RU2507161C2 - Способ контролирования роста микроорганизмов в системах обработки волокнистой массы и бумаги - Google Patents

Способ контролирования роста микроорганизмов в системах обработки волокнистой массы и бумаги Download PDF

Info

Publication number
RU2507161C2
RU2507161C2 RU2010152432/05A RU2010152432A RU2507161C2 RU 2507161 C2 RU2507161 C2 RU 2507161C2 RU 2010152432/05 A RU2010152432/05 A RU 2010152432/05A RU 2010152432 A RU2010152432 A RU 2010152432A RU 2507161 C2 RU2507161 C2 RU 2507161C2
Authority
RU
Russia
Prior art keywords
hydantoin
corrosion
halogenated
paper
water
Prior art date
Application number
RU2010152432/05A
Other languages
English (en)
Other versions
RU2010152432A (ru
Inventor
Марк Нельсон
Марко КОЛАРИ
Юхана АХОЛА
Original Assignee
Кемира Ой
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40853822&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2507161(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Кемира Ой filed Critical Кемира Ой
Publication of RU2010152432A publication Critical patent/RU2010152432A/ru
Application granted granted Critical
Publication of RU2507161C2 publication Critical patent/RU2507161C2/ru

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/66Pulp catching, de-watering, or recovering; Re-use of pulp-water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

Изобретение может быть использовано для контролирования роста биопленки или микроорганизмов в водной системе, такой как система изготовления пульпы, бумаги или картона. Способ контролирования роста биопленки или микроорганизмов включает добавление галоидированного гидантоина в часть водной системы, чувствительной к коррозии в газовой фазе, и галоидамина в другие части водной системы. Изобретение позволяет контролировать содержание микробов, сократить расходы и свести к минимуму коррозию стальных компонентов устройства в газовой фазе. 12 з.п. ф-лы, 1 ил., 5 табл., 5 пр.

Description

ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Данное изобретение относится к усовершенствованным химическим способам контроля за содержанием микробов в водных системах и, в частности, в системах обработки волокнистой массы и бумаги.
УРОВЕНЬ ТЕХНИКИ
Общеизвестной проблемой в системах обработки бумаги и волокнистой массы является образование биопленки или шлама на поверхностях компонентов системы. Образование биопленки вызвано наличием бактерий в воде, содержащейся в системе при осуществлении различных процессов. Бактерии в воде могут существовать или в свободно плавающем виде (известном как планктон) или могут присоединяться к поверхностям (что известно как обрастание). Некоторые бактерии в технологических водах, такие как Deinococcus и Meiothermus, склонны к обрастанию и являются особенно эффективными образующими биопленки. Эти бактерии, если они содержатся в достаточных количествах, могут быстро прикрепляться к поверхности компонентов системы и образуют нежелательное обрастание.
Биопленка вызывает появление нескольких проблем в этих системах. Например, массы биопленок, которые отделяются от поверхности компонентов системы, могут уноситься водами волокнистой массы и входить в состав листа бумаги. Биопленки ослабляют образовавшийся лист бумаги и могут вызывать его разрыв или образование отверстий в бумаге. Удаление разрывов или поврежденных участков приводит к простою системы, потере бумаги, уменьшенной эффективности и увеличению расходов. Поэтому желательно снизить количество бактерий в технологических водах, а также предотвратить образование биопленок на поверхности компонентов системы. Обычный способ контролирования проблем, вызванных образованием биопленок, предусматривает добавление химических веществ, контролирующих содержание микробов, к технологической воде.
Известными агентами, контролирующими содержание микробов, являются галоидированные гидантоины, такие как бромхлордиметилгидантоин. Sweeny et al. (патент США №6429181) указывают, что частично галоидированные гидантоины, такие как монохлордиметилгидантоин (MCDMH), эффективны при уничтожении микробов в системах волокнистой массы и бумаги без вредного воздействия на химические добавки, применяемые в системе. Галоидированные гидантоины эффективны при уничтожении бактерий при обрастании и предотвращении образования шлама, но такие способы являются более дорогими, чем некоторые другие известные методы химического контроля за содержанием микробов.
Галоидированные амины, такие как хлорамины и бромамины, также являются известными химическими добавками для контролирования содержания микробов. Галоидированные амины могут получаться при соединении источника аммиака, такого как сульфат аммония, хлорид аммония, бромид аммония, фосфат аммония, нитрат аммония, или любой другой соли аммония, включая мочевину, с окислителем, таким как гипохлорит натрия. Галоидированные амины имеют меньшую стоимость, чем Галоидированные гидантоины и поэтому становятся более предпочтительными химическими агентами при контролировании содержания микробов в системах обработки бумаги и волокнистой массы. Галоидированные амины эффективны при снижении до минимума уровня планктонных бактерий в технологической воде и предотвращении образования шлама на поверхности компонентов системы, но в паровой фазе они могут быть очень коррозионными по отношению к компонентам системы. Тенденция галоидированных аминов к испарению может быть гораздо больше, чем в случае гипохлорита натрия.
Другие типы химических агентов, такие как диоксид хлора, можно также применять для контролирования содержания микробов. Диоксид хлора является хорошим биоцидом, так как бактерицидная эффективность ClO2 не сильно зависит от величины pH, и ClO2 не приводит к образованию токсичных побочных продуктов дезинфекции. Однако, диоксид хлора остается в технологической воде в газообразном виде и поэтому вызывает ту же коррозию в газовой фазе, что или Галоидированные амины.
Кроме того, было обнаружено, что бактерии, которые остаются в системах, обработанных галоидаминами или диоксидом хлора, таких как баки для пульпы с медленной циркуляцией, являются бактериями, которые плохо образуют шлам. В случаях, когда галоидамин или диоксид хлора перестают контролировать содержание микробов, возникает быстрое образование шлама. Типичными причинами этого явления потери возможности контроля являются неполадки оборудования для подачи реагентов или недостаточная их дозировка с целью снижения расходов.
Коррозия представляет собой большую проблему в "коротком контуре" или секции с циркуляцией с небольшим пробегом бумагоделательной машины и в последующих секциях прессования и сушки. При осуществлении типичного процесса получения волокнистой массы (пульпы) партия пульпы проходит в напорный ящик, который распределяет массу пульпы на движущейся проволочной сетке в формующей секции. Лист бумаги образуется в формующей секции и затем передается в прессы и сушилки для окончательной отделки. Короткий контур представляет собой систему рециркуляции и она высвобождает избыток воды из массы пульпы. Избыток воды собирается в сборнике в секции формования и затем ее основная часть возвращается назад в напорный ящик для повторного применения. Хотя многие сборники, линии и другие погруженные в воду компоненты системы с пульпой и бумагой обычно изготавливаются из кислотостойкой нержавеющей стали, многие компоненты, расположенные над поверхностью воды и в секциях прессования и сушки, изготовлены из менее стойких сталей. Именно эти компоненты испытывают вредное воздействие коррозии в газовой фазе, когда для контролирования содержания микробов используются галоидамин или диоксид хлора.
На практике сокращение расходов, возникающее в результате применения галоидаминов или диоксида хлора для контролирования содержания микробов компенсирует проблемы, связанные с коррозией в газовой фазе в этих системах. Тем не менее желательно использовать химический способ контролирования содержания микробов, который способствует сокращению расходов благодаря применению галоидаминов и диоксида хлора и одновременно сводит к минимуму коррозию стальных компонентов устройства в газовой фазе.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Описаны способы контролирования содержания биопленки или микроорганизмов в водной системе, такой как система, использующая пульпу, бумагу или картон, в которых в водную систему добавляют гидантоин вместе с галоидамином, диоксидом хлора или их комбинацией.
Галоидированный гидантоин предпочтительно представляет собой полностью или частично галоидированный диалкилгидантоин и, более предпочтительно, хлорированный 5,5-диметилгидантоин или 5-метил-5-этилгидантоин.
Галоидамин представляет собой предпочтительно моногалоидамин, дигалоидамин, тригалоидамин или их комбинацию и, более предпочтительно, монохлорамин, монобромамин, бромхлорамин или их комбинацию, получаемые путем соединения источника аммиака и оксиданта.
Галоидированный гидантоин предпочтительно добавляют к водной системе в те части системы, которые восприимчивы к коррозии в газовой фазе, такие как короткий контур системы, а галоидамин и/или диоксид хлора предпочтительно добавляют в другие части системы.
Галоидированный гидантоин и галоидамин и/или диоксид хлора хорошо совмещаются друг с другом в отсутствие избытка свободного хлора.
КРАТКОЕ ОПИСАНИЕ РИСУНКОВ
На Фиг.1 представлена упрощенная схематическая диаграмма системы обработки пульпы и изготовления бумаги.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Практика показала, что отсутствие биопленки в коротком контуре бумагоделательной машины при применении химических агентов, галоидамина и диоксида хлора, для контролирования содержания микробов требует непрерывного или периодического добавления галоидамина или диоксида хлора в короткий контур бумагоделательной машины. Это приводит к значительному риску возникновения коррозии в газовой фазе. Неожиданно было установлено, что коррозия в коротком контуре бумагоделательной машины может быть устранена или, по меньшей мере, значительно снижена путем непрерывного или периодического применения галоидированного гидантоина или с добавлением галоидаминов или диоксида хлора, содержащихся в коротком контуре, или в присутствии небольших количеств галоидаминов или диоксида хлора в коротком контуре. Небольшие количества галоидамина или диоксида хлора в коротком контуре уменьшают риск возникновения коррозии в газовой фазе, в то время как добавление галоидированного гидантоина освобождает короткий контур от шлама, что обеспечивает снижение общих расходов. Комбинация этих химических агентов не снижает эффективность контроля за содержанием микробов в системе. Небольшие количества галоидамина или диоксида хлора в коротком контуре может быть следствием введения их небольших количеств в короткий контур или вследствие наличия остаточных галоидамина и диоксида хлора в коротком контуре, попавших туда из других частей машины.
Данное изобретение предусматривает способ контроля за содержанием микробов при помощи химических агентов, галоидамина или диоксида хлора, применяемый в системах обработки пульпы и бумаги. Этот способ применения галоидамина или диоксида хлора согласно одному из вариантов изобретения предусматривает способ использования галоидированного гидантоина для контроля роста микробов и биопленки в выбранных частях системы, где иначе возникает коррозия в газовой фазе под действием диоксида хлора или галоидамина в газовой фазе, например, в таких частях, как короткий контур системы обработки пульпы и бумаги. Другие части системы, чувствительные к коррозии, представляют собой секцию прессования и секцию сушки. Кроме того, поверхности, орошаемые водой в коротком контуре или секции прессования, также подвержены коррозии в газовой фазе.
Признаки и преимущества данного изобретения описаны ниже в отношении возможных вариантов системы обработки пульпы и бумаги, однако, как очевидно специалистам в данной области, возможны многие другие варианты, охваченные данной заявкой.
Как описано выше, известно, что один из галоидаминов, диоксида хлора или галоидированных гидантоинов может быть использован для контроля содержания микробов в воде в бумагоделательных машинах. Однако применение более одного из этих химических агентов в той же самой системе не было изучено. Более того, ранее не было данных о том, что галоидамины или диоксид хлора совместимы с галоидированными гидантоинами. Наоборот, ранее в литературе говорилось об осторожном применении хлора при применении галоидаминов для контроля за содержанием микробов в бумагоделательных машинах. Например, известно, что эквимолярные концентрации бромида аммония и активного хлора или эквимолярные концентрации других солей аммония и активного хлора следует применять для получения требуемого галоидаминного продукта. Высокие отношения активного хлора к азоту не позволяют получить моногалоидамины с благоприятными свойствами. Таким образом, ранее полагали, что галоидированные гидантоины не следует применять в той же самой системе, что и галоидамины или диоксид хлора, потому что считается, что один или оба из этих химических агентов будут поглощаться или разлагаться другим агентом, приводя к ухудшению эффективности способа контроля за содержанием микробов с применением этих химических агентов. Как указано ниже, однако, заявители неожиданно обнаружили, что эти химические агенты могут быть добавлены в одну и ту же систему без появления значительного количества вредных реакций сшивки, если химические агенты получены в совместимых отношениях и если нет значительного избытка свободного хлора в воде. Галоидированные гидантоины снижают, таким образом, коррозию в газовой фазе без уменьшения общей эффективности способа контроля за содержанием микробов в системе.
Согласно одному варианту система контролирования роста микробов и биопленки при помощи комбинации галоидамина или диоксида хлора и галоидированных гидантоинов используется в системе обработки пульпы и бумаги, такой как показанная на Фигуре 1.
Согласно предпочтительному варианту галоидамин (хлорамин или бромамин) применяют в комбинации с галоидированным гидантоином в системе обработки пульпы и бумаги. Согласно этому варианту галоидамином предпочтительно является хлорамин, который может быть получен при соединении соли аммония и активного источника хлора. Предпочтительная соль аммония представляет собой сульфат аммония, а предпочтительный источник хлора является гипохлоритом натрия. Когда сульфат аммония и гипохлорит натрия соединяются в щелочных условиях, образуется монохлорамин (MCA). Согласно другому предпочтительному варианту солью аммония является бромид аммония. При соединении с гипохлоритом натрия в щелочных условиях образуется бромсо держащий галоидамин (бромамин, BA).
Предпочтительный галоидированный гидантоин представляет собой полностью или частично галоидированный диалкилгидантоин, такой как 5,5-диметилгидантоин или 5-метил-5-этилгидантоин. Наиболее предпочтительным галоидированным гидантоином является монохлор-5,5-диметилгидантоин, MCDMH, который может быть получен путем соединения жидкого гидантоина и гипохлорита натрия по способу, описанному в патенте США №6429181, Sweeny et al., который включен в данную заявку в качестве ссылки. Другие галоидированные гидантоины, которые могут быть применены в описанных в данной заявке способах, включают хлорбром-5,5-диметилгидантоин, дихлор-5,5-диметилгидантоин, дибром-5,5-диметилгидантоин, монобром-5,5-диметилгидантоин, частично галоидированный диалкилгидантоин, полученный путем смешения диалкилгидантоина с галоидсодержащим окислителем, или их комбинацию.
Хотя галоидамин и/или галоидированный гидантоин могут быть получены при соединении композиций предшественников технологической воде, предпочтительно предварительно получать галоидамин и галоидированный гидантоин и затем добавлять их в технологические воды.
В системах, где диоксид хлора применяется в комбинации с галоидированным гидантоином, диоксид хлора может быть получен on-site, например, в бумагоделательной машине с генератором on-site из предшественников или получен со стадий процесса отбеливания с завода изготовления пульпы.
Галоидамин или диоксид хлора для осуществления контроля за содержанием микробов обычно применяются везде в системе для уменьшения до минимума количества планктонных бактерий в системе и для предотвращения образования биопленки на поверхности компонентов системы. Галоидамин или диоксид хлора могут быть добавлены почти в любой точке системы, чтобы поддерживать способ контроля за содержанием микробов во всей системе. Согласно этому варианту предпочтительно не добавлять галоидамин или диоксид хлора в короткий контур, хотя можно добавлять в короткий контур небольшие количества галоидамина или диоксида хлора до тех пор, пока концентрации остаются достаточно низкими, чтобы минимизировать риск коррозии, вызываемой галоидамином / диоксидом хлора в газовой фазе в коротком контуре, в секциях прессования и/или сушки в системе.
Согласно примерной схеме системы 100 обработки пульпы и бумаги, показанной на Фигуре 1 только с целью иллюстрации, пульпа с завода 110, измельчителей целлюлозы 120 и системы отходов 130 подается насосом в смесительный чан 140 бумагоделательной машины.
Затем пульпа закачивается в короткий контур 200 системы 100, которая включает напорный ящик 210, секцию формования 220 и сборник для подсеточной воды 230. Листы бумаги формируются в секции формования 220 и направляются в прессы и сушилки 300.
Часть выделенной воды и остаточные несформованные волокна из сборника для подсеточной воды 230 возвращаются в напорный ящик 210, в то время как другая часть выделенной воды и остаточные несформованные волокна покидают короткий контур 200 и подаются в емкость с очищенной от волокнистой массы (светлой) водой 240 и соединяются с водой и волокнами, поступающими из мешального бассейна 150 в массоловушки 160. Массоловушка 160 концентрирует остаточные волокна в виде регенерированной массы 180 и направляет регенерированную массу 180 в смеситель 140 бумагоделательной машины. Вода рекуперируется в секции рекуперации воды 170 и повторно применяется как вода для разбавления 190 для ввода пульпы, поступающей из древесномассового завода 110, в гидроразбиватели 120 и в мешальный бассейн бумагоделательной машины. Небольшая часть воды в секции рекуперации воды 170 направляется в приемник для спрысков 400 и применяется в устройствах для спрысков, например, в секции формования 220.
Химические агенты для контролирования содержания микробов в системе 100 могут быть введены во многих точках системы. Точки введения указаны в качестве неограничивающих примеров на Фигуре 1, они включают:
Точку введения A: в разбивателях 120 или во входном потоке или выходном потоке в разбивателях;
Точку введения B: в системе гидроразбивателей 130 или во входном и выходном потоке в сосудах;
Точку введения C: в мешальном бассейне 150 или во входном/выходном потоке в мешальном бассейне;
Точку введения D: в секции рекуперации воды 170;
Точку введения E: в сборнике для подсеточной воды 230 (в короткой петле 200) или во входном/выходном потоке в этом сборнике;
Точку введения F: в смесителе 140 бумагоделательной машины или во входном/выходном потоке смесителя; и
Точку введения G: в приемнике 400 для воды или во входном/выходном потоке этого приемника.
Согласно одному из вариантов галоидамин добавляют в точках введения A, B, C и D. Как было обсуждено выше, галоидамин может быть заменен диоксидом хлора или использован в сочетании с ним. Галоидированный гидантоин предпочтительно добавляется в сборник для подсеточной воды 230 в точке E, в смеситель 140 бумагоделательной машины в точке F и в приемник для орошающей воды 400 в точке G. Однако, альтернативно, галоидированный гидантоин может добавляться только в сборник для подсеточной воды 230 в точке E. Следует иметь в виду, что система может включать дополнительные точки введения агентов, не указанные выше, или что одна или более таких точек, описанных выше, может быть исключена из системы.
Таблицы 1 и 2 в примерах 1 и 2 ниже демонстрируют, что коррозия в газовой фазе сводится к минимуму, если отношение галоидированного гидантоина к галоидамину/диоксиду хлора поддерживают равным примерно 4: 1 или более (в расчете на общее содержание активного хлора). Однако нужно учитывать, что данные, приведенные в этих примерах, были получены в лабораторных условиях, и что специалист в данной области может определить соответствующие отношения галоидированного гидантоина к галоидамину (диоксиду хлора), которые позволят свести к минимуму коррозию в газовой фазе в системах, содержащих действительно пульпу и бумагу.
Как было обсуждено выше, согласно одному варианту предпочтительным галоидамином, применяемым в описанном способе, является MCA. Другим предпочтительным галоидамином служит бромсодержащий галоидамин (бромамин, BA). MCA или BA предпочтительно добавлять при осуществлении непрерывного процесса и предпочтительно вводить для обеспечения общей концентрации активного хлора равной от примерно 0,1 м.д. до 5 м.д. во все части системы, которые обрабатываются галоидамином. Более предпочтительно, чтобы концентрация активного хлора в этих частях системы составляла примерно 0,75-2 м.д.
Альтернативно, для введения галоидамина в реакционный поток можно применять порционное дозирование. Предпочтительная концентрация MCA или BA в такой системе будет составлять примерно 1-10 м.д., особенно предпочтительно, 3-7 м.д. Порции предпочтительно вводятся в течение примерно 3-30 мин каждую примерно 6-24 раз в день и, более предпочтительно, в течение примерно 5-15 мин каждую примерно 12-24 раз в день. Порционное дозирование в контексте данного описания означает термин, известный специалистам и относится к периодическому дозированию химических агентов в систему в противоположность методу непрерывного дозирования, описанному выше.
Как указывалось, согласно одному варианту применяется способ контролирования роста микробов при помощи диоксида хлора. Диоксид хлора предпочтительно добавляют при проведении непрерывного процесса, он вводится для обеспечения общей концентрации активного хлора равной примерно 0,1-10 м.д. в тех частях системы, куда он вводится. Более предпочтительно, концентрация активного хлора в этих частях системы составляет примерно 1-4 м.д. Кроме того, порционное введение может быть применено для введения диоксида хлора. Предпочтительная концентрация ClO2 в такой системе будет составлять примерно 1-15 м.д., особенно предпочтительно 3-7 м.д. Порции вводят в течение примерно 3-30 мин каждую примерно 6-24 раза в день и, более предпочтительно, в течение примерно 5-15 мин каждую примерно 12-24 раза в день.
Галоидированный гидантоин предпочтительно применяют в целевых частях системы, где более значительно проявляется коррозия в газовой фазе, а именно в частях системы, которые включают компоненты, изготовленные из не кислотостойкой нержавеющей стали и других менее стойких сортов стали. Короткая петля 200 является особенно предпочтительным участком для дозирования галоидированного гидантоина, так как он может улетучиваться, а компоненты в последующих секциях прессования и сушки характеризуются повышенным риском к возникновению коррозии в газовой фазе. Другой предпочтительный участок для введения галоидированного гидантоина представляет собой приемник 400 для спрысков в бумагоделательной машине или в машине для изготовления картины, так как это вода часто применяется в спрысках также в коротком контуре или в секции прессования и может происходить улетучивание галоидамина или диоксида хлора.
Галоидированный гидантоин, который по одному из вариантов представляет собой частично галоидированный гидантоин, такой как MCDMH, предпочтительно вводят в систему порциями. MCDMH предпочтительно вводят для обеспечения в обрабатываемом потоке концентрации активного хлора равный 1-15 м.д. Предпочтительно вводить 3-8 м.д. в виде активного хлора. Порционное введение предпочтительно проводят 1-12 раз в день в течение примерно 5-90 мин каждое. Более предпочтительно порции добавляют примерно 3-6 раз в день в течение примерно 15-45 мин каждую. Или же MCDMH можно вводить при осуществлении непрерывного процесса и предпочтительно его вводят для достижения минимальной концентрации активного хлора в обрабатываемом потоке равный примерно 0,1-5 м.д. Более предпочтительно общая концентрация активного хлора в технологическом потоке составляет 0,5-2 м.д. Все величины концентраций, указанные в данной заявке, относятся к активному хлору в обрабатываемом технологическом потоке.
Как уже указывалось, хотя получение галоидированных гидантоинов является более дорогим, чем производство галоидаминов или диоксида хлора и поэтому они являются не очень привлекательными для выбора при осуществлении контроля за планктонными бактериями в технологических водах при получении пульпы и бумаги, обычное использование галоидамина или диоксида хлора в большинстве частей системы и применение галоидированного гидантоина в выбранных частях системы дает возможность использовать преимущество стоимости и бактерицидной активности галоидамина или диоксида хлора, применяя также галоидированный гидантоин для минимизации возникновения коррозии в газовой фазе в производстве пульпы и бумаги. Использование галоидированных гидантоинов в коротком контуре 200 приводит, например, к тому, что в секции прессования и сушки, которые особенно подвержены коррозии в газовой фазе, поступает меньше галоидамина или диоксида хлора.
Очевидно, что хотя предпочтительно применять галоидированные гидантоины только на тех участках, которые подвержены коррозии в газовой фазе, например, в точках введения E и G, показанных на Фигуре 1 (вследствие высокой стоимости применения галоидированных гидантоинов по сравнению с галоидаминами или диоксидом хлора), из-за ранее не признававшейся и неожиданной химической совместимости, описанной в данной заявке, галоидированные гидантоины могут быть использованы с галоидаминами или диоксидом хлора в других частях системы, где имеются пульпа и бумага.
В действительности, галоидированные гидантоины могут быть использованы вместе с галоидамином или диоксидом хлора во всех частях системы и могут быть добавлены в любой точке введения (А→G), показанной на Фигуре 1 или в других точках, не показанных на Фигуре 1.
Следующие не ограничивающие изобретение примеры показывают уменьшение степени коррозии в газовой фазе, когда или галоидамины, или диоксид хлора используется в комбинации с галоидированными гидантоинами. Эти примеры демонстрируют также неожиданную совместимость галоидаминов или диоксида хлора и галоидированных гидантоинов. Таким образом, галоидированные гидантоины снижают степень коррозии в газовой фазе в водной системе без ухудшения эффективности поражения других биоцидов в системе.
ПРИМЕР 1:
Лабораторный опыт проводили с циркуляционной водой, отобранной из бумагоделательной машины для производства высокосортной бумаги с покрытием из березовой, сосновой и эвкалиптовой пульпы. Содержание аэробных бактерий в образце измеряли при помощи счетчика Plate Count Agar (PCA), время инкубации при 45°C составляло 2 дня. Образец содержал аэробные бактерии с концентрацией 5000 KOE/мл. Величина pH образца была равна 7,5. Циркуляционную воду из бумагоделательной машины помещали в 7 стеклянных низких стаканов. На каждый стакан сверху помещали горизонтально одну стальную пластинку. Металлические пластинки, используемые в этом опыте, были изготовлены из углеродистой стали EN 10149-2 (C 0,058%, Si 0,183%, Mn 1,79%, Al 0,035%, Ti 0,127%).
Непосредственно перед опытом получали химические агенты. 15%-ный раствор диметилгидантоина смешивали с эквимолярным количеством гипохлорита натрия с получением смеси монохлордиметилгидантоина (MCDMH) с общим содержанием активного хлора равным 5,6%. Разбавленный раствор сульфата аммония с pH равным 0,5 смешивали с эквимолярным количеством гипохлорита натрия с получением раствора монохлорамина (MCA) с общим содержанием активного хлора равным 1,0%.
Химические агенты вводили в стаканы из расчета на общее содержание активного хлора. Стаканы оставляли стоять на столе при комнатной температуре. Через 60 мин после начального введения измеряли эффективность поражения бактерий в образце из каждого стакана (PCA, 45°C, 2 дня),
Введение химических в том же количестве агентов повторяли через 6 ч. Стальные пластинки регулярно осматривали и записывали любые признаки коррозии в
газовой фазе.
В Таблице 1 показаны относительная бактерицидная эффективность и коррозия в газовой фазе при применении MCDMH, MCA и MCDMH в комбинации с MCA в циркуляционной воде бумагоделательной машины.
ТАБЛИЦА 1
Обработка Количество (мг/л, общий активный Cl2) КОЕ/мл (время контакта 60 мин) Кумул. количество (мг/мл, общий активный Cl2 Коррозия стальных образцов в газ. фазе
1 день 4 дня
Необработанный контрольный образец 0 5×103 0
MCA 5 <5×101 10 ++ ++++
MCA 10 <5×101 20 +++ ++++
MCDMH 5 <5×101 10 - -
MCDMH 10 <5×101 20 - -
MCA+ 1+4 <5×101 2+8 + +
MCDMH
MCA+ 2+8 <5×101 4+16 + +
MCDMH
MCA = монохлорамин, MCDMH = монохлор - 5,5 - диметилгидантоин
Через 1 день на стальных образцах на контрольном стакане или на стаканах, где применяли MCDMH, не наблюдалось никаких признаков коррозии, в то время как на образцах на стаканах, содержащих МСА, наблюдалась отчетливая коррозия, признаки которой были видны невооруженным глазом. Степень коррозии стальных образцов на стаканах, содержащих МСА+MCDMH была заметно меньше, чем в случае одного МСА, однако, количество бактерий показало, что все агенты эффективно вызывали гибель бактерий с уменьшением >99%. Эти результаты позволяют предположить, что эффективный путь снижения риска коррозии в газовой фазе заключается в уменьшении количества MCA по сравнению с MCDMH с сохранением эффективности поражения микробов.
ПРИМЕР 2:
Этот лабораторный опыт проводили с циркуляционной водой из бумагоделательной машины для изготовления высокосортной бумаги с покрытием. Образец содержал аэробные бактерии с концентрацией 1500000 КОЕ/мл (2 дня, 45°C). Величина pH образца была равна 7,5, окислительно-восстановительный потенциал (ORP) составлял +151 мВ. Циркуляционную воду из бумагоделательной машины распределяли по 10 стеклянным стаканам. На верх каждого стакана горизонтально помещали одну стальную пластинку. Металлические пластинки были изготовлены из той же углеродистой стали, что и в примере 1. Непосредственно перед опытом получали химические агенты. 15%-ный раствор диметилгидантоина смешивали с эквимолярным количеством гипохлорита натрия с получением смеси монохлордиметилгидантоина (MCDMH) с общим содержанием активного хлора равным 5,6%. Разбавленный раствор сульфата аммония с pH равным 0,5 смешивали с эквимолярным количеством гипохлорита натрия с получением раствора монохлорамина (MCA) с общим содержанием активного хлора равным 1,0%. Разбавленный раствор бромида аммония смешивали с эквимолярным количеством гипохлорита натрия (величина pH смеси была равна примерно 10) с получением биоцидного раствора бром - активированного хлорамина (бромамина, BA) с общим содержанием активного хлора равным 0,3%. Раствор диоксида хлора отбирали на заводе по получению пульпы, он характеризовался общим содержанием активного хлора равным 1,3%. Химические агенты добавляли в стаканы из расчета на общее содержание активного хлора. Стаканы оставляли стоять на столе при комнатной температуре. Через два часа после первого введения агентов измеряли эффективность поражения для каждого образца, снятого с каждого стакана (общее количество бактерий, 2 дня, 45°C). Стальные пластинки регулярно осматривали и отмечали любые признаки коррозии.
В Таблице 2 приведены величины относительной бактерицидной эффективности и степени коррозии в газовой фазе при применении MCDMH, MCA, BA или ClO2 в отдельности и MCDMH в комбинации с другими окислителями в циркуляционной воде из бумагоделательной машины.
ТАБЛИЦА 2
Обработка Количество (мг/л, общий активный Cl2) КОЕ/мл (время контакта 2 ч) Коррозия стальных образцов в газ. фазе
1 день 4 дня
Необработанный контрольный образец 0 5×106
MCA 10 <2×102 +++ ++++
MCDMH 10 <2×102 - -
BA 10 <2×102 +++ ++++
ClO2 15 <2×102 +++ +++
MCDMH+ 9+1 <2×l02 - +
MCA
MCDMH+ 8+2 <2×102 + ++
BA
MCDMH+ 9+1 <2×102 - +
BA
MCDMH+ 13+2 <2×102 - +
ClO2
MCDMH+ 9+1 <2×102 - +
ClO2
МСА = монохлорамин, BA = бромамин, MCDMH = монохлор - 5,5 диметилгидантоин, ClO2 = диоксид хлора.
Через 1 день на стальных образцах на контрольном стакане или на стаканах, где применяли MCDMH, не наблюдалось никаких признаков коррозии, в то время как образцы на стаканах, содержащих MCA, BA или диоксид хлора, наблюдалась четко выраженная коррозия в газовой фазе, видимая невооруженным глазом. Степень коррозии стальных образцов, снятых со стаканов, содержащих смесь MCDMH+MCA, смесь MCDMH+BA или смесь MCDMH+ClO2, была заметно меньше, чем в случае применения MCA, BA или ClO2, применяемых в отдельности, однако, количество бактерий показало, что все агенты эффективно вызывали гибель бактерий с уменьшением >99%. Эти результаты позволяют предположить, что эффективный путь снижения риска коррозии в газовой фазе заключается в уменьшении количества MCA, BA или ClO2 по сравнению с MCDMH при сохранении эффективности поражения микробов.
ПРИМЕР 3:
Свежие растворы MCA и MCDMH готовили при комнатной температуре. Водопроводную воду распределяли в пять контейнеров и обрабатывали следующим образом:
A. MCA, 3,00 мг/л (в расчете на общее содержание активного хлора), полученным из разбавленного раствора сульфата аммония (Fennosurf 580) с установленным pH и гипохлорита натрия.
B. DMH (Fennosurf 300), смешанным с гипохлоритом натрия в мольном отношении 1: 1, с образованием MCDMH, вводился в количестве примерно 2,5 м.д. (общее содержание активного хлора).
C. DMH (Fennosurf 300), смешанным с гипохлоритом натрия в мольном отношении 1:2 с образованием MCDMH и свободной HOCl (хлорноватистой кислоты или свободного хлора) в отношении 1:1; количество составляло около 5 м.д. в расчете на общее содержание активного хлора.
D. Смесью A и B в объемном отношении 1:1.
E. Смесью A и C в объемном отношении 1:1.
Смесям давали стоять в течение 20 ч. Регулярно при помощи набора Hach DPD test измеряли общее содержание активного хлора.
ТАБЛИЦА 3
Смесь Общее содержание активного хлора (мг/л)
0 мин 15 мин 30 мин 45 мин 60 мин 2 ч 20 ч
A. МСА 3 м.д. 2,84 2,90 2,80 2.76 2.68 2.74 2.34
B. MCDMH 2,5 м.д. 2,47 2,44 2,51 2.52 2.39 2.39 1.80
C. MCDMH 2,5 м.д. + своб. HOCl 2,5 м.д. 4,96 4,80 4,52 4,07 3.88 3.56 1.96
D.A+B (1:1) 2,64 2,68 2,52 2.51 2.43 2.28 1.46
E.A+C (1:1) 1,92 1,62 1.65 1.45 1.48 1.39 0.86
В смеси D были смешаны два раствора с почти равным общим содержанием активного хлора. После смешения общее содержание активного хлора было почти таким же. Результаты показывают, что МСА и MCDMH можно вводить в ту же водную среду в один и тот же момент времени без значительной потери активного галогена.
В смеси E ожидаемое общее содержание активного хлора в смешиваемых растворах A и C составляло примерно 4 м.д. Однако результаты, показанные выше, свидетельствуют, что избыток свободной HOCl быстро разлагает МСА и происходит потеря некоторого количества активного хлора.
ПРИМЕР 4:
Исследование продолжали с другой смесью DMH (Fennosurf 300) и HOCl в молярном отношении около 1:1,3.
ТАБЛИЦА 4
Смесь Общее содержание активного хлора (мг/л)
0 мин 10 мин 30 мин 2 ч
A. МСА 2,5 м.д. 2,43 2,23 2,12 2,24
B. MCDMH 2,5 м.д. (DMH: гипохлорит натрия в мол. отн. 1:1) 2,53 2,28 2,28 2,45
C. MCDMH 2,5 м.д. + HOCl 0,7 м.д. (1: 1,3 отн.) 2,89 2,61 2,43 2,46
D. MCDMH 2,5 м.д. + HOCl 2,5 м.д. (1:2 отн.) 4,41 3,80 3,47 3,14
E.A+B 2,20 2,28 2,28 2,30
F.A+C 2,26 2,22 2,39 2,37
G.A+D 3,15 2,11 1,06 1,44
Результаты, показанные выше, подтверждают результаты примера 3:
- Частично галоидированный гидантоин (в этом случае MCDMH, полученный из Fennosurf 300 и гипохлорита) и монохлорамин (полученный из разбавленного сульфата аммония (Fennosurf 580) и гипохлорита натрия) можно вводить вместе в одну и ту же водную среду, если используемые отношения гидантоина и HOCl обеспечивают совместимость (в этом примере 1 М DMH: 5 L3 M HOCl давали хорошие результаты).
- В смеси G ожидаемое общее содержание активного хлора составляло примерно 4 м.д. Однако результаты показали, что избыток свободной HOCl (например, 1 М DMH на 2 М HOCl) приводит к быстрому разложению MCA и потере некоторого количества активного хлора.
Как показывают примеры 3 и 4, совместимость MCA и MCDMH имеет место при мольных отношениях DMH к гипохлориту равных примерно 1:1,3. Было установлено, что свободный гипохлорит в избытке к отношению равному примерно 1:2 приводил к большей потере MCA и потере некоторого количества активного хлора. Вероятно, что мольные отношения DMH к гипохлориту в интервале между 1:1,3 и 1:2 также будут приводить к подходящей совместимости MCA и MCDMH - проводятся дальнейшие исследования для выяснения приемлемого верхнего предела отношения DMH к гипохлориту. Предпочтительным является мольное отношение DMH и гипохлорита от примерно 1:1 до 1:1,7.
ПРИМЕР 5:
Этот лабораторный опыт проводили с циркуляционной водой с pH 8, отобранной из бумагоделательной машины для изготовления копировальной бумаги без покрытия. Образец распределяли по восьми стеклянным флаконам. В воздушную фазу каждого флакона вертикально помещали два образца размером 20 мм × 50 мм из стали EN 10149-2 с низким содержанием углерода. Флаконы оставляли стоять на столе при комнатной температуре.
Непосредственно перед опытом получали химические агенты. 15%-ный раствор диметилгидантоина смешивали с эквимолярным количеством гипохлорита натрия с получением смеси монохлор-5,5-диметилгидантоина (MCDMH) с общим содержанием активного хлора равным 5,6%. Разбавленный раствор сульфата аммония с pH равным 0,5 смешивали с эквимолярным количеством гипохлорита натрия с получением раствора монохлорамина (MCA) с общим содержанием активного хлора равным 1,0%. Химические агенты вводили во флаконы из расчета на общее содержание активного хлора. То же самое количество добавляли во флаконы три раза во время этого опыта. Стальные образцы регулярно осматривали и фиксировали любые признаки коррозии в газовой фазе. В конце опыта образцы промывали кислотой, определяли потерю веса и рассчитывали скорость коррозии.
В Таблице 5 показаны данные по коррозии в газовой фазе при применении MCDMH или MCA в отдельности и MCDMH в комбинации с MCA в циркуляционной воде бумагоделательной машины.
Таблица 5
Обработка Количество (мг/л, общий активный Cl2) Коррозия в газовой фазе стальных образцов через 7 дн
Визуально Скорость коррозии (мкм/год)
Необработанный контрольный образец 0 4
MCA 5 +++ 21
MCDMH 5 - 7
MCA 10 ++++ 44
MCDMH 10 - 6
MCDMH+ 5+5 +++ 19
MCA
MCDMH+ 8+2 + 12
MCA
MCDMH+ 9+1 - 7
MCA
MCA = монохлорамин; MCDMH = монохлор - 5,5 - диметилгидантоин.
Результаты этого опыта по определению коррозии через одну неделю подтвердили результаты предыдущих опытов: MCA вызывал значительно большую коррозию по сравнению с MCDMH в тех же концентрациях (в расчете на общее содержание активного хлора). Степень коррозии стальных образцов в воздушной фазе флаконов, содержащих MCDMH и MCA в смеси, была значительно меньше, чем в случае одного MCA и, предпочтительно, когда MCDMH составлял 80% или более в расчете на общее содержание активного хлора. Эти результаты показывают, что эффективный путь снижения коррозии в газовой фазе для уменьшения количества MCA по сравнению с MCDMH при сохранении хорошей эффективности поражения микробов.
Приведенное выше описание примеров вариантов данного изобретения представлено только с целью иллюстрации, описание не является исчерпывающим или ограничивающим изобретение описанными формами. С учетом данного описания возможны многие модификации и вариации. Варианты изобретения были выбраны и описаны с целью объяснения принципов изобретения и его практического применения для того, чтобы дать возможность другим специалистам использовать изобретение и различные варианты с различными модификациями, подходящими для конкретного заявленного применения. Альтернативные варианты являются очевидными для специалистов в данной области, к которой относится данное изобретение, без выхода за рамки и объем этого изобретения.

Claims (13)

1. Способ контролирования роста биопленки или микроорганизмов в водной системе, включающий добавление в водную систему галоидированного гидантоина в комбинации с галоидамином, характеризующийся тем, что
галоидированный гидантоин добавляют в водную систему в ту часть системы, которая чувствительна к коррозии в газовой фазе; и
галоидамин добавляют в другие части системы.
2. Способ по п.1, в котором водная система представляет собой систему изготовления пульпы, бумаги или картона.
3. Способ по п.1, в котором галоидированный гидантоин представляет собой полностью или частично галоидированный диалкилгидантоин.
4. Способ по п.1, в котором галоидированный гидантоин представляет собой 5,5-диметилгидантоин или 5-метил-5-этилгидантоин и предпочтительно в котором галоидированный гидантоин представляет собой хлорбром-5,5-диметилгидантоин, дихлор-5,5-диметилгидантоин, дибром-5,5-диметилгидантоин, монохлор-5,5-диметилгидантоин, монобром-5,5-диметилгидантоин, частично галоидированный диалкилгидантоин, полученный путем смешения диалкилгидантоина с галоидсодержащим окислителем, или их комбинацию.
5. Способ по п.4, в котором галоидсодержащий окислитель представляет собой гипохлорит, бромноватистую кислоту, твердый агент, высвобождающий активный хлор или их комбинацию.
6. Способ по п.1, в котором галоидамин представляет собой моногалоидамин, дигалоидамин, тригалоидамин или их комбинацию и предпочтительно галоидамин представляет собой монохлорамин, монобромамин, бромхлорамин или их комбинацию.
7. Способ по п.1, при котором галоидамин предварительно получен путем взаимодействия соли аммония с окислителем или получен in-situ в водной системе при раздельном добавлении соли аммония и окислителя в водной системе.
8. Способ по п.1, в котором водная система представляет собой систему изготовления пульпы, бумаги или картона, котором часть системы, подверженная коррозии в газовой фазе, представляет собой короткий контур или секцию прессования и сушки, при этом короткий контур включает напорный ящик, секцию формования и сборник для подсеточной воды.
9. Способ по п.8, в котором водная система дополнительно включает смеситель бумагоделательной машины и галоидированный гидантоин добавляют в водную систему перед сборником для подсеточной воды или в этот сборник, смеситель бумагоделательной машины или в оба этих компонента, и предпочтительно в котором галоидированный гидантоин добавляют в сборник для подсеточной воды.
10. Способ по п.8, в котором часть системы, подверженная коррозии в газовой фазе, представляет собой секцию формования и прессования бумагоделательной машины или машины для изготовления картона, в которой используется вода спрысков, и галоидированный гидантоин добавляют в воду спрысков бумагоделательной машины или машины для изготовления картона.
11. Способ по п.1, в котором галоидированный гидантоин добавляют в количестве, которое является достаточным для контролирования роста биопленки в отсутствие галоидаминов или с галоидаминами, содержащимися в таких небольших количествах, что коррозия в газовой фазе в одной или более частях системы, которые подвержены коррозии в газовой фазе, сводится к минимуму.
12. Способ по п.3, в котором частично галоидированный гидантоин и галоидамин добавляют в водную систему в таких количествах, что мольное отношение гидантоина к свободному хлору составляет менее 2, и предпочтительно в таких количествах, что мольное отношение гидантоина к свободному хлору составляет от 1,0 до 1,7, и еще предпочтительнее в таких количествах, что мольное отношение гидантоина к свободному хлору составляет от 1,0 до 1,3.
13. Способ по п.1, в котором галоидированный гидантоин и галоидамин каждый независимо добавляют в водную систему в случае непрерывного процесса, периодического процесса или комбинации непрерывного и периодического процессов.
RU2010152432/05A 2008-05-23 2009-05-26 Способ контролирования роста микроорганизмов в системах обработки волокнистой массы и бумаги RU2507161C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US5577508P 2008-05-23 2008-05-23
US61/055,775 2008-05-23
US15613409P 2009-02-27 2009-02-27
US61/156,134 2009-02-27
PCT/US2009/045147 WO2009143511A1 (en) 2008-05-23 2009-05-26 Chemistry for effective microbe control with reduced gas phase corrosiveness in pulp & paper processing systems

Publications (2)

Publication Number Publication Date
RU2010152432A RU2010152432A (ru) 2012-06-27
RU2507161C2 true RU2507161C2 (ru) 2014-02-20

Family

ID=40853822

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010152432/05A RU2507161C2 (ru) 2008-05-23 2009-05-26 Способ контролирования роста микроорганизмов в системах обработки волокнистой массы и бумаги

Country Status (10)

Country Link
US (1) US8986606B2 (ru)
EP (1) EP2297046B1 (ru)
CN (1) CN102036921B (ru)
BR (1) BRPI0912872B1 (ru)
CA (1) CA2725204C (ru)
ES (1) ES2442340T3 (ru)
PL (1) PL2297046T3 (ru)
PT (1) PT2297046E (ru)
RU (1) RU2507161C2 (ru)
WO (1) WO2009143511A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2776704C2 (ru) * 2017-08-29 2022-07-25 Кемира Ойй Способ контроля роста микроорганизмов и/или биопленок в промышленном процессе

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2297046E (pt) 2008-05-23 2014-01-20 Kemira Oyj Química para o controlo microbiológico eficaz com corrosividade reduzida em fase gasosa nos sistemas de processamento de pasta&papel
ITMI20111037A1 (it) * 2011-06-09 2012-12-10 Acquaflex S R L Metodo per ridurre l'inquinamento biologico in un procedimento per la produzione della carta.
US9341560B2 (en) * 2012-01-20 2016-05-17 Kemira Oyj Device and method for monitoring biocide dosing in a machine
ES2743722T3 (es) * 2012-06-05 2020-02-20 Buckman Laboratories Int Inc Métodos para conservar el almidón en la pulpa
RU2574052C2 (ru) * 2013-10-02 2016-01-27 Общество с ограниченной ответственностью "Банмарк" Способ ингибирования микроорганизмов в целлюлозно-бумажной промышленности
EP3450626B1 (en) * 2017-08-29 2020-05-06 Kemira Oyj Method for controlling growth of microorganisms and/or biofilms in an industrial process
EP3450623B1 (en) 2017-08-29 2023-06-28 Kemira Oyj Method for controlling growth of microorganisms and/or biofilms in an industrial process
MX2020004328A (es) 2017-10-18 2020-08-03 Solenis Tech Lp Composiciones que exhiben sinergia en el control de biopelicula.
CA3079384A1 (en) * 2017-10-18 2019-04-25 Solenis Technologies, L.P. Compositions exhibiting synergy in biofilm control
JP7323230B2 (ja) * 2018-05-01 2023-08-08 アムテック株式会社 結合塩素の生成方法
CN113348365B (zh) * 2018-11-27 2023-09-19 凯米拉公司 用于估计气相腐蚀负荷的方法
MX2022012808A (es) * 2020-04-13 2022-11-14 Chemtreat Inc Metodos y sistemas para el control de bacterias en biopeliculas.
WO2022051600A1 (en) 2020-09-04 2022-03-10 Buckman Laboratories International, Inc. Predictive systems and methods for proactive intervention in chemical processes
WO2023118170A1 (en) 2021-12-21 2023-06-29 Kemira Oyj Antimicrobial system and method
CA3240655A1 (en) * 2021-12-21 2023-06-29 Kemira Oyj Antimicrobial system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU945085A1 (ru) * 1975-11-21 1982-07-23 Ленинградский научно-исследовательский институт академии коммунального хозяйства им.К.Д.Памфилова Способ обеззараживани воды и сточных вод
US5332511A (en) * 1993-06-25 1994-07-26 Olin Corporation Process of sanitizing swimming pools, spas and, hot tubs
RU2192395C1 (ru) * 2001-12-28 2002-11-10 Павлов Максим Валерьевич Состав для очистки воды
WO2003001931A1 (en) * 2001-06-28 2003-01-09 Albemarle Corporation Microbiological control in poultry processing
JP2003104804A (ja) * 2001-09-28 2003-04-09 Hakuto Co Ltd 水系の殺微生物方法

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1378644A (en) * 1919-09-13 1921-05-17 John C Baker Process of sterilizing
US3975271A (en) * 1972-02-15 1976-08-17 Bernard Saunier Process for sterilizing water by the combination of chlorine and another halogen
GB1600289A (en) 1978-05-31 1981-10-14 Fisons Ltd Sterilisation of water for nutrient film systems
JPS5518259A (en) 1978-07-28 1980-02-08 Kurita Water Ind Ltd Available chlorine activity maintainer in water
US4297224A (en) * 1980-06-04 1981-10-27 Great Lakes Chemical Corporation Method for the control of biofouling in recirculating water systems
US4614595A (en) * 1984-09-05 1986-09-30 Coral, Inc. Method of water treatment
DE3436989C1 (de) * 1984-10-09 1986-03-20 Teroson Gmbh, 6900 Heidelberg Mikroorganismen toetende oder das Wachstum von Mikroorganismen hemmende Zusammensetzung und deren Verwendung
JPS61210004A (ja) 1985-03-14 1986-09-18 Teisan Seiyaku Kk 殺菌剤
NL8502355A (nl) * 1985-08-27 1987-03-16 Magneto Chemie Bv Werkwijze en inrichting voor de bereiding van een desinfectans voor water, zoals drink- of zwemwater.
US4732913A (en) * 1987-02-25 1988-03-22 Betz Laboratories, Inc. Biocidal compositions and use thereof containing a synergistic mixture of 2-bromo-2-nitropropane-1,3-diol and 2,2-dibromo-3-nitrilopropionamide
US4800082A (en) * 1987-03-23 1989-01-24 The Dow Chemical Company Sustained release microbiological control composition
FR2631622B1 (fr) 1988-05-20 1993-07-09 Billes Jean Louis Procede et installation de desinfection des eaux de baignade par de l'hypochlorite de sodium produit electrochimiquement in situ
US4966775A (en) * 1988-09-12 1990-10-30 Betz Laboratories Biocidal compositions and use thereof
US5019173A (en) * 1988-09-29 1991-05-28 Dow Corning Corporation Cleaning method for water containing vessels and systems
US4959157A (en) * 1988-11-18 1990-09-25 The Dow Chemical Company Wastewater disinfection with a combination of biocides
US4988444A (en) * 1989-05-12 1991-01-29 E. I. Du Pont De Nemours And Company Prevention of biofouling of reverse osmosis membranes
US4916159A (en) * 1989-05-25 1990-04-10 Betz Laboratories, Inc. Biocidal compositions and use thereof containing a synergistic mixture of 2-(decylthio)ethanamine hydrochloride and 2,2-dibromo-3-nitrilo propionamide
DE69002442T2 (de) 1989-06-16 1995-07-13 Univ Houston Biozide verfahren für im kreislauf geführte wässrige systeme.
US5071569A (en) * 1990-03-22 1991-12-10 Coral International, Inc. Method and composition for water treatment
US5070200A (en) * 1990-04-02 1991-12-03 Olin Corporation Process for the preparation of chloroamines
IL98352A (en) * 1991-06-03 1995-10-31 Bromine Compounds Ltd Process and compositions for the disinfection of water
US5236600A (en) * 1991-06-05 1993-08-17 Hutchins Danny T Process for controlling bacteria growth in water supply systems
ZA926651B (en) * 1991-09-06 1993-03-16 Bio Lab Inc Compositions and methods for controlling the growth of microbials in aqueous media.
JP2554989B2 (ja) 1993-12-21 1996-11-20 伯東株式会社 水系における殺菌処理方法
JPH0826917A (ja) 1994-07-22 1996-01-30 Nissan Chem Ind Ltd 殺菌洗浄剤組成物
JP3497171B2 (ja) * 1994-10-03 2004-02-16 ウェインストック, デイビッド 生物の増殖を阻害する液体処理方法
JP3877788B2 (ja) 1994-12-26 2007-02-07 伯東株式会社 パルプ工場・製紙工場におけるスライム障害防止方法
JPH1147755A (ja) 1997-07-29 1999-02-23 Hakuto Co Ltd スライムコントロール剤および方法
AU7865598A (en) * 1997-08-14 1999-02-25 Rohm And Haas Company Solid biocidal compositions
FR2769016B1 (fr) * 1997-09-30 1999-10-29 Adir Procede de synthese de chloramine haute teneur
DE60133725T2 (de) 2000-01-31 2009-07-02 Lonza Inc. Teilhalogenierte hydantoine für schleimkontrolle
EP1263685A1 (en) * 2000-03-13 2002-12-11 Biolab Services, Inc. Rapidly-dissolving halogenated hydantoin powders having improved flow, reduced dust, improved wetability, and increased bulk densities
CA2322564A1 (en) 2000-10-06 2002-04-06 University Of Ottawa Antiviral compounds
AU2002258377A1 (en) * 2000-11-06 2002-09-24 Larry Russell Ballast water treatment for exotic species control
US6986910B2 (en) * 2001-06-28 2006-01-17 Albemarle Corporation Microbiological control in poultry processing
US20030077365A1 (en) * 2001-06-28 2003-04-24 Howarth Jonathan N. Environmentally-friendly microbiological and microbiocidal control in aqueous systems
US20030029812A1 (en) * 2001-06-29 2003-02-13 Lonza Inc. Mixtures of free halogen-generating biocides, halogen stabilizers and nitrogen containing biocides in water treatment and papermaking applications
US7052614B2 (en) * 2001-08-06 2006-05-30 A.Y. Laboratories Ltd. Control of development of biofilms in industrial process water
US6881583B2 (en) * 2002-06-16 2005-04-19 Applied Spectrometry Associates Inc. Water chloramination control system
US7008545B2 (en) * 2002-08-22 2006-03-07 Hercules Incorporated Synergistic biocidal mixtures
FR2846646B1 (fr) * 2002-11-04 2005-01-21 Isochem Sa Procede de synthese de la monochloramine
JP4071686B2 (ja) 2003-08-11 2008-04-02 東亜ディーケーケー株式会社 電気伝導率測定セル
CA2553323C (en) * 2004-01-14 2014-04-08 A.Y. Laboratories Ltd. Biocides and apparatus
FI20055120A0 (fi) * 2005-03-16 2005-03-16 Bim Kemi Ab Menetelmä mikro-organismien kasvun estämiseksi
WO2006113221A1 (en) 2005-04-13 2006-10-26 Novozymes North America, Inc. Methods for reducing chlorine dioxide associated corrosion
BRPI0615388A2 (pt) * 2005-08-26 2011-05-17 Hercules Inc biocida sinergìstico e processo para o controle do crescimento de microorganismos
EP1928784B1 (en) * 2005-08-26 2009-10-14 Hercules Incorporated Method and apparatus for producing synergistic biocide
US20080156740A1 (en) * 2006-12-29 2008-07-03 Amit Gupta Method for producing a stable oxidizing biocide
US20080160604A1 (en) * 2006-12-29 2008-07-03 Amit Gupta Apparatus for producing a stable oxidizing biocide
US8012758B2 (en) * 2007-02-16 2011-09-06 Nalco Company Method of monitoring microbiological activity in process streams
US8051383B2 (en) * 2007-03-01 2011-11-01 Integrity Municipal Services Llc Graphical controller for monitoring multiple chemical feed constituents
US7736520B2 (en) * 2007-04-18 2010-06-15 County Sanitation Districts Of Los Angeles County Sequential chlorination for control of wastewater disinfection byproducts
PT2297046E (pt) 2008-05-23 2014-01-20 Kemira Oyj Química para o controlo microbiológico eficaz com corrosividade reduzida em fase gasosa nos sistemas de processamento de pasta&papel
WO2010059908A1 (en) * 2008-11-21 2010-05-27 James Kenneth Sanders Methods for increasing oil production
IT1393089B1 (it) * 2009-02-17 2012-04-11 Sanipur S R L Metodo per la disinfezione di acqua calda sanitaria
FR2952630B1 (fr) 2009-11-16 2012-08-03 Centre Nat Rech Scient Procede de preparation d'une solution comprenant de la monochloramine
JPWO2011065434A1 (ja) 2009-11-27 2013-04-18 鶴見曹達株式会社 船舶のバラスト水の処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU945085A1 (ru) * 1975-11-21 1982-07-23 Ленинградский научно-исследовательский институт академии коммунального хозяйства им.К.Д.Памфилова Способ обеззараживани воды и сточных вод
US5332511A (en) * 1993-06-25 1994-07-26 Olin Corporation Process of sanitizing swimming pools, spas and, hot tubs
WO2003001931A1 (en) * 2001-06-28 2003-01-09 Albemarle Corporation Microbiological control in poultry processing
JP2003104804A (ja) * 2001-09-28 2003-04-09 Hakuto Co Ltd 水系の殺微生物方法
RU2192395C1 (ru) * 2001-12-28 2002-11-10 Павлов Максим Валерьевич Состав для очистки воды

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2776704C2 (ru) * 2017-08-29 2022-07-25 Кемира Ойй Способ контроля роста микроорганизмов и/или биопленок в промышленном процессе
RU2787106C2 (ru) * 2017-10-18 2022-12-28 Соленис Текнолоджиз, Л.П. Композиции, проявляющие синергию при контроле биопленок
RU2790016C2 (ru) * 2017-10-18 2023-02-14 Соленис Текнолоджиз, Л.П. Композиции, обеспечивающие синергетический эффект при борьбе с биопленкой

Also Published As

Publication number Publication date
US20090291023A1 (en) 2009-11-26
CA2725204A1 (en) 2009-11-26
BRPI0912872B1 (pt) 2021-01-26
ES2442340T3 (es) 2014-02-11
PL2297046T3 (pl) 2014-03-31
RU2010152432A (ru) 2012-06-27
EP2297046A1 (en) 2011-03-23
BRPI0912872A2 (pt) 2020-08-18
CN102036921B (zh) 2016-01-20
US8986606B2 (en) 2015-03-24
CA2725204C (en) 2016-04-19
WO2009143511A1 (en) 2009-11-26
EP2297046B1 (en) 2013-10-23
CN102036921A (zh) 2011-04-27
PT2297046E (pt) 2014-01-20

Similar Documents

Publication Publication Date Title
RU2507161C2 (ru) Способ контролирования роста микроорганизмов в системах обработки волокнистой массы и бумаги
US7651622B2 (en) Process and compositions for the disinfection of waters
US7189329B2 (en) Control of development of biofilms in industrial process water
US8048435B2 (en) Preparation of concentrated aqueous bromine solutions and biocidal applications thereof
US4966716A (en) Method for the control of biofouling in recirculating water systems
EP1928784B1 (en) Method and apparatus for producing synergistic biocide
US20170036931A1 (en) Methods and kits for stabilizing oxidizers and sanitizing water
US8613859B2 (en) Synergistic biocide and process for controlling growth of microoganisms
US4935153A (en) Method for the control of biofouling in recirculating water systems
JP2007105579A (ja) スライムコントロール剤の添加方法及び装置
JP5357440B2 (ja) 有害微生物撲滅剤及びそれを用いた有害微生物撲滅方法
JP2014100650A (ja) 微生物の増殖抑制方法
US8293795B1 (en) Preparation of concentrated aqueous bromine solutions and biocidal applications thereof