RU2509812C2 - Способ изготовления горячекатаной полосы из кремнистой стали - Google Patents

Способ изготовления горячекатаной полосы из кремнистой стали Download PDF

Info

Publication number
RU2509812C2
RU2509812C2 RU2011119637/02A RU2011119637A RU2509812C2 RU 2509812 C2 RU2509812 C2 RU 2509812C2 RU 2011119637/02 A RU2011119637/02 A RU 2011119637/02A RU 2011119637 A RU2011119637 A RU 2011119637A RU 2509812 C2 RU2509812 C2 RU 2509812C2
Authority
RU
Russia
Prior art keywords
strip
rolling
temperature
steel
winding
Prior art date
Application number
RU2011119637/02A
Other languages
English (en)
Other versions
RU2011119637A (ru
Inventor
Геральд ЭККЕРШТОРФЕР
Бернд ЛИНЦЕР
Геральд ХОЕНБИХЛЕР
Original Assignee
Сименс Фаи Металз Текнолоджиз Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Фаи Металз Текнолоджиз Гмбх filed Critical Сименс Фаи Металз Текнолоджиз Гмбх
Publication of RU2011119637A publication Critical patent/RU2011119637A/ru
Application granted granted Critical
Publication of RU2509812C2 publication Critical patent/RU2509812C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Continuous Casting (AREA)

Abstract

Изобретение относится к изготовлению горячекатаной полосы из легированных кремнием сталей для дальнейшей обработки в электротехническую полосовую сталь с ориентированной зернистой структурой. Для повышения магнитных свойств и качества полосы способ, который выполняют в установке совмещенного процесса непрерывной разливки и прокатки, включает следующие стадии: а) плавление стали с химическим составом, мас.%: Si - 2-7, C - 0,01-0,1, Mn<0,3, Cu - 0,1-0,7, Sn<0,2, S<0,05, Al<0,09, Cr<0,3, N<0,02, P<0,1, остальное Fe и неизбежные примеси, b) отливку заготовки с толщиной 25-150 мм в установке непрерывной разливки металла, c) прокатку полосы с количеством проходов до 4 непосредственно после отливки заготовки, при этом по меньшей мере в одном проходе степень деформации составляет больше 30% или общая степень деформации всех проходов составляет больше 50%, d) нагрев полосы до конечной температуры 1050-1250°C, предпочтительно 1100-1180°C, e) чистовую прокатку полосы на втором прокатном стане, f) охлаждение и намотку полосы. 10 з.п. ф-лы, 1 табл., 2 ил., 2 пр.

Description

Данное изобретение относится к способу и устройству для изготовления горячекатаной полосы из легированных кремнием сталей для дальнейшей обработки в электротехническую полосовую сталь с ориентированной зернистой структурой. Дальнейшая обработка горячекатаной полосы не является предметом этого изобретения; она осуществляется посредством тепловой обработки и холодной прокатки.
Электротехническая полосовая сталь с ориентированной зернистой структурой, например, для дальнейшей обработки в ламинированную электротехнические стальные листы для трансформаторов или электрических машин, отличается низкими удельными потерями на перемагничивание и высокой магнитной проницаемостью. Поскольку расход электрической энергии повышается и к коэффициенту полезного действия электрических машин предъявляются все более высокие требования, то имеется высокий спрос на высококачественную и недорогую электротехническую полосовую сталь.
Изготовление электротехнической полосовой стали можно разделить на следующие стадии изготовления: создания стальной полосы, горячекатаной полосы и холоднокатаной полосы, тепловой обработки и покрытия полосы (смотри инструкцию 401 "Elektroband und -blech", Stahl-Infomations-Zentrum, Дюссельдорф, выпуск 2005).
Для специалистов в данной области техники известны установки для совмещенного процесса непрерывной разливки и прокатки для особенно экономичного изготовления высококачественной горячекатаной полосы, например, для последующей переработки в автомобильный лист (смотри, например, EP 1662011 A1).
Из WO 98/46802 A1 известен способ изготовления электротехнической полосовой стали с ориентированной зернистой структурой, при этом либо a) расплавляют специальный стальной сплав и отливают из него тонкую заготовку в установке непрерывной разливки, затем разделяют заготовку, слябы отжигают, прокатывают, охлаждают и сматывают горячекатаную полосу, либо b) расплавляют специальный стальной сплав и отливают из него тонкую заготовку в установке непрерывной разливки, затем заготовку прокатывают, охлаждают и сматывают горячекатаную полосу.
После рабочих стадий a) или b) горячекатаную полосу по существу отжигают, в стане холодной прокатки раскатывают на конечную толщину, обезуглероживают и подвергают целенаправленной вторичной рекристаллизации. Расплавленный стальной сплав содержит так называемые ингибиторы роста, а именно, сульфиды, карбиды или нитриды элементов Mn, Cu и Al, которые предотвращают рост зерна имеющейся после окончательной прокатки структуры. Кроме того, эти отложения действуют в зависимости от температуры уже во время деформации и непосредственно после нее на рекристаллизацию так, что может возникать структура, которая в последующем пригодна для производства материала с желаемыми свойствами зерна.
Способ, согласно уровню техники, для изготовления горячекатаной полосы является либо очень затратным относительно энергии, или приводит к снижению качества подвергаемой дальнейшей обработке электротехнической полосовой стали с ориентированной структурой зерна. Дополнительно к этому, применяемые для отжига слябов печи-миксеры являются мало компактными, что в свою очередь повышает инвестиционные расходы на всю установку.
Задачей изобретения является создание способа и установки для совмещенного процесса непрерывной отливки и прокатки указанного в начале вида, с помощью которых можно экономично изготавливать высококачественную горячекатаную полосу для дальнейшей переработки в электротехническую полосовую сталь с ориентированной структурой зерна с высокими магнитными, электрическими и геометрическими свойствами. Под высококачественной горячекатаной полосой такого вида понимается горячекатаная полоса, в которой ингибиторы роста распределены в горячекатаной полосе тонкодисперсно и гомогенно.
Эта задача решена с помощью способа, в котором выполняют в установке для совмещенного процесса непрерывной разливки и раскатки следующие стадии способа в названной последовательности:
a) плавления стали с химическим составом в % массы Si 2-7%, C - 0,01 0,1%, Mn<0,3%, Cu 0,1-0,7%, Sn<0,2%, S<0,05%, Al<0,09%, Cr<0,3%, N<0,02%, P<0,1%, остальное Fe и загрязнения;
b) отливки заготовки с толщиной 25150 мм в установке непрерывной разливки металла;
c) прокатки в полосу с количеством проходов до 4 непосредственно после отливки заготовки, при этом по меньшей мере в одном проходе степень деформации составляет больше 30% или общая степень деформации всех проходов составляет больше 50%;
d) нагревания полосы до конечной температуры 1050-1250°С, предпочтительно 1100-1180°С;
е) чистовой прокатки полосы на втором прокатном стане, затем
f) охлаждения и намотки полосы.
Этот процесс изготовления способствует образованию гомогенно распределенных и присутствующих с тонкой дисперсией ингибиторов роста, а именно, сульфидов, карбидов или нитридов элементов Mn, Cu, Al, а также Cr, за счет плавления специального стального сплава (стадия а) и непосредственно следующей за отливкой тонкой заготовки (стадия b) прокатки полосы с высокой степенью деформации (стадия с) на первом прокатном стане. Степень φ деформации задана как φ=(h0-h1)/h0, где h0 обозначает толщину перед деформацией, а h1 толщину полосы, соответственно, заготовки после одного или нескольких проходов деформации; степень деформации указывается в данной заявке в процентах. Нагревание полосы (стадия d) приводит к остановке дальнейшего осаждения ингибиторов роста и к растворению снова уже образованных осаждений с заданной кинетикой. При повторном понижении температуры при чистовой прокатке на втором прокатном стане (стадия е) и последующем охлаждении полосы (стадия f) образуются дополнительные гомогенно распределенные и присутствующие с тонкой дисперсией ингибиторы роста. Процесс изготовления можно выполнять либо полностью непрерывно, т.е. на основе заготовки, соответственно, не разделенной полосы, либо не непрерывно партиями, т.е. на основе слябов.
В одном предпочтительном варианте выполнения способа изготовления поддерживают конечную температуру после нагревания полосы в течение времени t, для которого справедливо t>15 с, предпочтительно t>60 с. За счет этого растворяется более высокая доля возможно уже имеющихся в полосе в виде больших скоплений осаждений. Сохранение температуры в течение времени t>90 с не целесообразно, поскольку после этого времени уже все осаждения находятся в растворенном виде.
В полностью непрерывном режиме конечная температура полосы предпочтительно поддерживается в проходной печи, которая выполнена, в виде нагреваемой за счет сгорания газа печи или в виде индукционной печи. За счет этого можно сохранять температуру полосы в непрерывном режиме особенно компактным образом.
В не непрерывном режиме обработки партий конечная температура полосы предпочтительно поддерживается за счет наматывания и сматывания в печной моталке. За счет этого можно сохранять температуру полосы в не непрерывном режиме особенно компактным образом.
В одном предпочтительном варианте выполнения способа, согласно изобретению, полосу окончательно прокатывают на втором прокатном стане за 2-6, предпочтительно 3-5 проходов. За счет этого можно особенно экономичным образом создавать распространенные толщины полосы.
При чистовой прокатке целесообразно, когда полоса после чистовой прокатки имеет конечную температуру прокатки от 900 до 1050°С. За счет этого обеспечивается выполнение чистовой прокатки в благоприятном диапазоне температур.
Другой предпочтительный вариант выполнения состоит в том, что полосу охлаждают в течение максимально 10 с, предпочтительно в течение максимально 6 с, после чистовой прокатки до температуры намотки 300-600°С с помощью стадии интенсивного охлаждения.
Другой предпочтительный вариант выполнения способа, согласно изобретению, состоит в том, что полосу в начале стадии интенсивного охлаждения охлаждают с двойной, предпочтительно, тройной скоростью охлаждения по сравнению со скоростью охлаждения в конце стадии охлаждения. С помощью такого изменения температуры обеспечивается, что имеющаяся после чистовой прокатки структура возможно быстрее «замораживается» для последующих стадий.
Относительно образования ингибиторов роста предпочтительно, что в стальном расплаве сумма легирующих элементов Cu+Mn составляет >0,35 масс.%, предпочтительно >0,55 масс.%. Для образования достаточно большого количества ингибиторов роста предпочтительно, что в стальном расплаве сумма легирующих элементов S+N составляет >100 млн-1, предпочтительно >200 млн-1. Достаточное количество Cu, Mn, S и N в стальном расплаве является предпочтительным для обеспечения осаждения достаточного количества ингибиторов роста в горячекатаной полосе.
Предпочтительно в стальном расплаве отношение легирующих элементов Cu/Mn составляет >2,5, предпочтительно >3,5. Поскольку сульфиды меди имеют меньшую величину и температуру осаждения чем сульфиды марганца и поэтому являются предпочтительными, предпочтительно, когда стальной расплав содержит Cu больше, чем Mn. Однако поскольку Mn является более сродственным S, чем Cu, то должен иметься избыток Cu, с целью обеспечения возможности образования большего количества сульфидов меди, чем сульфидов марганца.
Другим предпочтительным вариантом выполнения способа, согласно изобретению, который решает положенную в основу изобретения задачу, для непрерывного режима состоит в том, что первый прокатный стан расположен непосредственно после установки непрерывной разливки металла, и между устройством нагревания и вторым прокатным станом находится проходная печь для вноса тепла и/или поддержания температуры горячекатаной полосы. За счет такой конфигурации установки обеспечивается возможность особенно экономичного выполнения способа, согласно изобретению, при высоком качестве производства, т.е. высокой производительности (полностью непрерывный режим), низких затратах на энергию (за счет минимизации количества энергии для нагревания горячекатаной полосы) и низких инвестиционных затратах (компактная установка).
Предпочтительный вариант выполнения установки для совмещенного процесса непрерывной разливки и прокатки состоит в выполнении установки непрерывной разливки в виде установки непрерывной разливки для отливки тонких слябов. Другой вариант выполнения состоит в том, что первый прокатный стан содержит до четырех прокатных клетей. Другой вариант выполнения состоит в том, что второй прокатный стан содержит 2-6, предпочтительно 3-5 прокатных клетей. За счет этого удерживаются низкими инвестиционные расходы на первый прокатный стан и второй прокатный стан (можно получать распространенные толщины полосы с помощью меньшего количества прокатных клетей).
Другие преимущества и признаки данного изобретения следуют из приведенного ниже описания не имеющих ограничительного характера примеров выполнения со ссылками на прилагаемые чертежи, на которых изображено:
Фиг. 1 - схема установки для совмещенного процесса непрерывной разливки и прокатки для не непрерывного изготовления горячекатаной полосы для дальнейшей переработки в листы с ориентированной структурой зерна;
Фиг. 2 - схема установки для совмещенного процесса непрерывной разливки и прокатки для полностью непрерывного изготовления горячекатаной полосы для дальнейшей переработки в листы с ориентированной структурой зерна.
Пример выполнения 1
На фиг. 1 показана установка 1 для совмещенного процесса непрерывной разливки и прокатки для изготовления горячекатаной полосы из легированных кремнием сталей; части установки для дальнейшей переработки горячекатаной полосы в электротехническую полосовую сталь с ориентированной структурой зерна не изображены. Состояния, т.е. температуры и толщины, заготовки, соответственно, полосы в отдельных стадиях способа приведены в таблице I; состояния обозначены как Р1-Р15. В установке 2 непрерывной разливки металла для изготовления тонких слябов из специальной легированной стали, состоящей в % массы из Si-3,2%, C-0,08%, Mn-0,1%, Cu-0,3%, Sn-0,08%, S-0,01%, Al-0,03%, Cr-0,1%, N - 0,012%, P - 0,05%, остальное Fe и загрязнения, отливают заготовку 3 с толщиной 90 мм. Непосредственно после полного затвердевания (температура заготовки 1174°C, состояние P1) заготовку 3 подвергают первой стадии прокатки, состоящей из 2 проходов, на первом прокатном стане 5. При этом отдельные степени деформации составляют, соответственно, 53% и 52%, т.е. сначала прокатывают полосу с толщиной 42 мм (состояние P2), а затем прокатывают полосу с толщиной 20 мм (состояние P3). Температура полосы после первого прохода составляет 1171 С, после второго прохода 1086°C. Эта первая стадия прокатки способствует образованию в полосе гомогенно распределенных и присутствующих в тонко дисперсном состоянии гроздей ингибиторов роста, а именно, сульфидов, нитридов и карбидов элементов Cu, Al, Mn и Cr, за счет чего тормозится дальнейший рост зерна. После первой стадии прокатки, полосу 4 с помощью рольганга транспортируют к устройству 6 нагревания, выполненному в виде индукционной печи, в которой входящую, охлажденную до 944°C полосу (состояние P4) нагревают до конечной температуры 1150°C (состояние P5). Затем температуру полосы поддерживают в печной моталке 7 (температура на входе печной моталки 1134°C, состояние P6) в течение по меньшей мере 30 с. Время нахождения зоны полосы, так называемое местное время пребывания, различно в зависимости от положения полосы. На основе наматывания и сматывания полосы, например, имеющееся перед намоткой начало полосы остается в намоточной печи дольше, чем конец полосы; в этом смысле имеющееся перед намоткой начало полосы становится концом полосы, и наоборот. За счет нагревания полосы 4 предотвращается осаждение ингибиторов роста до чистовой прокатки полосы на втором прокатном стане 8; за счет сохранения температуры в течение времени t растворяются грубые грозди ингибиторов роста, которые при повторном снижении температуры при чистовой прокатке снова образуются с тонким распределением. После наматывания и сматывания полосы в печной моталке 7 полосу освобождают от окалины с помощью установки 12 удаления окалины, за счет чего температура полосы падает с 1101°С до 1070°С (температуры перед и после снятия окалины, состояния Р7 и Р8). Затем полосу прокатывают окончательно на втором прокатном стане в четырех проходах прокатки (отдельные степени деформации 55, 53, 28 и 16%, т.е. толщина полосы 9,1, 4,3, 3,1 и 2,6 мм, состояния Р9-Р12) до конечной толщины 2,6 мм горячекатаной полосы. В этих проходах прокатки полоса охлаждается с 1043, 1012 и 984°С до конечной температуры прокатки 955°С после последнего прохода прокатки. После чистовой прокатки полосу охлаждают на участке 9 охлаждения в течение 3 с после последнего прохода на втором прокатном стане 8 с 932°С (вход участка охлаждения, состояние Р13) до температуры 560°С на выходе участка охлаждения (состояние Р14). При чистовой прокатке и охлаждении полосы имеющиеся в полосе гроздья ингибиторов роста осаждаются тонкодисперсно, т.е. с типичной величиной грозди меньше 60 нм. После отрезания горячекатаной полосы с помощью ножниц 10 полосу наматывают на намоточном устройстве 11; при этом температура намотки составляет 540°С (состояние Р15). В последующих, больше не изображенных стадиях изготовления горячекатаную полосу отжигают, прокатывают в стане холодной прокатки на конечную толщину, обезуглероживают и подвергают целенаправленной рекристаллизации.
Пример выполнения 2
На фиг. 2 показана другая установка 1 совмещенного процесса непрерывной разливки и прокатки для полностью непрерывного изготовления горячекатаной полосы из легированных кремнием сталей; части установки для дальнейшей переработки горячекатаной полосы в электротехническую полосовую сталь с ориентированной структурой зерна не изображены. Состояния Р1-Р5 и Р7-Р15 приведены в таблице I. При этом снова плавят специальную легированную сталь (химический состав как в примере выполнения 1) и отливают из нее в установке 2 непрерывной разливки металла заготовку 3 (состояние 1). Непосредственно после сплошного затвердевания заготовку подвергают первой стадии прокатки, состоящей из 2 проходов прокатки, на первом прокатном стане 5 (состояния Р2 и Р3). Затем полосу 4 нагревают в нагревательном устройстве 6, выполненном в виде индукционной печи (состояния Р4 и Р5). Существенное отличие от примера выполнения 1 состоит в том, что температура полосы 4 после нагревания в проходной печи 13, выполненной в виде нагреваемой сжигаемым газом печи, поддерживается в течение по меньшей мере 15 с; местное время пребывания в проходной печи для всех зон полосы (начала полосы, конца полосы) является постоянным. Другие стадии способа (удаление окалины Р7, Р8, чистовая прокатка Р9-Р13, охлаждение Р13, Р14 и намотка Р15) соответствуют примеру выполнения 1.
Таблица I
Место Толщина
в мм
Темп.
в °С
Р1 Конец установки для разливки и прокатки 90 1174
Р2 После 1-го прохода на первом прокатном стане 42 1171
Р3 После 2-го прохода на первом прокатном стане 20 1086
Р4 Вход нагревательного устройства 20 944
Р5 Выход нагревательного устройства 20 1150
Р6 Вход печной моталки 20 1134
Р7 Вход установки для снятия окалины 20 1101
Р8 Выход установки для снятия окалины 20 1070
Р9 После 1-го прохода на втором прокатном стане 9,1 1043
Р10 После 2-го прохода на втором прокатном стане 4,3 1012
Р11 После 3-го прохода на втором прокатном стане 3,1 984
Р12 После 4-го прохода на втором прокатном стане 2,6 955
Р13 Вход участка охлаждения 2,6 932
Р14 Выход участка охлаждения 2,6 560
Р15 В намоточном устройстве 2,6 540
Перечень позиций
1. Установка совмещенного процесса непрерывной разливки и прокатки
2. Установка непрерывной разливки металла
3. Заготовка
4. Полоса
5. Первый прокатный стан
6. Нагревательное устройство
7. Печная моталка
8. Второй прокатный стан
9. Участок охлаждения
10. Ножницы
11. Намоточное устройство
12. Установка для удаления окалины
13. Проходная печь

Claims (11)

1. Способ изготовления горячекатаной полосы из легированной кремнием стали с ориентированной зеренной структурой в установке совмещенного процесса непрерывной разливки и прокатки, включающий:
a) выплавку стали с химическим составом, мас.%: Si - 2-7, C - 0,01-0,1, Mn<0,3, Cu - 0,1-0,7, Sn<0,2, S<0,05, Al<0,09, Cr<0,3, N<0,02, Р<0,1, остальное Fe и неизбежные примеси,
b) отливку заготовки толщиной 25-150 мм в установке непрерывной разливки,
c) прокатку заготовки в полосу непосредственно после отливки заготовки с количеством проходов до 4, при этом по меньшей мере в одном проходе степень деформации составляет больше 30% или общая степень деформации всех проходов составляет больше 50%,
d) нагрев полосы до конечной температуры 1050-1250°С, предпочтительно 1100-1180°С;
e) чистовую прокатку полосы на втором прокатном стане, затем
f) охлаждение и намотку полосы.
2. Способ по п.1, отличающийся тем, что конечную температуру после нагрева полосы поддерживают в течение времени t, при этом t>15 с, предпочтительно 1>60 с.
3. Способ по п.2, отличающийся тем, что конечную температуру полосы поддерживают в проходной печи.
4. Способ по п.2, отличающийся тем, что конечную температуру полосы поддерживают во время наматывания и последующего сматывания в печной моталке.
5. Способ по п.1, отличающийся тем, что полосу окончательно прокатывают на втором прокатном стане за 2-6, предпочтительно 3-5 проходов.
6. Способ по любому из пп.1-5, отличающийся тем, что полоса после чистовой прокатки имеет конечную температуру прокатки от 900 до 1050°C.
7. Способ по любому из пп.1-5, отличающийся тем, что полосу охлаждают в течение максимально 10 с, предпочтительно в течение 6 с, после чистовой прокатки до температуры намотки 300-600°C с помощью стадии интенсивного охлаждения.
8. Способ по п.7, отличающийся тем, что полосу в начале стадии интенсивного охлаждения охлаждают с двойной, предпочтительно тройной, скоростью охлаждения по сравнению со скоростью охлаждения в конце стадии охлаждения.
9. Способ по п.1, отличающийся тем, что в стальном расплаве сумма легирующих элементов Cu+Mn составляет >0,35 мас.%, предпочтительно >0,55 мас.%.
10. Способ по п.1, отличающийся тем, что в стальном расплаве сумма легирующих элементов S+N составляет >100 млн-1, предпочтительно >200 млн-1.
11. Способ по п.1, отличающийся тем, что в стальном расплаве отношение легирующих элементов Cu/Mn составляет >2,5, предпочтительно >3,5.
RU2011119637/02A 2008-10-17 2009-10-12 Способ изготовления горячекатаной полосы из кремнистой стали RU2509812C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0163408A AT507475B1 (de) 2008-10-17 2008-10-17 Verfahren und vorrichtung zur herstellung von warmband-walzgut aus siliziumstahl
ATA1634/2008 2008-10-17
PCT/EP2009/063245 WO2010043578A1 (de) 2008-10-17 2009-10-12 Verfahren und vorrichtung zur herstellung von warmband-walzgut aus siliziumstahl

Publications (2)

Publication Number Publication Date
RU2011119637A RU2011119637A (ru) 2012-11-27
RU2509812C2 true RU2509812C2 (ru) 2014-03-20

Family

ID=41558192

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011119637/02A RU2509812C2 (ru) 2008-10-17 2009-10-12 Способ изготовления горячекатаной полосы из кремнистой стали

Country Status (7)

Country Link
US (1) US20120305212A1 (ru)
EP (1) EP2334830B1 (ru)
CN (1) CN102186999B (ru)
AT (1) AT507475B1 (ru)
RU (1) RU2509812C2 (ru)
UA (1) UA103055C2 (ru)
WO (1) WO2010043578A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706268C1 (ru) * 2016-10-18 2019-11-15 ДжФЕ СТИЛ КОРПОРЕЙШН Горячекатаный стальной лист для изготовления листа из электротехнической стали и способ его изготовления

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206538A1 (de) 2012-04-20 2013-10-24 Siemens Aktiengesellschaft Lokalisierung eines Bauteils in einer Industrieanlage mittels eines mobilen Bediengeräts
DE102013221710A1 (de) * 2013-10-25 2015-04-30 Sms Siemag Aktiengesellschaft Aluminium-Warmbandwalzstraße und Verfahren zum Warmwalzen eines Aluminium-Warmbandes
CZ305521B6 (cs) * 2014-05-12 2015-11-11 Arcelormittal Ostrava A.S. Pás z orientované transformátorové oceli a způsob jeho výroby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0411356A2 (en) * 1989-07-12 1991-02-06 Nippon Steel Corporation Method of hot rolling continuously cast grain-oriented electrical steel slab
RU2092605C1 (ru) * 1991-10-22 1997-10-10 Поханг Айрон энд Стил Ко., Лтд. Листы изотропной электротехнической стали и способы их изготовления
RU2126452C1 (ru) * 1993-04-05 1999-02-20 Тиссен Шталь АГ Способ изготовления электротехнической листовой стали
DE19524082B4 (de) * 1995-07-01 2004-02-26 Sms Demag Ag Anlage zur Herstellung von warmgewalztem Stahlband

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948935B2 (ja) * 1981-08-05 1984-11-29 新日本製鐵株式会社 低鉄損一方向性電磁鋼板の製造方法
CA1270728A (en) * 1985-02-25 1990-06-26 Armco Advanced Materials Corporation Method of producing cube-on-edge oriented silicon steel from strand cast slabs
JPH07115041B2 (ja) * 1987-03-11 1995-12-13 日本鋼管株式会社 無方向性高Si鋼板の製造方法
US5307864A (en) * 1988-05-26 1994-05-03 Mannesmann Aktiengesellschaft Method and system for continuously producing flat steel product by the continuous casting method
US5049204A (en) * 1989-03-30 1991-09-17 Nippon Steel Corporation Process for producing a grain-oriented electrical steel sheet by means of rapid quench-solidification process
JPH03229822A (ja) * 1990-02-06 1991-10-11 Kawasaki Steel Corp 一方向性けい素鋼板の製造方法
DE19712212A1 (de) * 1997-03-24 1998-10-01 Schloemann Siemag Ag Verfahren und Anlage zum Auswalzen von Warmbreitband aus stranggegossenen Brammen
AU2698897A (en) * 1997-04-16 1998-11-11 Acciai Speciali Terni S.P.A. New process for the production of grain oriented electrical steel from thin slabs
TWI288676B (en) * 2002-07-06 2007-10-21 Sms Demag Ag Method and casting roller plant for the semi-endless or endless rolling by casting of a metal in particular a steel strip which may be transversely cut as required after solidification
ITMI20021996A1 (it) * 2002-09-19 2004-03-20 Giovanni Arvedi Procedimento e linea di produzione per la fabbricazione di nastro a caldo ultrasottile sulla base della tecnologia della bramma sottile
EP1752549B1 (de) * 2005-08-03 2016-01-20 ThyssenKrupp Steel Europe AG Verfahren zur Herstellung von kornorientiertem Elektroband
CN1743128A (zh) * 2005-09-29 2006-03-08 东北大学 连铸板坯直接轧制生产取向硅钢带的方法
DE102008029581A1 (de) * 2007-07-21 2009-01-22 Sms Demag Ag Verfahren und Vorrichtung zum Herstellen von Bändern aus Silizum-Stahl oder Mehrphasenstahl

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0411356A2 (en) * 1989-07-12 1991-02-06 Nippon Steel Corporation Method of hot rolling continuously cast grain-oriented electrical steel slab
RU2092605C1 (ru) * 1991-10-22 1997-10-10 Поханг Айрон энд Стил Ко., Лтд. Листы изотропной электротехнической стали и способы их изготовления
RU2126452C1 (ru) * 1993-04-05 1999-02-20 Тиссен Шталь АГ Способ изготовления электротехнической листовой стали
DE19524082B4 (de) * 1995-07-01 2004-02-26 Sms Demag Ag Anlage zur Herstellung von warmgewalztem Stahlband

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706268C1 (ru) * 2016-10-18 2019-11-15 ДжФЕ СТИЛ КОРПОРЕЙШН Горячекатаный стальной лист для изготовления листа из электротехнической стали и способ его изготовления

Also Published As

Publication number Publication date
US20120305212A1 (en) 2012-12-06
EP2334830A1 (de) 2011-06-22
UA103055C2 (ru) 2013-09-10
CN102186999A (zh) 2011-09-14
RU2011119637A (ru) 2012-11-27
EP2334830B1 (de) 2017-04-19
AT507475A1 (de) 2010-05-15
CN102186999B (zh) 2015-08-12
WO2010043578A1 (de) 2010-04-22
AT507475B1 (de) 2010-08-15

Similar Documents

Publication Publication Date Title
JP5646643B2 (ja) 方向性電磁鋼帯を製造する方法およびそれにより製造された方向性電磁鋼
US8440030B2 (en) Fine spheroidized steel sheet with excellent heat treatment characteristic and method for manufacturing the same
EP2880190B1 (en) Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
JP2009185386A (ja) 無方向性電磁鋼板の製造方法
CN102560235A (zh) 一种高磁感取向硅钢的制造方法
CN103305748A (zh) 一种无取向电工钢板及其制造方法
CN1481445A (zh) 用于生产晶粒定向电工钢带的工艺
RU2509812C2 (ru) Способ изготовления горячекатаной полосы из кремнистой стали
CN113584404A (zh) 一种含Cu无取向硅钢及其生产方法
CN113755750B (zh) 一种含磷高磁感无取向硅钢的生产方法
CN113789467A (zh) 一种含磷无铝高效无取向硅钢生产方法
JPH0873939A (ja) 磁気特性に優れた無方向性電磁鋼板の製造方法
JP6879341B2 (ja) 無方向性電磁鋼板の製造方法
CN109182907B (zh) 一种无头轧制生产半工艺无取向电工钢的方法
JPH0463228A (ja) 磁性焼鈍前後の磁気特性の優れた無方向性電磁鋼板の製造方法
AU760095B2 (en) Process for manufacturing drawable sheet by direct casting of thin strip, and sheet thus obtained
CN114703421A (zh) 一种高磷高磁感无取向硅钢及生产方法
JP2536974B2 (ja) 極めて優れた磁気特性を有する無方向性電磁鋼板の熱間圧延方法
KR101185024B1 (ko) 박 슬라브 연속주조법을 이용한 연질 냉연강판의 제조방법
JP2674328B2 (ja) 表面性状と成形性に優れた熱延鋼板の製造方法
JP2536976B2 (ja) 表面性状および磁気特性の優れた無方向性電磁鋼板の製造方法
KR20040057216A (ko) 고강도 과공석강 및 이를 이용한 과공석강 선재의 제조방법
TW202336241A (zh) 無方向性電磁鋼板用熱軋鋼板的製造方法、無方向性電磁鋼板的製造方法以及無方向性電磁鋼板用熱軋鋼板
JP4239276B2 (ja) 方向性電磁鋼熱延鋼板の製造方法
JPS6362822A (ja) 深絞り用冷延鋼板の製造方法

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20160803