生能力的关键因素, 它由粉末烧结金属多孔材料制备中的成孔方式决定; 化学稳定性则是影响材料在特定体系下耐腐蚀性等的关键因素,它由物质本身的化学特性 决定。
目前, 已应用在粉末烧结金属多孔材料制备中的成孔方式主要有: 第一, 通过化学反 应成孔, 其原理是基于不同元素本征扩散系数的较大差异所引起的偏扩散效应, 使得材料 中产生 Kirkendal l孔隙; 第二, 通过原料粒子物理堆积成孔; 第三, 通过添加成分脱出成 孔。 基于上述不同成孔方式所生成的烧结多孔材料往往具有差异化的孔结构。
随着膜分离技术的发展, 对粉末烧结金属多孔材料的性能也提出了越来越高的要求。 开发具有优异的孔结构和化学稳定性的粉末烧结金属多孔材料已成为现实需要。为了开发 这种具有优异孔结构和化学稳定性的粉末烧结金属多孔材料,既要求寻找到理想的合金成 分, 又要探索与之相应的成孔方式。 本发明即在这样的技术背景下, 提出以下发明创造。
发明内容
首先, 本发明所要解决的技术问题是提供一种综合性能较好, 尤其对氢氟酸具有良好 的耐腐蚀性的粉末烧结金属多孔体及应用它的过滤元件。
本发明的粉末烧结金属多孔体, 其孔隙率为 25〜60%, 平均孔径为 0. 5〜50μπι, 且该粉 末烧结金属多孔体由占该粉末烧结金属多孔体 23〜40%重量的 Cu、 0〜5%重量的 Si以及余下 重量的 Ni构成, 在质量分数为 5%的氢氟酸溶液中室温浸泡 20天后的失重率为 1%以下。
上述粉末烧结金属多孔体可以仅由 Cu、 Ni两种元素构成, 此时, 该粉末烧结金属多孔 体的物相为 (Cu, Ni)固溶体。
上述粉末烧结金属多孔体也可以由 Cu、 Si、 Ni三种元素构成, 此时, Si在该粉末烧结 金属多孔体中的重量百分含量应不超过 5%。 其中 Si的重量百分含量可进一步优选为 0. 5〜 4 在粉末烧结金属多孔体中添加 Si, 可以提高粉末烧结金属多孔体的抗腐蚀性能, 尤其 是在氧化性介质体系中的抗腐蚀性能。 若 Si超过 5%, 会增大材料的烧结难度。
本发明中的术语"粉末烧结金属多孔体"是指将原料粉先后经过成型、 烧结从而制备 得的金属多孔体。 上述粉末烧结金属多孔体中, Cu、 Ni既可以通过掺入原料粉中的 Cu元素 粉和 Ni元素粉而引入该粉末烧结金属多孔体, 也可以通过原料粉中的 Cu-Ni合金粉而引入 粉末烧结金属多孔体。
然而, 本发明强烈建议采用 Cu元素粉和 Ni元素粉的方式。 通过试验令人惊异的发现, 当采用 Cu元素粉和 Ni元素粉时, 烧结时 Cu、 Ni之间因相互扩散导致所得粉末烧结金属多孔 体的曲折因子达到1. 02〜1. 25。 而采用 Cu-Ni合金粉时, 所得粉末烧结金属多孔体的曲折 因子仅为 1. 6以上。
"曲折因子"是除孔隙率、 平均孔径外, 反映材料孔结构的又一重要的结构参数, 其 是用流体流过多孔体的最短距离与多孔体厚度的比值来定义,表征了多孔体中三维连通孔 隙的弯曲程度。 曲折因子越接近 1, 说明流体流过多孔体的最短距离越小, 渗透速度越快。 因此, 在接近的孔隙率和平均孔径的条件下, 采用 Cu元素粉和 Ni元素粉的方式得到的粉末 烧结金属多孔体具有显著提高的渗透性能和反冲再生能力。
显然, 鉴于上面已经揭示出 Cu元素粉、 Ni元素粉与曲折因子之间的关联, 因此, 本发 明还将附带提供一种改善粉末烧结金属多孔体渗透性的方法:所述粉末烧结金属多孔体的 孔隙率为 25〜60%, 平均孔径为 0. 5〜50μπι, 并由 23〜40%重量的 Cu、 0〜5%重量的 Si以及余 下重量的 Ni构成; 其中, Cu、 Ni分别通过掺入原料粉中的 Cu元素粉和 Ni元素粉而引入到该 粉末烧结金属多孔体中, 所述的原料粉先后经过成型、烧结从而制备得到粉末烧结金属多 孔体,烧结时, 0!、 之间相互扩散导致粉末烧结金属多孔体的曲折因子达到1. 02〜1. 25。
本发明所提供的的过滤元件为一种含有上述的粉末烧结金属多孔体的过滤元件。 "含 有上述的粉末烧结金属多孔体"具体是指, 该过滤元件可以由上述粉末烧结金属多孔体所 构成; 或者, 上述粉末烧结金属多孔体仅作为该过滤元件的支撑层, 该支撑层的表面还附 着有用于过滤的工作层等情况。
当支撑层的表面附着工作层时,该工作层最好为镍多孔膜、镍基合金多孔膜中的一种, 这样, 由于工作层和支撑层均为镍基金属材料, 两者结合性很好, 不会因为反复反冲再生 等原因而发生脱离, 可保持过滤元件长久的使用寿命。 所说的 "镍基合金多孔膜", 包括 与本发明粉末烧结金属多孔体化学成分相同的多孔膜。
本发明粉末烧结金属多孔体的一种具体制备方法的步骤包括: 1 ) 制备混合粉料: 将 粒径为 -250〜+400目的 Cu元素粉、粒径为 -200〜+300目的 Ni元素粉按制备得到的粉末烧结 金属多孔体中 Cu的重量百分含量为 23〜40%, 其余为 Ni的配比进行混合; 2 )造粒、 干燥和 成型: 将含有上述 Cu元素粉、 Ni元素粉混合粉料依次进行造粒、 干燥, 将干燥温度设定为 40〜60 °C, 干燥时间设定为 4〜8小时, 然后进行冷压成型, 在 80〜200MPa成型压力下保压 20〜80秒, 冷压成型后得到压坯; 3 ) 烧结: 将压坯置于烧结炉中进行烧结, 烧结制度包 含以下三个阶段: 第一阶段: 烧结温度从室温升至 400〜450 °C, 升温速率控制在 5〜10 °C /min, 并在 400〜450 °C下保温 120〜240分钟; 第二阶段: 将烧结温度升至 750〜850 °C, 升 温速率控制在 5〜10 °C /min, 并在 750〜850 °C下保温 90〜180分钟; 第三阶段: 将烧结温度 升至 1000〜1200 °C,升温速率控制在 3〜5 °C /min,并在 1000〜1200 °C下保温 180〜300分钟; 烧结后随炉冷却即得到粉末烧结金属多孔体, 该粉末烧结金属多孔体由 Cu、 Ni元素构成, 其曲折因子达到 1. 02〜1. 25。
本发明粉末烧结金属多孔体的又一种具体制备方法的步骤包括: 1 ) 制备混合粉料: 将粒径为 -250〜+400目的 Cu元素粉、 粒径为 3〜10μπι的 Si元素粉、 粒径为 _200〜+300目的 Ni元素粉按制备得到的粉末烧结金属多孔体中 Cu的重量百分含量为 23〜40%, Si的重量百 分含量为 0. 5〜4%, 其余为 Ni的配比进行混合; 2 )造粒、 干燥和成型: 将含有上述 Cu元素 粉、 Si元素粉和 Ni元素粉混合粉料依次进行造粒、 干燥, 将干燥温度设定为 40〜60 °C, 干 燥时间设定为 4〜8小时, 然后进行压力成型, 在 100〜200MPa成型压力下保压 20〜80秒, 压力成型后得到压坯; 3 ) 烧结: 将压坯置于烧结炉中进行烧结, 烧结制度包含以下三个 阶段: 第一阶段: 烧结温度从室温升至 400〜450 °C, 升温速率控制在 5〜10 °C /min, 并在 400〜450 °C下保温 120〜180分钟; 第二阶段: 将烧结温度升至 750〜850 °C, 升温速率控制 在 5〜10 °C /min,并在 750〜850 °C下保温 120〜240分钟;第三阶段:将烧结温度升至 1000〜 1200 °C, 升温速率控制在 3〜5 °C /min, 并在 1000〜1200 °C下保温 180〜300分钟; 烧结后随 炉冷却即得到粉末烧结金属多孔体, 该粉末烧结金属多孔体由 Cu、 Si、 Ni元素构成, 其曲 折因子达到 1. 02〜1. 25。
本发明的粉末烧结金属多孔体具有如下有益的技术效果:
一、 具有良好的机械性能和可加工性能, 抗拉强度可达到 80MPa以上;
二、在酸性介质尤其是氢氟酸介质中具有优异的耐腐蚀性, 并且对热浓碱液也有优良 的耐腐蚀性, 同时还耐中性溶液、 氟气、 水、 海水、 大气、 有机化合物等的腐蚀;
三、 尤其令人惊讶的是, 当 Cu、 Ni分别通过掺入原料粉中的 Cu元素粉和 Ni元素粉引入 到该粉末烧结金属多孔体中时,粉末烧结金属多孔体具有显著提高的渗透性能和反冲再生 能力。
具体实施方式
下面通过试验对粉末烧结金属多孔体的制备方法和由这些方法得到的粉末烧结金属 多孔体进行具体说明。通过这些说明, 本领域技术人员能够清楚认识到本发明的粉末烧结 金属多孔体所具有的突出特点。 以下涉及的试验例的编号与对应 "压坯"、 "试样"的编号 一致。
一、 材料制备工艺
如表 1所示,为说明本发明的粉末烧结金属多孔体及其制备,共准备了以下两类试验, 即 "A类试验"和 "B类试验"。 A类试验又分为三组试验, 即 "Α ,、 "Α2 "和 "A3 ", Β类 试验也分为三组试验, S卩 "Β '、 "Β2 "和 "Β3 "。 试验 A1和试验 B1的原料中 Cu、 Ni比例 相同, 区别为试验 A1采用 Cu元素粉和 Ni元素粉, 而试验 B1采用 Cu-Ni合金粉; 试验 A2和试验 B2的原料中 Cu、 Ni、 Si比例相同, 区别为试验 A2采用 Cu元素粉、 Si元素粉 和 Ni元素粉, 而试验 B2采用 Cu-Ni合金粉和 Si元素粉; 同理, 试验 A3和试验 B3的原 料中 Cu、 Ni比例相同, 区别为试验 A3采用 Cu元素粉和 Ni元素粉, 而试验 B3采用 Cu_Ni 合金粉。 为了准确的体现 A类试验所得粉末烧结金属多孔体的曲折因子的值, 试验 A1包 含了三个平行试验, 即 "Α1- '、 "Al-2 "、 "Al-3 ", 试验 Al 的曲折因子将取试样 Al_l、 A1- 2、 Al- 3 的平均值; 试验 A2包含了三个平行试验, 即 "A2- 1 "、 "A2- 2 "、 "A2- 3 ", 试 验 A2的曲折因子将取试样 A2-l、 A2-2、 A2-3的平均值; 同理, 试验 A3包含了三个平行 试验, S卩 "Α3- '、 "Α3-2 "、 "Α3-3 "。 表 1 中所使用的 Cu元素粉的粒径均为 _250〜+400 目, Ni元素粉的粒径均为 -200〜+300 目, Si元素粉的粒径均为 3〜10μπι, Cu_Ni合金粉 的粒径均为 -200〜+300目。
表 1: 试验所用原料的成分及含量
Figure imgf000006_0001
注: "X"表示无此成分 按表 1所列, 分别将各试验的原料进行混合。 充分混合后, 为了防止偏析, 对除试验 Bl、 B3外的其他各试验的原料粉进行造粒, 造粒后再进行干燥, 干燥温度设定为 55°C, 干燥时间设定为 6小时。之后,分别将各试验的原料粉装入统一规格的等静压成型模具中, 然后将这些模具分别置于冷等静压成型机, 在 lOOMPa成型压力下保压 60秒, 脱模后即制 成相应编号的管状压坯。 然后, 将这些压坯分别装入烧结舟, 再把这些烧结舟置于烧结炉 内进行烧结, 烧结后随炉冷却, 最后再从各烧结舟中取得对应编号的试样。
1.1 A类试验的烧结制度
A类试验的烧结制度包含以下三个阶段:第一阶段:烧结温度从室温升至 400〜450°C, 升温速率控制在 5〜10°C/min, 并在 400〜450°C下保温 120〜240分钟; 第二阶段: 将烧 结温度升至 750〜850°C, 升温速率控制在 5〜10°C/min, 并在 750〜850°C下保温 90〜180 分钟;第三阶段:将烧结温度升至 1000〜1200°C,升温速率控制在 3〜5°C/min,并在 1000〜 1200°C下保温 180〜300分钟; 烧结后随炉冷却即得到粉末烧结金属多孔体。 其中, 第一 阶段的主要目的在于脱脂;第二阶段为中温固溶阶段,主要目的在于促进元素间固溶反应; 第三阶段为成分均匀化阶段, 主要目的在于组织均匀性及最终性能的形成。上述烧结过程 可采用惰性气体保护烧结或者采用真空烧结。
A类试验的烧结制度中三个阶段的烧结工艺参数具体如表 2所示。 表 2中升温速率的 单位为 °C/min, 烧结时间的单位为分钟。
表 2: A类试验的烧结制度
Figure imgf000007_0002
Figure imgf000007_0001
B 类试验的烧结制度的烧结制度相对比较简单 (因采用合金粉), 其具体是将烧结温 度从室温逐渐升至 1200°C, 升温速率控制在 5°C/min, 然后在 1200°C下保温 2小时。
二、 材料性能测定
试样 A1 (包括 Al-1、 A1- 2、 A1- 3)、 试样 A2 (包括 A2_l、 A2- 2、 A2- 3 )、 试样 A3 (包 括 A3-l、 A3-2、 A3-3)、 试样 Bl、 试样 B2以及试样 B3的结晶相均为(Cu, Ni)固溶体。 Si 间隙固溶在 Cu-Ni合金中。因此,这些试样的抗拉强度均较高,基本能够达到 80MPa以上。
上述这些试样的孔结构测试结果如表 3所示, 表 3中, 厚度的单位为 mm, 开孔隙度 单位为%, 平均孔径单位为 μπι, 孔隙率单位为%, 渗透率单位为 (10— 5· πι3· πΓ 2 ^ Pa— o 材 料孔隙率、 开孔隙度和平均孔径的测定采用气泡法; 渗透率具体为每平方米过滤面积上, 在每 pa过滤压差及每秒下的氮气 (20°C ) 通量。
〈关于曲折因子〉
1 ) 曲折因子定义:
其中, L为材料厚度, L' 为流体流过多孔介质的最短距离,
2 ) 曲折因子表征方式:
基于 Darcy, Kozeny及 Hagen-poiseui l le定律推导出曲折因子与相关孔结构参数之 间的定量关系 (层流过程): K = ( 2 )
32rjrL
Figure imgf000008_0001
其中, θ 为多孔材料开孔隙度 (%), D为平均孔径 (m), K为渗透率 (m3'm— 2-s— Pa— ,
L为材料厚度 (m), η 为流体粘度
得到厚度、 开孔隙度、 平均孔径、 渗透率和流体粘度数据, 然后根据公式 (3 ) 可得 到曲折因子。 流体粘度根据 20°C下氮气流体粘度计算。
表 3: 试样的孔结构测试
Figure imgf000008_0002
试样 A1 (包括 Al-1、 A1- 2、 A1- 3)、 试样 A2 (包括 A2_l、 A2- 2、 A2- 3 )、 试样 A3 (包 括 A3-l、 A3-2、 A3-3)、试样 Bl、试样 B2以及试样 B3的的耐腐蚀性测试结果如表 4所示。 其中, "耐腐蚀性 1 "具体是用在质量分数为 5%的氢氟酸溶液中室温浸泡 20天后的失重率 来表征的; "耐腐蚀性 2 "具体是用在质量分数为 5%的氢氟酸溶液 (该溶液中还含 0. 1〜 0. 5mol/L的 Fe3+) 中室温浸泡 20天后的失重率来表征的。 表 4: 试样的耐腐蚀性能测试结果
Figure imgf000009_0001
从表 4中可以看出: 所有试样在质量分数为 5%的氢氟酸溶液中室温浸泡 20天后的失 重率为 1%以下; 当试样中含 Si时, 不仅在 "耐腐蚀性 1 "指标上表现出更好的性能, 并 且在 "耐腐蚀性 2 " (氧化性介质体系) 的指标上也表现出很好的性能。 本发明建议的较 佳 Si含量应该为 2%、 2. 5%、 3%或 4%。

Claims

权利要求书
1、 粉末烧结金属多孔体, 孔隙率为 25〜60%, 平均孔径为 0. 5〜50μπι, 其特征在于: 它由 23〜40%重量的 Cu、 0〜5%重量的 Si以及余下重量的 Ni构成, 在质量分数为 5%的氢 氟酸溶液中室温浸泡 20天后的失重率为 1%以下。
2、 如权利要求 1所述的粉末烧结金属多孔体, 其特征在于: 该粉末烧结金属多孔体 由 Cu、 Ni元素构成, 其结晶相为(Cu,Ni)固溶体。
3、 如权利要求 1所述的粉末烧结金属多孔体, 其特征在于: 该粉末烧结金属多孔体 含有 0. 5〜4%重量的 Si。
4、 如权利要求 1、 2或 3所述的粉末烧结金属多孔体, 其特征在于: 该粉末烧结金属 多孔体的曲折因子达到 1. 02〜1. 25。
5、 如权利要求 4所述的粉末烧结金属多孔体, 其特征在于: 该粉末烧结金属多孔体 的曲折因子达到 1. 10以下。
6、 如权利要求 1、 2或 3所述的粉末烧结金属多孔体, 其特征在于: 该粉末烧结金属 多孔体的平均孔径为 1〜20μπι。
7、 一种过滤元件, 其特征在于: 该过滤元件含有权利要求 1至 6中任意一项权利要 求所述的粉末烧结金属多孔体。
8、 如权利要求 7所述的过滤元件, 其特征在于: 所述粉末烧结金属多孔体作为该过 滤元件的支撑层, 该支撑层的表面附着有用于过滤的工作层。
9、 如权利要求 8所述的过滤元件, 其特征在于: 所述工作层为镍多孔膜、 镍基合金 多孔膜中的一种。
10、 改善粉末烧结金属多孔体渗透性的方法, 所述粉末烧结金属多孔体的孔隙率为 25〜60%, 平均孔径为 0. 5〜50μπι, 并由 23〜40%重量的 Cu、 0〜5%重量的 Si 以及余下重 量的 Ni构成; 其中
Cu、 Ni分别通过掺入原料粉中的 Cu元素粉和 Ni元素粉而引入到该粉末烧结金属多 孔体中, 所述的原料粉先后经过成型、 烧结从而制备得到所述的粉末烧结金属多孔体, 烧 结时, Cu、 Ni之间相互扩散导致粉末烧结金属多孔体的曲折因子达到 1. 02〜1. 25。
PCT/CN2014/081163 2013-08-30 2014-06-30 粉末烧结金属多孔体、过滤元件及改善其渗透性的方法 WO2015027746A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/915,177 US10525390B2 (en) 2013-08-30 2014-06-30 Powder sintered metallic porous body, filter element and method for improving permeability thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310389695.2A CN104419848B (zh) 2013-08-30 2013-08-30 粉末烧结金属多孔体、过滤元件及改善其渗透性的方法
CN201310389695.2 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015027746A1 true WO2015027746A1 (zh) 2015-03-05

Family

ID=52585515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081163 WO2015027746A1 (zh) 2013-08-30 2014-06-30 粉末烧结金属多孔体、过滤元件及改善其渗透性的方法

Country Status (3)

Country Link
US (1) US10525390B2 (zh)
CN (1) CN104419848B (zh)
WO (1) WO2015027746A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107385261A (zh) * 2016-05-17 2017-11-24 王冰 一种用于超临界水氧化蒸发壁的多孔材料及其制备方法
US20180138110A1 (en) * 2016-11-17 2018-05-17 Texas Instruments Incorporated Enhanced Adhesion by Nanoparticle Layer Having Randomly Configured Voids
US9865527B1 (en) 2016-12-22 2018-01-09 Texas Instruments Incorporated Packaged semiconductor device having nanoparticle adhesion layer patterned into zones of electrical conductance and insulation
US9941194B1 (en) 2017-02-21 2018-04-10 Texas Instruments Incorporated Packaged semiconductor device having patterned conductance dual-material nanoparticle adhesion layer
CN212236725U (zh) * 2018-11-13 2020-12-29 成都易态科技有限公司 过滤结构
JP7357792B2 (ja) * 2020-06-30 2023-10-06 日本たばこ産業株式会社 非燃焼式吸引器
CN112403105B (zh) * 2020-10-30 2022-04-29 西北有色金属研究院 一种低粗糙度小孔径不锈钢多孔片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313621A (en) * 1965-06-15 1967-04-11 Mott Metallurg Corp Method for forming porous seamless tubing
US3899325A (en) * 1969-07-14 1975-08-12 Minnesota Mining & Mfg Method of making a closed end tube
CN101088675A (zh) * 2007-07-05 2007-12-19 华东理工大学 铜镍合金多孔表面管的烧结方法
CN101914707A (zh) * 2010-09-16 2010-12-15 厦门大学 一种Ni-Cu-Fe-Si多孔合金及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226534A (ja) * 1990-01-30 1991-10-07 Sumitomo Metal Ind Ltd 金属多孔質体とその製造方法
EP1890802A2 (en) * 2005-05-25 2008-02-27 Velocys, Inc. Support for use in microchannel processing
US8480783B2 (en) * 2009-07-22 2013-07-09 Hitachi, Ltd. Sintered porous metal body and a method of manufacturing the same
WO2012077550A1 (ja) * 2010-12-08 2012-06-14 住友電気工業株式会社 高耐食性を有する金属多孔体及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313621A (en) * 1965-06-15 1967-04-11 Mott Metallurg Corp Method for forming porous seamless tubing
US3899325A (en) * 1969-07-14 1975-08-12 Minnesota Mining & Mfg Method of making a closed end tube
CN101088675A (zh) * 2007-07-05 2007-12-19 华东理工大学 铜镍合金多孔表面管的烧结方法
CN101914707A (zh) * 2010-09-16 2010-12-15 厦门大学 一种Ni-Cu-Fe-Si多孔合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZANG, CHUNYONG: "Research on Mechanical Properties of Nickel Alloy Porous Materials", CHINA DISSERTATION DATABASE, 31 December 2009 (2009-12-31), pages 11, 36, 38 AND 56 *

Also Published As

Publication number Publication date
US20160256807A1 (en) 2016-09-08
CN104419848B (zh) 2016-09-28
CN104419848A (zh) 2015-03-18
US10525390B2 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2015027746A1 (zh) 粉末烧结金属多孔体、过滤元件及改善其渗透性的方法
JP5997818B2 (ja) 焼結結合した多孔質金属被覆
CN104419841B (zh) 粉末烧结金属多孔体的制备方法
US9555376B2 (en) Multilayer, micro- and nanoporous membranes with controlled pore sizes for water separation and method of manufacturing thereof
WO2015014190A1 (zh) 抗高温氧化的烧结Fe-Al基合金多孔材料及过滤元件
CN107838427B (zh) 多孔烧结金属复合薄膜及其制备方法
US10077214B2 (en) Sintered porous material and filter element using same
JPWO2002045832A1 (ja) 水素透過構造体とその製造方法
Bayati et al. Preparation of crack-free nanocomposite ceramic membrane intermediate layers on α-alumina tubular supports
JP2007301514A (ja) 水素分離材及びその製造方法
Ryi et al. Formation of a defect-free Pd–Cu–Ni ternary alloy membrane on a polished porous nickel support (PNS)
Han et al. Development of Pd Alloy Hydrogen Separation Membranes with Dense/Porous Hybrid Structure for High Hydrogen Perm‐Selectivity
Lee et al. Preparation and characterization of nickel hollow fiber membrane
Ha et al. The preparation and pore characteristics of an alumina coating on a diatomite-kaolin composite support layer
JP2002355537A (ja) 水素透過膜及びその製造方法
JP2008088461A (ja) 複数の骨格層を有する金属多孔質体およびその製造方法
US9327245B2 (en) Metallic-ceramic composite membranes and methods for their production
KR101763609B1 (ko) 폴리벤지이미다졸계 고분자 막을 지지체로 하는 팔라듐 도금 분리막 및 그 제조 방법
Nam et al. Preparation of highly stable palladium alloy composite membranes for hydrogen separation
Zhang et al. Pure Ni and Pd-Ni alloy membranes prepared by electroless plating for hydrogen separation
RU2579713C2 (ru) Способ изготовления фильтрующего материала
JP2006000722A (ja) 水素透過合金膜及びその製造方法
JP2004000911A (ja) 限外濾過膜及び水素分離膜、その製造方法並びに水素の分離方法
JP2016175016A (ja) 水素分離膜、その製造方法及び水素分離方法
JP2008007811A (ja) 金属多孔質体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
WWE Wipo information: entry into national phase

Ref document number: 14915177

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATE19/07/2016).

122 Ep: pct application non-entry in european phase

Ref document number: 14839334

Country of ref document: EP

Kind code of ref document: A1