RU2502197C2 - Передача с инкрементной избыточностью в системе связи mimo - Google Patents

Передача с инкрементной избыточностью в системе связи mimo Download PDF

Info

Publication number
RU2502197C2
RU2502197C2 RU2009120027/08A RU2009120027A RU2502197C2 RU 2502197 C2 RU2502197 C2 RU 2502197C2 RU 2009120027/08 A RU2009120027/08 A RU 2009120027/08A RU 2009120027 A RU2009120027 A RU 2009120027A RU 2502197 C2 RU2502197 C2 RU 2502197C2
Authority
RU
Russia
Prior art keywords
data
block
packet
symbol
received
Prior art date
Application number
RU2009120027/08A
Other languages
English (en)
Other versions
RU2009120027A (ru
Inventor
Тамер КАДОУС
Original Assignee
Квэлкомм, Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм, Инкорпорейтед filed Critical Квэлкомм, Инкорпорейтед
Publication of RU2009120027A publication Critical patent/RU2009120027A/ru
Application granted granted Critical
Publication of RU2502197C2 publication Critical patent/RU2502197C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/33Synchronisation based on error coding or decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Small-Scale Networks (AREA)

Abstract

Настоящее изобретение относится к способам передачи данных в системе связи со многими входами и многими выходами. Технический результат изобретения заключается в возможности использовать единую скорость для всех пакетов данных, переданных одновременно по каналу MIMO. Для передачи с инкрементной избыточностью (IR) в системе MIMO передатчик обрабатывает пакет данных на основе выбранной скорости для получения многочисленных блоков символов данных. Передатчик передает один блок символов данных за раз, пока приемник не восстановит безошибочно пакет данных, либо все блоки не будут переданы. Когда бы ни были приняты блоки символов данных от передатчика, приемник обнаруживает принятый блок символов для получения обнаруженного блока символов, обрабатывает (например, демодулирует, обратно перемежает, перебирает и декодирует) все обнаруженные блоки символов, полученные для пакета данных, и предоставляет декодированный пакет. Если декодированный пакет с ошибкой, то приемник повторяет обработку, когда принимается другой блок символов данных для пакета данных. Приемник также может выполнять итеративное обнаружение и декодирование на принятых блоках символов для пакета данных многократно для получения декодированного пакета. 14 н. и 26 з.п.ф-лы, 16 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение в целом относится к обмену информацией, и более конкретно, к методикам передачи данных в системе связи со многими входами и многими выходами (MIMO).
Уровень техники
Система MIMO применяет множественные (NT) передающие антенны и множественные (NR) приемные антенны для передачи данных и обозначается как система (NT, NR). Канал MIMO, образованный NT передающими и NR приемными антеннами, может быть разложен на NS пространственных каналов, где Ns≤min{NT, NR}. Система MIMO может обеспечивать увеличенную пропускную способность, если NS пространственных каналов, созданных многоэлементными передающими и приемными антеннами, применяются для передачи данных.
Главной проблемой в системе MIMO является выбор подходящей скорости для передачи данных на основе условий канала. «Скорость» может указывать конкретную скорость передачи данных или скорость передачи информации в битах, конкретную схему кодирования, конкретную схему модуляции, конкретный размер пакета данных и так далее. Целью выбора скорости является максимизировать пропускную способность по NS пространственным каналам наряду с соответствием определенным целям качества, которые могут измеряться посредством конкретной частоты ошибок пакета (например, 1% PER).
Пропускная способность канала MIMO зависит от отношений сигнал/шум-и-помеха (SNR), достигаемых NS пространственными каналами. SNR зависят, в свою очередь, от условий канала. В одной обычной системе MIMO передатчик кодирует, модулирует и передает данные в соответствии со скоростью, которая выбирается на основе модели статического канала MIMO. Хорошая производительность может достигаться, если модель точна, и если канал MIMO относительно статичен (то есть, не меняется во времени). В другой обычной системе MIMO приемник оценивает канал MIMO, выбирает подходящую скорость на основе оценок канала, и отправляет выбранную скорость передатчику. Затем передатчик обрабатывает и передает данные в соответствии с выбранной скоростью. Производительность этой системы зависит от особенности канала MIMO и точности оценок канала.
Для обеих описанных выше обычных систем MIMO передатчик обычно обрабатывает и передает каждый пакет данных на выбранной для этого пакета данных скорости. Приемник декодирует каждый пакет данных, переданный передатчиком, и определяет, декодирован ли пакет безошибочно или с ошибкой. Приемник может отправить назад уведомление о подтверждении приема (ACK), если пакет декодирован безошибочно, или отрицательное уведомление о подтверждении приема (NAK), если пакет декодирован с ошибкой. Передатчик может повторно передать каждый пакет данных, декодированный приемником с ошибкой, полностью, по приему NAK для пакета от приемника.
Производительность обеих описанных выше систем MIMO сильно зависит от точности выбора скорости. Если выбранная скорость для пакета данных слишком умеренная (например, так как фактическое SNR гораздо лучше, чем оценка SNR), то чрезмерные ресурсы системы тратятся на передачу пакета данных, и пропускная способность канала недоиспользуется. Наоборот, если выбранная скорость для пакета данных слишком интенсивна, то пакет может декодироваться приемником с ошибкой, и ресурсы системы могут затрачиваться на повторную передачу пакета данных. Выбор скорости для системы MIMO является многообещающим вследствие (1) большей сложности в оценке канала для канала MIMO и (2) зависящей от времени и независимой особенности множественных пространственных каналов канала MIMO.
Следовательно, существует потребность в данной области техники в методиках для эффективной передачи данных в системе MIMO, и которые не требуют точного выбора скорости для достижения хорошей производительности.
Сущность изобретения
В данном документе предоставляются методики для выполнения передачи с инкрементной избыточностью (IR) в системе MIMO. Изначально приемник или передатчик в системе MIMO оценивает канал MIMO и выбирает подходящую скорость для передачи данных по каналу MIMO. Передатчик обеспечивается выбранной скоростью, если приемник выполняет выбор скорости.
Передатчик обрабатывает (например, кодирует, разделяет, перемежает и модулирует) пакет данных на основе выбранной скорости и получает многочисленные (NB) блоки символов данных для пакета данных. Первый блок символов данных обычно содержит достаточную информацию для предоставления приемнику возможности восстанавливать пакет данных при благоприятных условиях канала. Каждый из остающихся блоков символов данных содержит дополнительную избыточность для предоставления возможности приемнику восстанавливать пакет данных при менее благоприятных условиях канала. Передатчик передает первый блок символов данных от NT передающих антенн к NR приемным антеннам в приемнике. После этого передатчик передает оставшиеся блоки из NB блоков символов данных, один блок за раз, пока пакет данных не восстановится приемником правильно, либо все из NB блоков не будут переданы.
Если многочисленные (NP) блоки символов данных для NP пакетов данных нужно передать одновременно от NT передающих антенн, то передатчик дополнительно обрабатывает эти NP блоков символов данных, так что NP пакетов данных испытывают сходные условия канала. Это позволяет использовать единую скорость для всех пакетов данных, переданных одновременно по каналу MIMO.
Приемник получает принятый блок символов для каждого блока символов данных, переданного передатчиком. Приемник «обнаруживает» каждый принятый блок символов для получения обнаруженного блока символов, который является оценкой соответствующего блока символов данных. Затем приемник обрабатывает (например, демодулирует, обратно перемежает, перебирает и декодирует) все обнаруженные блоки символов, полученные для пакета данных, и предоставляет декодированный пакет. Приемник может отправить назад ACK, если декодированный пакет является безошибочно декодированным, и NAK, если декодированный пакет с ошибкой. Если декодированный пакет с ошибкой, то приемник повторяет обработку, когда получают другой принятый блок символов для другого блока символов данных, переданного передатчиком.
Приемник может также восстановить пакет данных, используя схему итеративного обнаружения и декодирования (IDD). Для схемы IDD, когда бы ни получался новый принятый блок символов для пакета данных, обнаружение и декодирование выполняют итеративно множество (Ndd) раз на всех принятых блоках символов для получения декодированного пакета. Детектор выполняет обнаружение всех принятых блоков символов и предоставляет обнаруженные блоки символов. Декодер выполняет декодирование всех обнаруженных блоков символов и предоставляет априорную информацию декодера, которая используется детектором в последующей итерации. Декодированный пакет формируют на основе выходной информации декодера для последней итерации.
Далее подробно описаны различные аспекты и варианты осуществления изобретения.
Краткое описание чертежей
Признаки и особенность настоящего изобретения станут более очевидными из изложенного ниже подробного описания, рассматриваемого вместе с чертежами, на которых одинаковые символы ссылок определяют соответственно по всему документу и где:
Фиг.1 показывает блок-схему передатчика и приемника в системе MIMO, которая реализует передачу IR;
Фиг.2 показывает процесс для отправки и приема передачи IR в системе MIMO;
Фиг.3 показывает временную диаграмму, которая иллюстрирует передачу IR;
Фиг.4А показывает процессор передаваемых (TX) данных в передатчике;
Фиг.4В показывает турбокодер внутри процессора передаваемых данных;
Фиг.5 иллюстрирует обработку одного пакета данных процессором передаваемых данных;
Фиг. с 6А по 6D показывают четыре варианта осуществления пространственного процессора передачи в передатчике;
Фиг. 7A и 7B показывают демультиплексирование одного блока символов данных и двух блоков символов данных соответственно, для примерной системы MIMO-OFDM (мультиплексирование с ортогональным частотным разделением каналов);
Фиг.8А показывает один из вариантов осуществления приемника;
Фиг.8В показывает процессор принимаемых (RX) данных в приемнике на фиг. 8А;
Фиг.9А показывает приемник, который реализует итеративное обнаружение и декодирование; и
Фиг.9В показывает турбодекодер.
Подробное описание
Слово «примерный» используется в данном документе для обозначения «служащий в качестве примера, отдельного случая или иллюстрации». Любой вариант осуществления или проект, описанный в данном документе как «примерный», не обязательно должен быть истолкован как предпочтительный или выгодный по сравнению с другими вариантами осуществления или проектами.
Для системы MIMO с NS пространственными каналами NP пакетов данных могут быть переданы одновременно от NT передающих антенн, где 1≤NP≤NS. Единая скорость может использоваться для всех пакетов данных, переданных одновременно, независимо от величины NP. Использование единой скорости может упростить обработку как в передатчике, так и в приемнике в системе MIMO.
Фиг.1 показывает блок-схему передатчика 110 и приемника 150 в системе 100 MIMO, которая реализует передачу IR. На передатчике 110 процессор 120 передаваемых данных принимает пакеты данных от источника 112 данных. Процессор 120 передаваемых данных обрабатывает (например, форматирует, кодирует, разделяет, перемежает и модулирует) каждый пакет данных в соответствии со скоростью, выбранной для этого пакета, чтобы получить NB блоков символов данных для пакета, где NB > 1 и может зависеть от выбранной скорости. Выбранная скорость для каждого пакета данных может указывать скорость передачи данных, схему кодирования или скорость кода, схему модуляции, размер пакета, количество блоков символов данных и так далее для того пакета, который указан различными средствами управления, предоставляемыми контроллером 140. Для передачи IR NB блоков символов данных для каждого пакета данных передают один блок за раз, пока пакет не декодирован правильно приемником 150, либо все NB блоков символов данных переданы.
Пространственный процессор 130 передачи принимает блоки символов данных и выполняет необходимую обработку, чтобы передать каждый блок символов данных от всех NT передающих антенн в одном временном интервале (или просто «интервале»). Интервал является заданным периодом времени для системы 100 MIMO. Пространственный процессор 130 передачи может выполнять демультиплексирование, пространственную обработку и так далее, как описано ниже. Для каждого интервала пространственный процессор 130 передачи обрабатывает один блок символов данных, мультиплексирует в контрольные символы (символы пилот-сигнала), как требуется, и предоставляет NT передаваемых последовательностей символов модулю 132 передатчика (TMTR). Каждый передаваемый символ может быть предназначенным для символа данных или контрольного символа.
Модуль 132 передатчика принимает и приводит в нужное состояние (например, преобразует в аналоговый, преобразует с повышением частоты, фильтрует и усиливает) NT передаваемых последовательностей символов, чтобы получить NT модулированных сигналов. Каждый модулированный сигнал затем передается от соответствующей передающей антенны (не показана на фиг.1) и через канал MIMO к приемнику 150. Канал MIMO искажает NT передаваемых сигналов с характеристикой канала
Figure 00000001
и дополнительно ухудшает передаваемые сигналы с помощью аддитивного белого гауссовского шума и возможного взаимного влияния от других передатчиков.
В приемнике 150 NT передаваемых сигналов принимаются каждой из NR приемных антенн (не показаны на фиг.1) и NR принятых сигналов от NR приемных антенн предоставляются модулю 154 приемника (RCVR). Модуль 154 приемника приводит в нужное состояние, оцифровывает и предварительно обрабатывает каждый принятый сигнал, чтобы получить последовательность принятых символов для каждого интервала. Модуль 154 приемника предоставляет NR принятых последовательностей символов (для данных) пространственному процессору 160 приема и принятые контрольные символы (для контроля) блоку 172 оценки канала. Пространственный процессор 160 приема обрабатывает (например, обнаруживает и мультиплексирует) NR принятых последовательностей символов для каждого интервала, чтобы получить обнаруженный блок символов, который является оценкой блока символов данных, отправленного передатчиком 110 для того интервала.
Процессор 170 принимаемых данных принимает все обнаруженные блоки символов, которые были приняты для восстанавливаемого пакета данных (то есть, «текущего» пакета), обрабатывает (например, демодулирует, обратно перемежает, перебирает и декодирует) эти обнаруженные блоки символов в соответствии с выбранной скоростью и предоставляет декодированный пакет, который является оценкой пакета данных, отправленного передатчиком 110. Процессор 170 принимаемых данных также предоставляет состояние декодированного пакета, которое указывает, безошибочно ли декодирован пакет или с ошибкой.
Блок 172 оценки канала обрабатывает принятые контрольные символы и/или принятые символы данных, чтобы получить оценки канала (например, оценки коэффициента усиления канала и оценки SNR) для канала MIMO. Селектор 174 скорости принимает оценки канала и выбирает скорость для следующего пакета данных, который необходимо передать приемнику 150. Контроллер 180 принимает выбранную скорость от селектора 174 скорости и состояние пакета от процессора 170 передаваемых данных и собирает информацию обратной связи для передатчика 110. Информация обратной связи может включать в себя выбранную скорость для следующего пакета, ACK или NAK для текущего пакета и так далее. Информация обратной связи обрабатывается пространственным процессором 190 передачи/процессором 190 передаваемых данных, дополнительно приводятся в нужное состояние модулем 192 передатчика и передаются через канал обратной связи передатчику 110.
В передатчике 110 переданный приемником 150 сигнал(ы) принимаются и приводятся в нужное состояние модулем 146 приемника и дополнительно обрабатываются пространственным процессором 148 приема/процессором 148 принимаемых данных, чтобы восстановить информацию обратной связи, отправленную приемником 150. Контроллер 140 принимает восстановленную информацию обратной связи, использует выбранную скорость для обработки следующего пакета данных, который необходимо отправить приемнику 150, и использует ACK/NAK для управления передачей IR текущего пакета.
Контроллеры 140 и 180 управляют функционированием в передатчике 110 и приемнике 150 соответственно. Модули 142 и 182 памяти предоставляют хранилище для программных кодов и данных, используемых контроллерами 140 и 180 соответственно. Модули 142 и 182 памяти могут быть внутренними по отношению к контроллерам 140 и 180, как показано на фиг.1, либо внешними по отношению к этим контроллерам. Блоки обработки, показанные на фиг.1, описываются подробно ниже.
Фиг.2 показывает блок-схему алгоритма процесса 200 для отправки и приема передачи IR в системе MIMO. В начале приемник оценивает канал MIMO на основе контрольных символов и/или символов данных, принятых от передатчика (этап 210). Приемник выбирает единую скорость для передачи данных по каналу MIMO на основе оценок канала и отправляет выбранную скорость передатчику (этап 212). Передатчик принимает выбранную скорость и кодирует пакет данных в соответствии с выбранной скоростью, чтобы получить кодированный пакет (этап 220). Затем передатчик разделяет кодированный пакет на NB подпакетов, где NB также может определяться выбранной скоростью, и затем обрабатывает каждый подпакет, чтобы получить соответствующий блок символов данных (также на этапе 220). Передатчик передает один блок символов данных за раз от NT передающих антенн, пока все NB блоков символов данных не передадутся, либо примется ACK от приемника для пакета данных (этап 222).
Приемник принимает каждый переданный блок символов данных через NR приемных антенн (этап 230). Всякий раз, когда принимается новый блок символов данных, приемник обнаруживает и декодирует все блоки символов данных, которые были приняты для пакета данных (этап 232). Приемник также проверяет декодированный пакет, чтобы определить, безошибочно ли декодирован пакет (хороший), или с ошибкой (удален) (также этап 232). Если декодированный пакет удаляется, то приемник может отправить NAK обратно передатчику, который использует эту обратную связь, чтобы начать передачу следующего блока символов данных для пакета данных. В качестве альтернативы передатчик может отправить один блок символов данных за раз, пока не примется ACK от приемника, который может или может не отправить обратно NAK. Приемник прерывает обработку для пакета данных, если пакет декодирован безошибочно, либо если все NB блоков символов данных приняты для пакета (этап 234).
Фиг.2 показывает определенный вариант осуществления для передачи IR в системе MIMO. Передача IR также может реализовываться другими методами, и это находится в пределах объема изобретения. Передача IR может реализовываться как в системах дуплекса с частотным разделением каналов (FDD), так и дуплекса с временным разделением каналов (TDD). Для системы FDD прямой канал MIMO и канал обратной связи используют разные полосы частот и вероятно соблюдают разные условия каналов. В этом случае приемник может оценить прямой канал MIMO и отправить обратно выбранную скорость, как показано на фиг.2. Для системы TDD прямой канал MIMO и канал обратной связи совместно используют одинаковую полосу частот, и вероятно соблюдают похожие условия каналов. В этом случае передатчик может оценить канал MIMO на основе контрольного сигнала, отправленного приемником, и использовать эту оценку канала для выбора скорости для передачи данных приемнику. Оценка канала и выбор скорости могут выполняться приемником, передатчиком либо обоими.
Фиг.3 иллюстрирует передачу IR в системе MIMO. Приемник оценивает канал MIMO, выбирает скорость r1 и отправляет выбранную скорость передатчику в интервале 0. Передатчик принимает выбранную скорость от приемника, обрабатывает пакет данных (Пакет 1) в соответствии с выбранной скоростью и передает первый блок символов данных (Блок 1) для пакета данных в интервале 1. Приемник принимает, обнаруживает и декодирует первый блок символов данных, определяет, что Пакет 1 декодирован с ошибкой, и отправляет обратно NAK в интервале 2. Передатчик принимает NAK и передает второй блок символов данных (Блок 2) для Пакета 1 в интервале 3. Приемник принимает Блок 2, обнаруживает и декодирует первые два блока символов данных, определяет, что Пакет 1 все еще декодирован с ошибкой, и отправляет обратно NAK в интервале 4. Передача блока и ответ NAK могут повторяться любое количество раз. В примере, показанном на фиг.3, передатчик принимает NAK для блока Nx-1 символов данных и передает блок Nx символов данных для Пакета 1 в интервале m, где Nx меньше либо равно общему количеству блоков для Пакета 1. Приемник принимает, обнаруживает и декодирует все Nx блоков символов данных, принятых для Пакета 1, определяет, что пакет декодирован безошибочно и отправляет обратно ACK в интервале m+1. Приемник также оценивает канал MIMO, выбирает скорость r2 для следующего пакета данных и отправляет выбранную скорость передатчику в интервал m+1. Передатчик принимает ACK для блока Nx символов данных и прерывает передачу Пакета 1. Передатчик также обрабатывает следующий пакет данных (Пакет 2) в соответствии с выбранной скоростью и передает первый блок символов данных (Блок 1) для Пакета 2 в интервале m+2. Обработка в передатчике и приемнике продолжается тем же образом для каждого пакета данных, переданного через канал MIMO.
Для варианта осуществления, показанного на фиг.3, существует задержка в один интервал для ответа ACK/NAK от приемника для каждого блока передачи. Для улучшения использования канала многочисленные пакеты данных могут передаваться чересстрочным методом. Например, пакеты данных для одного информационного канала могут передаваться в нечетных интервалах, и пакеты данных для другого информационного канала могут передаваться в четных интервалах. Более чем два информационных канала также могут чередоваться, если задержка ACK/NAK длиннее, чем один интервал.
1. Передатчик
Фиг. 4А показывает блок-схему варианта осуществления процессора 120 передаваемых данных в передатчике 110. Процессор 120 передаваемых данных принимает пакеты данных, обрабатывает каждый пакет на основе его выбранной скорости и предоставляет NB блоков символов данных для пакета. Фиг.5 иллюстрирует обработку одного пакета данных процессором 120 передаваемых данных.
В процессоре 120 передаваемых данных генератор 412 контроля циклическим избыточным кодом (CRC) принимает пакет данных, формирует значение CRC для пакета данных и прикрепляет значение CRC к концу пакета данных, чтобы образовать форматированный пакет. Значение CRC применяется приемником для проверки, декодирован ли пакет безошибочно или с ошибками. Другие коды обнаружения ошибок также могут использоваться вместо CRC. Кодер 414 прямого исправления ошибок (FEC) затем кодирует форматированный пакет в соответствии со схемой кодирования или скоростью кода, указанных выбранной скоростью, и предоставляет кодированный пакет или «кодовое слово». Кодирование увеличивает надежность передачи данных. Кодер 414 FEC может обеспечивать выполнение блочного кода, сверточного кода, турбокода, какого-либо иного кода или их сочетаний.
Фиг.4В показывает блок-схему параллельно связанного сверточного кодера 414а (или турбокодера), который может использоваться для кодера 414 FEC на фиг.4А. Турбокодер 414а включает в себя два составляющих сверточных кодера 452a и 452b, перемежитель 454 кода и мультиплексор 456 (MUX). Перемежитель 454 кода перемежает информационные биты в форматированном пакете (обозначенные как {d}) в соответствии со схемой кодового перемежения. Составляющий кодер 452а принимает и кодирует информационные биты с первым составляющим кодом и предоставляет первые биты контроля четности (обозначаемые как {cp1}). Подобным образом составляющий кодер 452b принимает и кодирует перемеженные информационные биты от перемежителя 454 кода со вторым составляющим кодом и предоставляет вторые биты контроля четности (обозначаемые как {cp2}). Составляющие кодеры 452a и 452b могут обеспечивать выполнение двух рекурсивных систематических составляющих кодов со скоростями R1 и R2 кода соответственно, где R1 может или может не быть равен R2. Мультиплексор 456 принимает и мультиплексирует информационные биты и биты контроля четности от составляющих кодеров 452a и 452b и предоставляет кодированный пакет из битов кода (обозначаемых как {c}). Кодированный пакет включает в себя информационные биты {d}, которые также называются систематическими битами и обозначаются как {cdata}, сопровождаемые первыми битами {cp1} контроля четности, и затем сопровождаемые вторыми {cp2} битами контроля четности.
Возвращаясь к фиг.4А, модуль 416 разделения принимает и разделяет кодированный пакет на NB кодированных подпакетов, где NB может зависеть от выбранной скорости и указываться регулировкой разделения от контроллера 140. Первый кодированный подпакет обычно содержит все систематические биты и ноль или больше битов контроля четности. Это дает возможность приемнику восстанавливать пакет данных с помощью только первого кодированного подпакета при благоприятных условиях канала. Остальные NB-1 кодированных подпакетов содержат оставшиеся первый и второй биты контроля четности. Каждый из этих NB-1 кодированных подпакетов обычно содержит несколько первых битов контроля четности и несколько вторых битов контроля четности, с битами контроля четности, пересекающими весь пакет данных. Например, если NB=8 и оставшиеся первый и второй биты контроля четности являются данными индексами, начинающимися с 0, то второй кодированный подпакет может содержать биты 0, 7, 14, … из оставшихся первого и второго битов контроля четности, третий кодированный подпакет может содержать биты 1, 8, 15, … из оставшихся первого и второго битов контроля четности, и так далее, и восьмой и последний кодированный подпакет может содержать биты 6, 13, 20, … из оставшихся первого и второго битов контроля четности. Улучшенная производительность декодирования может достигаться посредством кодирования с расширением спектра битов контроля четности параллельно остальным NB-1 кодированным подпакетам.
Перемежитель 420 канала включает в себя NB перемежителей 422а по 422nb блоков, который принимает NB кодированных подпакетов от модуля 416 разделения. Каждый перемежитель 422 блоков перемежает (то есть, переупорядочивает) биты кода для их подпакета в соответствии со схемой перемежения и предоставляет перемеженный подпакет. Перемежение обеспечивает время, частоту и/или пространственное разнесение для битов кода. Мультиплексор 424 соединяется со всеми NB перемежителями 422а по 422b блоков и предоставляет NB перемеженных подпакетов, один подпакет за раз и если направлен регулировкой передачи IR от контроллера 140. В частности, мультиплексор 424 предоставляет перемеженный подпакет от перемежителя 422а блоков первым, затем перемеженный подпакет от перемежителя 422b блоков следующим, и так далее, и перемеженный подпакет от перемежителя 422nb блоков последним. Мультиплексор 424 предоставляет следующий перемеженный подпакет, если NAK принимается для пакета данных. Все NB перемежителей 422а по 422b блоков могут быть очищены всякий раз, когда принимается ACK.
Модуль 426 преобразования символов принимает перемеженные подпакеты от перемежителя 420 канала и преобразует перемеженные данные в каждом подпакете в символы модуляции. Преобразование символов выполняется в соответствии со схемой модуляции указанной выбранной скоростью. Преобразование символов может достигаться посредством (1) группирования множеств из B битов для образования В-разрядных двоичных значений, где B≥1, и (2) преобразования каждого В-разрядного двоичного значения в точку на сигнальном созвездии, имеющем 2B точек. Это сигнальное созвездие соответствует выбранной схеме модуляции, которая может быть BPSK (двухпозиционная фазовая манипуляция), QPSK (квадратурная фазовая манипуляция), 2B-PSK (фазовая манипуляция), 2B-QAM (квадратурная амплитудная модуляция) и так далее. Как использовано в данном документе, «символ данных» является символом модуляции для данных, и «контрольный символ» является символом модуляции для контроля. Модуль 426 преобразования символов предоставляет блок символов данных для каждого кодированного подпакета, как показано на фиг.5.
Для каждого пакета данных процессор 120 передаваемых данных предоставляет NB блоков символов данных, которые вместе включают в себя NSYM символов данных и могут обозначаться как {s}=[s1 s2
Figure 00000002
]. Каждый символ si данных, где i=1 … NSYM, получается посредством преобразования B битов кода следующим образом: si=map (b i), где b i=[bi,1 bi,2 … bi,B].
Методики передачи IR, описанные в этом документе, могут реализовываться в системе MIMO с единственной несущей, которая использует одну несущую для передачи данных, и в мультинесущей системе MIMO, которая использует множественные несущие для передачи данных. Множественные несущие могут обеспечиваться мультиплексированием с ортогональным частотным разделением каналов (OFDM), другими мультинесущими методиками модуляции или какими-нибудь другими конструкциями. OFDM эффективно разделяет общую полосу пропускания системы на множество (NF) ортогональных поддиапазонов, которые также обычно называются тонами, элементами разрешения или частотными каналами. С OFDM каждый поддиапазон ассоциативно связывается с соответствующей несущей, которая может модулироваться с данными.
Обработка, выполняемая пространственным процессором 130 передачи и модулем 132 передатчика в передатчике 110, зависит от того, передаются ли один или множество пакетов данных одновременно и используются ли одна или множество несущих для передачи данных. Некоторые примерные образцы для этих двух модулей описываются ниже. Для простоты последующее описание предполагает полноранговый канал MIMO с Ns=NT≤NR. В этом случае один символ модуляции может передаваться от каждой из NT передающих антенн для каждого поддиапазона в каждом периоде символа.
Фиг.6А показывает блок-схему пространственного процессора 130а передачи и модуля 132а передатчика, которые могут использоваться для передачи IR одного пакета за раз в системе MIMO с единственной несущей. Пространственный процессор 130а передачи включает в себя мультиплексор/демультиплексор 610 (MUX/DEMUX), который принимает блок символов данных и демультиплексирует символы данных в блоке на NT подблоков для NT передающих антенн. Мультиплексор/демультиплексор 610 также мультиплексирует контрольные символы (например, методом мультиплексирования с временным разделением (TDM)) и предоставляет NT передаваемых последовательностей символов для NT передающих антенн. Каждая передаваемая последовательность символов предназначена для передачи от одной передающей антенны в одном интервале. Каждый передаваемый символ может быть предназначенным для символа данных или контрольного символа.
Модуль 132а передатчика включает в себя NT передающих радиочастотных модулей 652а по 652t для NT передающих антенн. Каждый передающий радиочастотный модуль 652 принимает и приводит в нужное состояние соответствующую передаваемую последовательность символов от пространственного процессора 130а передачи, чтобы сформировать модулированный сигнал. NT модулированных сигналов от передающих радиочастотных модулей 652а по 652t передаются от NT передающих антенн 672a по 672t соответственно.
Фиг.6В показывает блок-схему пространственного процессора 130b передачи и модуля 132а передатчика, которые могут использоваться для передачи IR множественных пакетов одновременно в системе MIMO с единственной несущей. Пространственный процессор 130b включает в себя модуль 620 матричного умножения, который принимает NP блоков символов данных для передачи в одном интервале, где 1≤NP≤NS. Модуль 620 выполняет перемножение матриц символов данных в NP блоках с матрицей базиса передачи и диагональной матрицей следующим образом:
Figure 00000003
(1)
где
Figure 00000004
есть вектор {NT×1} данных;
Figure 00000005
есть заранее оговоренный вектор {NT×1} данных;
Figure 00000006
есть матрица {NT×NT} базиса передачи, которая является унитарной матрицей; и
Figure 00000007
есть диагональная матрица {NT×NT}.
Вектор
Figure 00000004
включает в себя NT элементов для NT передающих антенн с NP элементами, устанавливаемыми в NP символов данных из NP блоков, и остающиеся NT-NP элементы, устанавливаемые в ноль. Вектор
Figure 00000005
включает в себя NT элементов для NT заранее оговоренных символов, которые необходимо отправить от NT передающих антенн в одном периоде символов. Матрица
Figure 00000006
базиса передачи позволяет отправить каждый блок символов данных от всех NT передающих антенн. Это дает возможность всем NP блокам символов данных испытывать схожие условия канала и дополнительно позволяет использоваться единой скорости для всех NP пакетов данных. Матрица
Figure 00000006
также позволяет полной мощности Pant каждой передающей антенны быть использованной для передачи данных. Матрица
Figure 00000006
может быть определена как
Figure 00000008
, где
Figure 00000009
есть матрица Адамара - Уолша (Walsh-Hadamard). Матрица
Figure 00000006
также может быть определена как
Figure 00000010
, где
Figure 00000011
есть матрица дискретного преобразования Фурье (DFT) с (k,i)-ым элементом, определенным как
Figure 00000012
, где m есть индекс ряда и n есть индекс столбца для матрицы
Figure 00000011
, с m=1 … NT и n=1 … NT. Диагональная матрица
Figure 00000007
может использоваться для распределения различных мощностей передачи на NP блоков символов данных, соответствующих общему ограничению Ptot мощности передачи для каждой передающей антенны. «Эффективная» характеристика канала, наблюдаемая приемником, тогда равна
Figure 00000013
. Эта схема передачи описывается более подробно в Патентной заявке США номер 10/367,234, озаглавленной «Rate Adaptive Transmission Scheme for MIMO Systems» (Схема передачи с адаптивной скоростью передачи для систем MIMO), зарегистрированной 14 февраля 2003 г.
Мультиплексор 622 принимает заранее оговоренные символы от модуля 620 матричного умножения, мультиплексирует контрольные символы и предоставляет NT передаваемых последовательностей символов для NT передающих антенн. Модуль 132а передатчика принимает и приводит в нужное состояние NT передаваемых последовательностей символов и формирует NT модулированных сигналов.
Фиг.6С показывает блок-схему пространственного процессора 130а передачи и модуля 132b передатчика, которые могут использоваться для передачи IR одного пакета за раз в системе MIMO-OFDM. В пространственном процессоре 130а передачи мультиплексор/демультиплексор 610 принимает и демультиплексирует символы данных, мультиплексирует контрольные символы и предоставляет NT передаваемых последовательностей символов для NT передающих антенн.
Модуль 132b передатчика включает в себя NT модуляторов 660а по 660t OFDM и NT передающих радиочастотных модулей 666а по 666t для NT передающих антенн. Каждый модулятор 660 OFDM включает в себя модуль 662 обратного быстрого преобразования Фурье (IFFT) и генератор 664 цикличных префиксов. Каждый модулятор 660 OFDM принимает соответствующую передаваемую последовательность символов от пространственного процессора 130а передачи и группирует каждое множество из NF передаваемых символов и значения сигнала нуля для NF поддиапазонов. (Поддиапазоны, не использованные для передачи данных, заполняются нулями). Модуль 662 IFFT преобразует каждое множество NF передаваемых символов и нулей во временную область, используя NF-точечное обратное быстрое преобразование Фурье, и предоставляет соответствующий преобразованный символ, который содержит NF символов шумоподобной последовательности. Генератор 664 цикличных префиксов повторяет часть каждого преобразованного символа, чтобы получить соответствующий символ OFDM, который содержит NF+Ncp символов шумоподобной последовательности. Повторенная часть называется цикличным префиксом, и Ncp указывает количество повторяемых символов шумоподобной последовательности. Циклический префикс гарантирует, что символ OFDM сохраняет свои ортогональные свойства при наличии многолучевого разброса задержек, вызванного избирательным затуханием частоты (то есть, частотной характеристикой, которая неравномерна). Генератор 664 цикличных префиксов предоставляет последовательность символов OFDM для последовательности передаваемых символов, которая дополнительно приведена в нужное состояние посредством ассоциативно связанного передающего радиочастотного модуля 666, чтобы сформировать модулированный сигнал.
Фиг.7А показывает демультиплексирование блока символов данных для примерной системы MIMO-OFDM с четырьмя передающими антеннами (NT=4) и 16 поддиапазонами (NF=16). Блок символов данных может обозначаться как {s}=[s1 s2 … sN]. Для варианта осуществления, показанного на фиг. 7А, демультиплексирование выполняется так, что первые четыре символа s1 по s4 данных в блоке отправляются в поддиапазоне 1 передающих антенн с 1 по 4 соответственно, следующие четыре символа s5 по s8 данных отправляются в поддиапазоне 2 передающих антенн с 1 по 4 соответственно, и так далее.
Фиг.6D показывает блок-схему пространственного процессора 130c передачи и модуля 132b передатчика, которые могут использоваться для передачи IR множественных пакетов одновременно в системе MIMO-OFDM. В пространственном процессоре 130с передачи мультиплексор/демультиплексор 630 принимает NP блоков символов данных, где 1≤NP≤NS, и предоставляет символы данных в каждом блоке различным поддиапазонам и различным передающим антеннам, как проиллюстрировано ниже. Мультиплексор/демультиплексор 630 также мультиплексирует контрольные символы и предоставляет NT передаваемых последовательностей символов для NT передающих антенн.
Фиг.7B показывает вариант осуществления демультиплексирования/демультиплексирования двух блоков символов данных (Np=2) для примерной системы MIMO-OFDM с четырьмя передающими антеннами (NT=4) и 16 поддиапазонами (NF=16). Для первого блока символов данных первые четыре символа s1,1, s1,2, s1,3 и s1,4 данных передаются по 1, 2, 3 и 4 поддиапазонам, соответственно, передающих антенн 1, 2, 3 и 4, соответственно. Следующие четыре символа s1,5, s1,6, s1,7 и s1,8 данных оборачиваются и передаются по 5, 6, 7 и 8 поддиапазонам, соответственно, передающих антенн 1, 2, 3 и 4, соответственно. Для второго блока символов данных первые четыре символа s2,1, s2,2, s2,3 и s2,4 данных передаются по 1, 2, 3 и 4 поддиапазонам, соответственно, передающих антенн 3, 4, 1 и 2, соответственно. Следующие четыре символа s2,5, s2,6, s2,7 и s2,8 данных оборачиваются и передаются по 5, 6, 7 и 8 поддиапазонам, соответственно, передающих антенн 3, 4, 1 и 2, соответственно. Для варианта осуществления, показанного на фиг.7В, множество NF значений частотной области для каждой передающей антенны для каждого периода символов включает в себя символы передачи для некоторых поддиапазонов и нули для других поддиапазонов.
Фиг.7В показывает передачу двух блоков символов данных одновременно через NF поддиапазонов и NT передающих антенн. Вообще, любое количество блоков символов данных может передаваться одновременно через поддиапазоны и передающие антенны. Например, один, два, три или четыре блока символов данных могут передаваться одновременно на фиг.7В. Однако количество блоков символов данных, которое может надежно предаться одновременно, зависит от ранга канала MIMO, так что NP следует быть меньше либо равным NS. Схема передачи, показанная на фиг.7В, предусматривает простую адаптацию передачи различного количества блоков символов данных одновременно, на основе ранга канала MIMO.
Для варианта осуществления, показанного на фиг.7В, каждый блок символов данных передается диагонально через NF поддиапазонов и от всех NT передающих антенн. Это обеспечивает как частотное, так и пространственное разнесение для всех NP блоков символов данных, передаваемых одновременно, которые позволяют использовать единую скорость для всех пакетов данных. Однако различные скорости также могут использоваться для различных пакетов данных, передаваемых одновременно. Использование различных скоростей может обеспечивать лучшую характеристику для некоторых приемников, таких как, например, линейный приемник, который не обеспечивает выполнение схемы IDD. Передача IR многочисленных пакетов данных с различными скоростями одновременно описывается в Патентной заявке США номер 10/785,292, озаглавленной «Incremental Redundancy Transmission for Multiple Parallel Channels in a MIMO Communication System» (Передача с инкрементальной избыточностью для множественных параллельных каналов в системе связи MIMO), зарегистрированной 23 февраля 2004 г.
Мультиплексирование/демультиплексирование также может выполняться другими методами при достижении как частотного, так и пространственного разнесения. Например, мультиплексирование/демультиплексирование может быть таким, что все NF поддиапазонов каждой передающей антенны используются для перенесения передаваемых символов. Поскольку полная мощность каждой передающей антенны ограничивается Pant, количество мощности передачи, доступное для каждого символа передачи, зависит от количества поддиапазонов, переносящих символы передачи.
Возвращаясь обратно к фиг.6D, модуль 132b передатчика принимает и приводит в нужное состояние NT передаваемых последовательностей символов от пространственного процессора 130с передачи и формирует NT модулированных сигналов.
2. Приемник
Фиг.8А показывает блок-схему приемника 150а, которая является одним из вариантов осуществления приемника 150 на фиг. 1. В приемнике 150а NR приемных антенн 810а по 810r принимают NT модулированных сигналов, переданных передатчиком 110, и предоставляют NR принятых сигналов NR принимающим радиочастотным модулям 812а по 812r соответственно, в модуле 154 приемника. Каждый принимающий радиочастотный модуль 812 приводит в нужное состояние и оцифровывает свой принятый сигнал и предоставляет поток символов/символов шумоподобной последовательности. Для системы MIMO с единственной несущей демодуляторы 814а по 814r OFDM не нужны, и каждый принимающий радиочастотный модуль 812 предоставляет поток символов соответствующему демультиплексору 816 непосредственно. Для системы MIMO-OFDM каждый принимающий радиочастотный модуль 812 предоставляет поток символов шумоподобной последовательности соответствующему демодулятору 814 OFDM. Каждый демодулятор 814 OFDM выполняет демодуляцию OFDM на его потоке символов шумоподобной последовательности посредством (1) удаления цикличного префикса в каждом принятом символе OFDM, чтобы получить принятый преобразованный символ, и (2) преобразования каждого принятого преобразованного символа к частотной области с помощью быстрого преобразования Фурье (FFT), чтобы получить NF принятых символов для NF поддиапазонов. Для обеих систем демультиплексоры 816а по 816r принимают NR потоков символов от принимающих радиочастотных модулей 812 или демодуляторов 814 OFDM, предоставляют NR принятых последовательностей символов (для данных) для каждого интервала пространственному процессору 160а приема, и предоставляют принятые контрольные символы блоку 172 оценки канала.
Пространственный процессор 160а приема включает в себя детектор 820 и мультиплексор 822. Детектор 820 выполняет пространственную либо пространственно-временную обработку (или «обнаружение») на NR принятых последовательностях символов, чтобы получить NT обнаруженных последовательностей символов. Каждый обнаруженный символ является оценкой символа данных, переданного передатчиком. Детектор 820 может реализовать детектор объединения с максимальным отношением (MRC), линейный детектор обращения в нуль (ZF) незначащих коэффициентов (который также называет детектором обращения матрицы корреляции канала (CCMI)), детектор минимальной среднеквадратической ошибки (MMSE), линейный корректор MMSE (MMSE-LE), корректор с решающей обратной связью (DFE) или какой-либо другой детектор/корректор. Обнаружение может выполняться на основе оценки матрицы
Figure 00000001
характеристик канала, если пространственная обработка не выполняется на передатчике. В альтернативном варианте осуществления обнаружение может выполняться на основе эффективной матрицы
Figure 00000014
оценки канала, если символы данных заранее перемножаются с матрицей
Figure 00000006
базиса передачи на передатчике для системы MIMO с единственной несущей. Для простоты последующее описание предполагает, что матрица
Figure 00000006
базиса передачи не использовалась. Модель для системы MIMO-OFDM может выражаться как:
Figure 00000015
, для k=1 … NF
(2)
где
Figure 00000016
есть вектор {NT×1} данных с NT элементами для NT символов данных, переданных от NT передающих антенн по поддиапазону k;
Figure 00000017
есть вектор {NR×1} приема с NR элементами для NR принятых символов, полученных через NR приемных антенн по поддиапазону k;
Figure 00000018
есть матрица {NR×NT} характеристик канала для поддиапазона k; и
Figure 00000019
есть вектор аддитивного белого гауссовского шума (AWGN).
Вектор
Figure 00000020
предполагается имеющем нулевое значение, и ковариационная матрица
Figure 00000021
, где
Figure 00000022
есть дисперсия шума, и I есть единичная матрица с единичками по диагонали и нулями где-либо еще.
Для системы MIMO-OFDM приемник выполняет обнаружение раздельно для каждого из поддиапазонов, используемых для передачи данных. Следующее описание предназначено для одного поддиапазона, и для простоты индекс k диапазона опускается в математическом выводе. Следующее описание также применимо для системы MIMO с единственной несущей. Для простоты предполагается, что вектор
Figure 00000004
включает в себя NT символов данных, отправленных от NT передающих антенн.
Пространственная обработка посредством детектора MRC может выражаться как:
Figure 00000023
(3)
где
Figure 00000024
есть характеристика детектора MRC, которая равна
Figure 00000025
;
Figure 00000026
есть вектор {NT×1} обнаруженных символов для детектора MRC; и
H” обозначает сопряженное транспонирование.
Обнаруженный символ для передающей антенны i может выражаться как
Figure 00000027
, где
Figure 00000028
есть i-й столбец
Figure 00000024
, и задается как
Figure 00000029
, где
Figure 00000030
есть вектор характеристики канала между передающей антенной i и NR приемными антеннами.
Пространственная обработка посредством детектора MMSE может выражаться как:
Figure 00000031
(4)
где
Figure 00000032
для детектора MMSE. Характеристика детектора MMSE для передающей антенны i может выражаться как
Figure 00000033
.
Пространственная обработка посредством детектора обращения в нуль незначащих коэффициентов может выражаться как:
Figure 00000034
(5)
где
Figure 00000035
для детектора обращения в нуль незначащих коэффициентов. Характеристика детектора обращения в нуль незначащих коэффициентов для передающей антенны i может выражаться как
Figure 00000036
.
Для каждого интервала детектор 820 предоставляет NT обнаруженных последовательностей символов, которые соответствуют NT элементам
Figure 00000037
. Мультиплексор 822 принимает NT обнаруженных последовательностей символов от детектора 820 и выполняет обработку дополнительно к выполненной пространственным процессором 130 передаче на передатчике. Если только один блок символов данных передается в каждом интервале, как для пространственного процессора 130а передачи на фиг. 6А и 6С, то мультиплексор 822 мультиплексирует обнаруженные символы в NT последовательностях в один обнаруженный блок символов. Если многочисленные блоки символов данных передаются в каждом интервале, как для пространственных процессоров 130а и 130с передачи на фиг. 6В и 6D соответственно, то мультиплексор 822 мультиплексирует и демультиплексирует обнаруженные символы в NT последовательностях в NP обнаруженных блоках символов (не показаны на фиг.8А). В любом случае, каждый обнаруженный блок символов является оценкой блока символов данных, переданного передатчиком.
Блок 172 оценки канала оценивает матрицу
Figure 00000001
характеристик канала для канала MIMO и минимальный уровень шума в приемнике (например, на основе принятых контрольных символов) и предоставляет оценки канала контроллеру 180. В контроллере 180 модуль 176 вычисления матриц выводит характеристику
Figure 00000038
детектора (которая может быть
Figure 00000024
,
Figure 00000039
или
Figure 00000040
) на основе оцененной матрицы характеристик канала, как описано выше, и предоставляет характеристику детектора детектору 820. Детектор 820 предварительно перемножает вектор
Figure 00000041
принятых символов с характеристикой
Figure 00000038
детектора, чтобы получить вектор
Figure 00000037
обнаруженных символов. Селектор 174 скорости (который реализуется контроллером 180 для варианта осуществления приемника, показанного на фиг.8А) выполняет выбор скорости на основе оценок канала, как описано ниже. Таблица 184 поиска (LUT) хранит множество скоростей, поддерживаемых системой MIMO, и множество значений параметра, ассоциативно связанных с каждой скоростью (например, скорость передачи данных, размер пакета, схема кодирования или скорость кода, схема модуляции и так далее для каждой скорости). Селектор 174 скорости обращается к LUT 184 за информацией, используемой для выбора скорости.
Фиг.8В показывает блок-схему процессора 170а принимаемых данных, который является одним из вариантов осуществления процессора 170 принимаемых данных на фиг.1 и 8А. В процессоре 170а принимаемых данных модуль 830 восстановления символов принимает обнаруженные блоки символов от пространственного процессора 160а приема, один блок за раз. Для каждого обнаруженного блока символов модуль 830 восстановления символов демодулирует обнаруженные символы в соответствии со схемой модуляции, используемой для того блока (как указано регулировкой демодуляции от контроллера 180), и предоставляет демодулированный блок данных обращенному перемежителю 840 канала. Обращенный перемежитель 840 канала включает в себя демультиплексор 842 и NB обратных перемежителей 844a по 844nb блоков. До приема нового пакета данных обратные перемежители 844а по 844nb блоков инициализируются стираниями. Стиранием является значение, которое заменяет на отсутствующий бит кода (то есть, один еще не принятый) и задающее соответствующий вес в процессе декодирования. Мультиплексор 842 принимает демодулированные блоки данных от модуля 830 восстановления символов и предоставляет каждый демодулированный блок данных надлежащему обращенному перемежителю 844 блоков. Каждый обращенный перемежитель 844 блоков обратно перемежает демодулированные данные в их блоке способом, дополнительным к перемежению, выполняемому на передатчике для того блока. Если перемежение зависит от выбранной скорости, то контроллер 180 предоставляет регулировку обращенного перемежения, чтобы блокировать обращенные перемежители 844, как указывается пунктирной линией.
Когда бы ни принимался новый блок символов данных от передатчика для пакета данных, декодирование выполняется заново на всех блоках, принятых для того пакета. Модуль 848 повторной сборки образует пакет обратно перемеженных данных для последующего декодирования. Обратно перемеженный пакет данных содержит (1) обратно перемеженные блоки данных для всех блоков символов данных, принятых для текущего пакета, и (2) стирания для блоков символов данных, не принятых для текущего пакета. Модуль 848 повторной сборки выполняет повторную сборку методом, дополнительным к разделению, выполненному передатчиком, как указывается регулировкой повторной сборки от контроллера 180.
Декодер 850 исправления расширенного кода ошибки (ЕЕС) декодирует обратно перемеженный пакет данных способом, дополнительным к кодированию FEC (прямое исправление ошибок), выполненному на передатчике, как указывается регулировкой декодирования от контроллера 180. Например, турбодекодер либо декодер Витерби (Viterbi) могут использоваться для декодера 850 FEC, если турбо- или сверточное кодирование соответственно выполняется на передатчике. Декодер 850 FEC предоставляет декодированный пакет для текущего пакета. Проверочное устройство 852 CRC проверяет декодированный пакет, чтобы определить, безошибочно ли декодирован пакет или с ошибкой, и предоставляет состояние декодированного пакета.
Фиг.9А показывает блок-схему приемника 150b, которая является другим вариантом осуществления приемника 150 на фиг.1. Приемник 150b реализует схему итеративного обнаружения и декодирования (IDD). Для простоты, схема IDD описывается ниже для схемы кодирования, показанной на фиг.4В и 5, которая кодирует пакет данных на три части - систематические биты {cdata}, первые биты {cp1} контроля четности и вторые биты {cp2} контроля четности.
Приемник 150b включает в себя детектор 920 и декодер 950 FEC, которые выполняют итеративное обнаружение и декодирование на принятых символах для пакета данных, чтобы получить декодированный пакет. Схема IDD пользуется возможностями по исправлению ошибок кода канала, чтобы обеспечить улучшенную характеристику. Это достигается посредством итеративного прохождения априорной информации между детектором 920 и декодером 950 FEC в течение Ndd итераций, где Ndd>1 как описано ниже. Априорная информация указывает правдоподобие переданных битов.
Приемник 150b включает в себя пространственный процессор 160b приема и процессор 170b принимаемых данных. Внутри пространственного процессора 160b приема буфер 918 принимает и сохраняет NR принятых последовательностей символов, предоставленных модулем 154 приемника для каждого интервала. Когда бы ни принимался новый блок символов данных от передатчика для пакета данных, итеративное обнаружение и декодирование выполняется заново (то есть, с начала) на всех принятых символах для всех блоков, принятых для того пакета. Детектор 920 выполняет пространственную обработку или обнаружение на NR принятых последовательностях символов для каждого принятого блока и предоставляет NT обнаруженных последовательностей символов для этого блока. Детектор 920 может реализовать детектор MRC, детектор обращения в нуль незначащих коэффициентов, детектор MMSE или какой-либо другой детектор/корректор. Для простоты, ниже описывается обнаружение с детектором MMSE.
Для детектора MMSE с итеративным обнаружением и декодированием, обнаруженный символ
Figure 00000042
для передающей антенны i может выражаться:
Figure 00000043
, для i=1 … N,
(6)
где
Figure 00000044
и
Figure 00000045
выводятся на основе критерия MMSE, который может выражаться как:
Figure 00000046
(7)
Решения к оптимизационной задаче, поставленной в равенстве (7), могут выражаться как:
Figure 00000047
, и
(8)
Figure 00000048
(9)
с
Figure 00000049
,
(10)
Figure 00000050
, и
(11)
Figure 00000051
,
(12)
где
Figure 00000052
есть i-й столбец матрицы
Figure 00000001
характеристик канала;
Figure 00000053
равен
Figure 00000001
с установленным в нуль i-м столбцом;
Figure 00000054
есть вектор {(NT-1)×1}, полученный посредством удаления i-ого элемента
Figure 00000004
;
Figure 00000055
есть ожидаемые значения элементов вектора
Figure 00000056
; и
Figure 00000057
есть ковариационная матрица вектора
Figure 00000058
.
Матрица
Figure 00000059
является векторным проигрышем энергии вектора
Figure 00000030
характеристик канала для передающей антенны i.
Матрица
Figure 00000060
является ковариационной матрицей взаимного влияния на передающую антенну i. Вектор
Figure 00000061
является ожидаемым значением взаимного влияния на передающую антенну i.
Равенство (6) может быть упрощено как:
Figure 00000062
для i=1 … NT,
(13)
где
Figure 00000063
и
Figure 00000064
есть выборка гауссова шума с нулевым значением и дисперсией
Figure 00000065
. Выборка гауссова шума
Figure 00000066
предполагает, что взаимное влияние от других передающих антенн является гауссовым после детектора MMSE.
В последующем описании верхний индекс n означает n-ю итерацию обнаружения/декодирования, и нижний индекс m обозначает m-й блок символов данных, принятый для текущего восстанавливаемого пакета. Для первой итерации (то есть, n=1) обнаружение основывается исключительно на принятых символах, поскольку нет априорной информации, доступной от декодера FEC. Отсюда допускаются биты, с равной вероятностью являющиеся '1' либо '0'. В этом случает, равенство (8) уменьшается до линейного детектора MMSE, который может задаваться как
Figure 00000067
. Для каждой последующей итерации (то есть, n>1) априорная информация, предоставляемая декодером FEC, используется детектором. Так как количество итераций увеличивается, взаимное влияние уменьшается, и детектор стремится к детектору MRC, который достигает полного разнесения.
Для каждого блока символов данных, принятых для текущего пакета, детектор 920 на фиг.9А выполняет обнаружение на NR принятых последовательностях символов для того блока, и предоставляет NT обнаруженных последовательностей символов. Мультиплексор 922 мультиплексирует обнаруженные символы в NT последовательностях, чтобы получить обнаруженный блок символов, который предоставляется процессору 170b принимаемых данных. Обнаруженный блок символов, полученный на n-й итерации обнаружения/декодирования для m-ого блока символов данных, обозначается как
Figure 00000068
.
В процессоре 170b принимаемых данных модуль 930 логарифмического отношения правдоподобия (LLR) принимает обнаруженные символы от пространственного процессора 160b приема и вычисляет LLR B битов кода для каждого обнаруженного символа. Каждый обнаруженный символ
Figure 00000069
является оценкой символа
Figure 00000070
данных, которая получается посредством преобразования B битов кода b i=[bi,1 bi,2 … bi,B] в точку на сигнальном созвездии. LLR для j-го бита обнаруженного символа
Figure 00000069
может выражаться как:
Figure 00000071
,
(14)
где
Figure 00000072
есть j-ый бит для обнаруженного символа
Figure 00000069
;
Figure 00000073
есть вероятность обнаруженного символа
Figure 00000069
с битом
Figure 00000072
являться 1;
Figure 00000074
есть вероятность обнаруженного символа
Figure 00000069
с битом
Figure 00000072
являться -1 (то есть, '0');
и
Figure 00000075
есть LLR бита
Figure 00000072
.
LLR {
Figure 00000076
} представляют априорную информацию, предоставленную детектором декодеру FEC, и называется также, как и LLR детектора.
Для простоты перемежение предполагается таким, чтобы B битов для каждого обнаруженного символа
Figure 00000069
являлись независимыми. Равенство (14) тогда может выражаться как:
Figure 00000077
(15)
где
Figure 00000078
есть множество точек в сигнальном созвездии, чей j-й бит равен q,
s есть символ модуляции или оцениваемая точка в множестве
Figure 00000078
(то есть, «гипотетический» символ);
Figure 00000079
есть коэффициент усиления для передающей антенны i и определяется выше;
Figure 00000080
есть дисперсия выборки гауссова шума
Figure 00000066
для обнаруженного символа
Figure 00000069
;
Figure 00000081
есть множество B битов для гипотетического символа s;
Figure 00000081
(j) равен
Figure 00000081
, с удаленным j-м битом;
Figure 00000082
есть множество LLR, полученных от декодера FEC для B битов гипотетического символа s;
Figure 00000083
(j) равен
Figure 00000084
с декодером LLR для удаленного j-го бита (то есть,
Figure 00000085
); и
"T" обозначает транспонирование.
Декодер LLR для (i, j)-ого бита может выражаться как:
Figure 00000086
,
(16)
где
Figure 00000087
есть вероятность бита
Figure 00000072
являться 1; и
Figure 00000088
есть вероятность бита
Figure 00000072
являться -1.
Для первой итерации (n=l) все элементы
Figure 00000084
(j) устанавливаются в нули, чтобы обозначать равную вероятность каждого бита быть 1 или -1, так как нет априорной информации, доступной для бита. Для каждой последующей итерации элементы
Figure 00000083
(j) вычисляются на основе «гибких» значений для битов из декодера FEC. Модуль 930 вычисления LLR предоставляет LLR для битов кода каждого обнаруженного символа, принятого от пространственного процессора 160b приема. Блок LLR, полученный на n-й итерации обнаружения/декодирования для m-ого блока символов данных, обозначается как
Figure 00000089
.
Обращенный перемежитель 940 канала принимает и обратно перемежает каждый блок LLR от модуля 930 вычисления LLR, и предоставляет обратно перемеженные LLR для блока. Модуль 948 повторной сборки формирует пакет LLR, который содержит (1) блоки обратно перемеженных LLR от обращенного перемежителя 940 канала для всех блоков символов данных, принятых от передатчика, и (2) блоки нулевых LLR для непринятых блоков символов данных. Пакет LLR для n-й итерации обнаружения/декодирования обозначается как
Figure 00000090
. Декодер 950 FEC принимает и декодирует пакет LLR от модуля 948 повторной сборки, как описано ниже.
Фиг.9В показывает блок-схему турбодекодера 950а, который может применяться для декодеров 950 и 850 FEC на фиг.9А и 8В соответственно. Турбодекодер 950а выполняет итеративное декодирование для параллельно связанного сверточного кода, например как показанного на фиг.4В.
В турбодекодере 950а демультиплексор 952 принимает и демультиплексирует пакет
Figure 00000091
LLR от модуля 948 повторной сборки (который также обозначается как входные LLR) на информационный бит
Figure 00000092
LLR, первый бит
Figure 00000093
контроля четности LLR и второй бит
Figure 00000094
контроля четности LLR. Декодер 954а с гибким входом/гибким выходом (SISO) принимает информационный бит
Figure 00000095
LLR и первый бит
Figure 00000093
контроля четности LLR от демультиплексора 952, и обратно перемеженный информационный бит
Figure 00000096
LLR от обращенного перемежителя 958 кода. Декодер 954а SISO затем извлекает новые LLR для данных и первых битов
Figure 00000097
и
Figure 00000098
контроля четности на основе первого составляющего сверточного кода. Перемежитель 956 кода перемежает информационный бит
Figure 00000099
LLR в соответствии со схемой кодового перемежения, используемой на передатчике, и предоставляет перемеженный информационный бит
Figure 00000100
LLR. Подобным образом декодер 954b SISO принимает информационный бит
Figure 00000095
LLR и второй бит
Figure 00000094
контроля четности от демультиплексора 952 и перемеженный информационный бит
Figure 00000101
LLR от кодового перемежителя 956. Декодер 954b SISO затем извлекает новые LLR для данных и вторых битов
Figure 00000102
и
Figure 00000102
контроля четности на основе второго составляющего сверточного кода. Обращенный перемежитель 958 кода обратно перемежает информационный бит
Figure 00000103
LLR дополнительным способом по отношению к кодовому перемежению и предоставляет обратно перемеженный информационный бит
Figure 00000104
LLR. Декодеры 954а и 954b SISO могут реализовывать максимально апостериорный (МАР) алгоритм BCJR SISO либо его производные меньшей сложности, алгоритм гибкого выхода Витерби (Viterbi) или какой-либо другой алгоритм декодирования, которые известны в данной области техники.
Декодирование декодерами 954а и 954b SISO повторяется Ndec раз для текущей итерации n обнаружения/декодирования, где Ndec ≥ 1. После того как будут завершены все Ndec итераций декодирования, сумматор/мультиплексор 960 принимает итоговый информационный бит
Figure 00000097
LLR и итоговый первый бит
Figure 00000098
контроля четности от декодера 954а SISO, обратно перемеженный итоговый информационный бит
Figure 00000104
LLR от обращенного перемежителя 958 кода, и итоговый второй бит
Figure 00000105
контроля четности LLR от декодера 954b SISO. Сумматор/мультиплексор 960 затем вычисляет LLR
Figure 00000106
декодера для следующей итерации n+1 обнаружения/декодирования следующим образом:
Figure 00000107
. LLR
Figure 00000106
декодера соответствуют
Figure 00000108
в равенстве (16) и представляют априорную информацию, предоставляемую детектору декодером FEC.
После того как все Ndd итераций обнаружения/декодирования завершены, сумматор/мультиплексор 960 вычисляет итоговый информационный бит
Figure 00000109
LLR следующим образом:
Figure 00000110
, где
Figure 00000111
есть информационный бит LLR, предоставленный модулем 930 вычисления LLR для последней итерации обнаружения/декодирования. Двусторонний ограничитель 962 ограничивает итоговый информационный бит
Figure 00000109
LLR и предоставляет декодированный пакет
Figure 00000112
для восстанавливаемого пакета. Проверочное устройство 968 CRC проверяет декодированный пакет и предоставляет состояние пакета.
Возвращаясь обратно к фиг.9А, LLR
Figure 00000106
декодера от декодера 950 FEC перемежаются перемежителем 970 канала, и перемеженные LLR декодера предоставляются детектору 920. Детектор 920 извлекает новые обнаруженные символы
Figure 00000113
на основе принятых символов
Figure 00000114
и LLR
Figure 00000106
декодера. LLR
Figure 00000106
декодера используются для вычисления (а) ожидаемого значения взаимного влияния (то есть
Figure 00000115
), которое используется для получения
Figure 00000116
в равенстве (12), и (b) дисперсии взаимного влияния (то есть
Figure 00000117
), которая используется для получения
Figure 00000118
в равенстве (11).
Обнаруженные символы
Figure 00000113
для всех принятых блоков символов данных от пространственного процессора 160а приема снова декодируются процессором 170b принимаемых данных, как описано выше. Процесс обнаружения и декодирования повторяется Ndd раз. Во время итеративного процесса обнаружения и декодирования надежность обнаруженных символов усиливается с каждой итерацией обнаружения/декодирования.
Как показано в равенстве (8), характеристика
Figure 00000119
детектора MMSE зависит от
Figure 00000060
, которая, в свою очередь, зависит от дисперсии взаимного влияния
Figure 00000120
. Поскольку
Figure 00000060
различна для каждой итерации обнаружения/декодирования, характеристика
Figure 00000119
детектора MMSE также различается для каждой итерации. Для упрощения приемника 150b детектор 920 может реализовать (1) детектор MMSE для Ndd1 итераций обнаружения/декодирования, и затем (2) детектор MRC (или какой-нибудь другой тип детектора/корректора, имеющего характеристику, которая не меняется с итерацией) для Ndd2 последующих итераций обнаружения/декодирования, где Ndd1 и Ndd2 каждый могут быть единицей либо больше. Например, детектор MMSE может использоваться для первой итерации обнаружения/декодирования и детектор MRC может использоваться для следующих пяти итераций обнаружения/декодирования. В другом примере, детектор MMSE может использоваться для первых двух итераций обнаружения/декодирования и детектор MRC может использоваться для следующих четырех итераций обнаружения/декодирования.
Детектор MRC может быть реализован с составляющей ui, как показано в равенстве (6), где
Figure 00000121
заменяет
Figure 00000122
. Как показано в равенствах (6), (9), и (12), составляющая ui зависит от ожидаемого значения взаимного влияния
Figure 00000115
. Для дополнительного упрощения приемника 150b составляющая ui может быть опущена после переключения с детектора MMSE на детектор MRC.
Схема итеративного обнаружения и декодирования обеспечивает различные преимущества. Например, схема IDD поддерживает использование единой скорости для всех пакетов данных, переданных одновременно через NT передающих антенн, может бороться с частотно-избирательным затуханием и может гибко использоваться с различными схемами кодирования и модуляции, включая параллельно связанный сверточный код, показанный на фиг.4В.
3. Выбор скорости
Для обеих систем MIMO и MIMO-OFDM с единственной несущей приемник и/или передатчик может оценивать канал MIMO и выбирает подходящую скорость для передачи данных по каналу MIMO. Выбор скорости может выполняться различными способами. Некоторые примерные схемы выбора скорости описываются ниже.
В первой схеме выбора скорости скорость для передачи данных по каналу MIMO выбирается на основе показателя, который выводится, используя эквивалентную систему, которая моделирует характеристики канала для NT передающих антенн. Эквивалентная система определяется имеющей канал AWGN (то есть, с равномерной частотной характеристикой) и спектральной эффективностью, которая равна средней спектральной эффективности NT передающих антенн. Эквивалентная система имеет общую пропускную способность, равную общей пропускной способности NT передающих антенн. Средняя спектральная эффективность может определяться посредством (1) оценивания принятого SBR для каждой передающей антенны (например, на основе принятого контрольного символа и/или символа данных), (2) вычисления спектральной эффективности каждой передающей антенны из принятого SNR и на основе (ограниченной или неограниченной) функции f(x) спектральной эффективности и (3) вычисления средней спектральной эффективности NT передающих антенн на основе спектральных эффективностей отдельных предающих антенн. Показатель может задаваться как SNR, требуемый эквивалентной системой, чтобы поддерживать среднюю спектральную эффективность. Это SNR может определяться из средней спектральной эффективности и на основе обратной функции f-1(x).
Система может быть спроектирована, чтобы поддерживать множество скоростей. Одна из поддерживаемых скоростей может быть предназначена для нулевой скорости (то есть, скорость передачи данных равна нулю). Каждая из оставшихся скоростей ассоциативно связывается с конкретной ненулевой скоростью передачи данных, конкретной схемой кодирования или кодовой скоростью, конкретной схемой модуляции и конкретным минимальным SNR, требуемым для достижения заданного уровня характеристики (например, 1% PER) для канала AWGN. Для каждой поддерживаемой скорости с ненулевой скоростью передачи данных требуемое SNR получается на основе определенной конструкции системы (то есть, конкретной кодовой скорости, схемы перемежения, схемы модуляции и так далее, используемых системой для той скорости) и для канала AWGN. Требуемое SNR может получаться посредством компьютерного моделирования, эмпирических измерений и так далее, как известно в данной области техники. Множество поддерживаемых скоростей и их требуемые SNR могут храниться в справочной таблице (например, LUT 184 на фиг.8А).
Показатель может сравниваться по отношению к требуемому SNR для каждой из скоростей, поддерживаемых системой. Наивысшая скорость с требуемым SNR, которая меньше чем либо равна показателю, выбирается для использования для передачи данных по каналу MIMO. Первая схема выбора скорости подробно описывается в Патентной заявке США номер 10/176,567, озаглавленной «Rate Control for Multi-Channel Communication Systems» (Управление скоростью для многоканальных систем связи), зарегистрированной 20 июня 2002 г.
Во второй схеме выбора скорости скорость для передачи данных по каналу MIMO выбирается на основе принятых SNR для NT передающих антенн. Принятое SNR для каждой передающей антенны сначала определяется и затем вычисляется среднее принятое SNR
Figure 00000123
для NT передающих антенн. Рабочее SNR
Figure 00000124
вычисляется следующим для NT передающих антенн на основе среднего принятого SNR
Figure 00000123
и смещения
Figure 00000125
SNR или фактора возврата в предыдущее состояние (например,
Figure 00000126
, где единицы в дБ). Смещение SBR используется для подсчета ошибки оценки, изменчивости в канале MIMO и других факторов. Рабочий SNR
Figure 00000124
может сравниваться по отношению к требуемому SNR для каждой из скоростей, поддерживаемых системой. Наивысшая скорость с требуемым SNR, которая меньше чем, либо равна рабочему SNR (то есть
Figure 00000127
), выбирается для использования для передачи данных по каналу MIMO. Вторая схема выбора скорости подробно описывается в Патентной заявке США номер 10/394,529, озаглавленной «Transmission Mode Selection for Data Transmission in a Multi-Channel Communication System» (Выбор режима передачи для передачи данных в многоканальной системе связи), зарегистрированной 20 марта 2003 г.
Методики передачи IR, описанные в этом документе, могут быть реализованы различными средствами. Например, эти методики могут реализовываться в аппаратном обеспечении, программном обеспечении либо их сочетании. Для аппаратной реализации обрабатывающие модули, используемые на передатчике для передачи IR, могут быть реализованы в одной или более специализированных интегральных схем (ASIC), цифровых процессорах сигналов (DSP), устройствах цифровой обработки сигналов (DSPD), программируемых логических устройствах (PLD), программируемых пользователем вентильных матрицах (FPGA), процессорах, контроллерах, микроконтроллерах, микропроцессорах, других электронных модулях, спроектированных для выполнения описанных здесь функций, или их сочетаниях. Обрабатывающие модули, используемые на приемнике для приема передачи IR, также могут быть реализованы в одной или более ASIC, DSP, DSPD, PLD, FPGA, процессорах, контроллерах и так далее.
Для программной реализации методики передачи IR могут быть реализованы с помощью модулей (например, процедур, функций и так далее), которые выполняют описанные здесь функции. Программные коды могут сохраняться в модуле памяти (например, модулях 142 и 182 памяти на фиг.1) и исполняться процессором (например, контроллерами 140 и 180). Модуль памяти может быть реализован внутри процессора или быть внешним к процессору, в этом случае он может быть коммуникационно соединен с процессором через различные средства, как известно в данной области техники.
Заголовки включаются в данный документ для ссылки и для помощи в определении местонахождения определенных разделов. Эти заголовки не предназначены для ограничения объема понятий, описанных ниже в документе, и эти понятия могут быть применимы в других разделах по всему описанию изобретения.
Предшествующее описание раскрытых вариантов осуществления предоставляется, чтобы дать возможность любому специалисту в данной области техники создавать или использовать настоящее изобретение. Различные модификации к этим вариантам осуществления будут очевидны специалистам в данной области техники, а общие принципы, определенные в материалах настоящей заявки, могут быть применены к другим вариантам осуществления, без отклонения от сущности или объема изобретения. Таким образом, настоящее изобретение не предназначено, чтобы ограничиваться вариантами осуществления, показанными в материалах настоящей заявки, а должно соответствовать самому широкому объему, согласующемуся с принципами и новыми признаками, раскрытыми в материалах настоящей заявки.

Claims (40)

1. Способ выполнения передачи с инкрементной избыточностью (IR) в беспроводной системе связи со многими входами и многими выходами (MIMO), заключающийся в том, что
получают выбранную скорость для передачи данных по каналу MIMO между множеством передающих антенн и множеством приемных антенн;
обрабатывают пакет данных в соответствии с выбранной скоростью для получения множества блоков символов для пакета данных, причем множество блоков символов содержит разную информацию избыточности для пакета данных;
передают первый блок символов от множества передающих антенн на передатчике множеству приемных антенн, причем первый блок символов является одним из множества блоков символов и
передают оставшиеся блоки из множества блоков символов, один блок символов за раз, пока не получено подтверждение приема (АСК), либо все из множества блоков символов не будут переданы.
2. Способ по п.1, в котором обработка включает в себя этапы, на которых
кодируют пакет данных в соответствии со схемой кодирования, указанной посредством выбранной скорости, для получения кодированного пакета,
разделяют кодированный пакет на множество кодированных подпакетов, и
модулируют множество кодированных подпакетов в соответствии со схемой модуляции, указанной посредством выбранной скорости, для получения множества блоков символов.
3. Способ по п.2, в котором схемой кодирования является турбо-код, и при этом первый блок символов включает в себя систематические биты для пакета данных.
4. Способ по п.1, в котором дополнительно
принимают отрицательное уведомление о подтверждении приема (NAK); и
передают следующий блок символов из оставшихся блоков множества блоков символов в ответ на прием NAK.
5. Способ по п.1, в котором система MIMO использует мультиплексирование с ортогональным частотным разделением каналов (OFDM), и при этом при передаче каждый из множества блоков символов передают от множества поддиапазонов множества передающих антенн.
6. Способ по п.1, в котором каждый из, по меньшей мере, двух пакетов данных обрабатывают в соответствии с выбранной скоростью для получения, по меньшей мере, двух множеств блоков символов, одно множество блоков символов для каждого пакета данных, и при этом, по меньшей мере, два блока символов для, по меньшей мере, двух пакетов данных передают одновременно от множества передающих антенн множеству приемных антенн.
7. Способ по п.1, в котором система MIMO использует мультиплексирование с ортогональным частотным разделением каналов (OFDM), причем каждый из Np указанных пакетов данных обрабатывают в соответствии с выбранной скоростью для получения Np множеств блоков символов, одно множество блоков символов для каждого указанного пакета данных, причем Np больше либо равно единице, и его выбирают на основе ранга канала MIMO, и при этом Np блоков символов для Np пакетов данных передают одновременно диагонально через множество поддиапазонов и множество передающих антенн.
8. Способ по п.1, дополнительно заключающийся в том, что передают пакет данных и, по меньшей мере, один дополнительный пакет данных чересстрочным методом, причем блоки символов для каждого пакета данных передают в интервалах, разнесенных на предопределенное количество интервалов.
9. Способ выполнения передачи с инкрементной избыточностью (IR) в беспроводной системе связи со многими входами и многими выходами (MIMO), заключающийся в том, что
обрабатывают пакет данных для получения множества блоков символов для пакета данных;
передают первый блок символов от множества передающих антенн множеству приемных антенн, причем первый блок символов является одним из множества блоков символов, и
передают оставшиеся блоки из множества блоков символов, один блок символов за раз, пока не получено подтверждение приема (АСК), для пакета данных, либо все из множества блоков символов не будут переданы, причем система MIMO использует мультиплексирование с ортогональным частотным разделением каналов (OFDM), и при этом каждый из, по меньшей мере, двух блоков символов для, по меньшей мере, двух пакетов данных передают диагонально через множество поддиапазонов и множество передающих антенн.
10. Передатчик, выполненный с возможностью осуществления передачи с инкрементной избыточностью (IR) в беспроводной системе связи со многими входами и многими выходами (MIMO), содержащий
процессор передаваемых данных, выполненный с возможностью
получения выбранной скорости для передачи данных по каналу MIMO между множеством передающих антенн и множеством приемных антенн и обработки пакета данных в соответствии с выбранной скоростью для получения множества блоков символов для пакета данных, причем множество блоков символов содержит разную информацию избыточности для пакета данных;
и контроллер, выполненный с возможностью
запуска передачи первого блока символов от множества передающих антенн множеству приемных антенн, причем первый блок символов является одним из множества блоков символов, и
запуска передачи оставшихся блоков из множества блоков символов, один блок символов за раз, пока не получено подтверждение приема (АСК), для пакета данных, либо все из множества блоков не будут переданы.
11. Передатчик по п.10, в котором процессор передаваемых данных выполнен с возможностью
кодирования пакета данных в соответствии со схемой кодирования, указанной посредством выбранной скорости для получения кодированного пакета,
разделения кодированного пакета на множество кодированных подпакетов, и
модуляции множества кодированных подпакетов в соответствии со схемой модуляции, указанной посредством выбранной скорости, для получения множества блоков символов.
12. Передатчик по п.10, дополнительно содержащий
пространственный процессор передачи, выполненный с возможностью приема блока символов, который нужно передать, и предоставления символов в блоке символов множеству передающих антенн.
13. Устройство передачи, выполненное с возможностью осуществления передачи с инкрементной избыточностью (IR) в беспроводной системе связи со многими входами и многими выходами (MIMO), содержащее
средство для получения выбранной скорости для передачи данных по каналу MIMO между множеством передающих антенн и множеством приемных антенн, и
средство для обработки пакета данных для получения множества блоков символов для пакета данных;
средство для передачи первого блока символов от множества передающих антенн на передатчике множеству приемных антенн, причем первый блок символов является одним из множества блоков символов; и
средство для передачи оставшихся блоков из множества блоков символов, один блок символов за раз, пока не получено подтверждение приема (АСК), для пакета данных, либо все из множества блоков символов не будут переданы, причем средство для обработки включает в себя
средство для кодирования пакета данных в соответствии со схемой кодирования, указанной посредством выбранной скорости, для получения кодированного пакета,
средство для разделения кодированного пакета на множество кодированных подпакетов, и
средство для модулирования множества кодированных подпакетов в соответствии со схемой модуляции, указанной посредством выбранной скорости, для получения множества блоков символов.
14. Способ приема передачи с инкрементной избыточностью (IR) в беспроводной системе связи со многими входами и многими выходами (MIMO), заключающийся в том, что
получают блок обнаруженных символов для пакета данных, причем блок обнаруженных символов является оценкой блока символов данных, переданного от множества передающих антенн и принятого множеством приемных антенн, и при этом блок символов данных является одним из множества блоков символов данных для пакета данных, причем множество блоков символов содержит разную информацию избыточности для пакета данных;
декодируют все блоки обнаруженных символов, полученные для пакета данных для предоставления декодированного пакета;
определяют, является ли декодированный пакет безошибочным или с ошибкой;
повторяют получение, декодирование и определение для другого блока из множества блоков символов данных, если декодированный пакет с ошибкой.
15. Способ по п.14, в котором дополнительно
получают блок принятых символов для блока символов данных; и
обнаруживают принятый блок символов для получения обнаруженного блока символов.
16. Способ по п.15, в котором обнаружение основано на детекторе минимальной среднеквадратической ошибки (MMSE), детекторе объединения с максимальным отношением (MRC) или линейном детекторе обращения в нуль (ZF) незначащих коэффициентов.
17. Способ по п.14, в котором дополнительно
прерывают получение, декодирование и определение, если декодированный пакет безошибочный, либо если передано множество блоков символов данных для пакета данных.
18. Способ по п.14, в котором дополнительно
отправляют уведомление о подтверждении приема (АСК) для блока символов данных, если декодированный пакет безошибочный, или отрицательное уведомление о подтверждении приема (NAK), если декодированный пакет с ошибкой.
19. Способ по п.14, дополнительно заключающийся в том, что
получают оценки канала для канала MIMO между множеством передающих антенн и множеством приемных антенн; и
выбирают на основе оценок канала скорость для передачи данных по каналу MIMO.
20. Способ по п.14, дополнительно содержащий этапы, на которых
выводят оценку отношения сигнал/шум-и-помеха (SNR) для каждой из множества передающих антенн,
вычисляют среднее SNR на основе оценок SNR для множества передающих антенн,
определяют фактор возврата в предыдущее состояние, и
выбирают скорость на основе среднего SNR и фактора возврата в предыдущее состояние для передачи данных по каналу MIMO между множеством передающих антенн и множеством приемных антенн.
21. Способ приема передачи с инкрементной избыточностью (IR) в беспроводной системе связи со многими входами и многими выходами (MIMO), заключающийся в том, что
получают блок обнаруженных символов для пакета данных, причем блок обнаруженных символов является оценкой блока символов данных, переданного от множества передающих антенн и принятого множеством приемных антенн, и при этом блок символов данных является одним из множества блоков символов данных, сформированных для пакета данных, причем множество блоков символов содержит разную информацию избыточности для пакета данных;
декодируют все блоки обнаруженных символов, полученные для пакета данных для предоставления декодированного пакета;
определяют, является ли декодированный пакет безошибочным или с ошибкой;
повторяют получение, декодирование и определение для другого блока из множества блоков символов данных, если декодированный пакет с ошибкой, и
определяют скорость для передачи данных на основе средней спектральной эффективности для множества передающих антенн.
22. Приемник, выполненный с возможностью приема передачи с инкрементной избыточностью (IR) в беспроводной системе связи со многими входами и многими выходами (MIMO), содержащий
процессор принимаемых данных, выполненный с возможностью получения блока обнаруженных символов для пакета данных, причем блок обнаруженных символов является оценкой блока символов данных, переданного от множества передающих антенн и принятого множеством приемных антенн, и при этом блок символов данных является одним из множества блоков символов данных, сформированных для пакета данных, причем множество блоков символов содержит разную информацию избыточности для пакета данных,
декодирования всех блоков обнаруженных символов, полученных для пакета данных для предоставления декодированного пакета, и
определения, является ли декодированный пакет безошибочным или с ошибкой; и
контроллер, выполненный с возможностью указания процессору принимаемых данных повторить получение нового блока обнаруженных символов, декодирование всех блоков обнаруженных символов и определение, является ли декодированный пакет безошибочным или с ошибкой, если декодированный пакет с ошибкой.
23. Приемник по п.22, дополнительно содержащий
детектор, выполненный с возможностью получения блока принятых символов для блока символов данных и обнаружения принятого блока символов для получения обнаруженного блока символов.
24. Приемник по п.22, дополнительно содержащий
блок оценки канала, выполненный с возможностью получения оценок канала для канала MIMO между множеством передающих антенн и множеством приемных антенн; и
селектор скорости, выполненный с возможностью выбора на основе оценок канала скорости для передачи данных по каналу MIMO.
25. Устройство для приема передачи с инкрементной избыточностью (IR) в беспроводной системе связи со многими входами и многими выходами (MIMO), содержащее
средство для получения блока обнаруженных символов для пакета данных, причем блок обнаруженных символов является оценкой блока символов данных, переданного от множества передающих антенн и принятого множеством приемных антенн, и при этом блок символов данных является одним из множества блоков символов данных, сформированных для пакета данных, причем множество блоков символов содержит разную информацию избыточности для пакета данных;
средство для декодирования всех блоков обнаруженных символов, полученных для пакета данных для получения декодированного пакета;
средство для определения, является ли декодированный пакет безошибочным или с ошибкой; и
средство для повтора получения, декодирования и определения для другого блока из множества блоков символов данных, если декодированный пакет с ошибкой.
26. Устройство по п.25, дополнительно содержащее
средство для получения блока принятых символов для блока символов данных; и
средство для обнаружения принятого блока символов для получения обнаруженного блока символов.
27. Устройство по п.25, дополнительно содержащее средство для получения оценок канала для канала MIMO между множеством передающих антенн и множеством приемных антенн; и
средство для выбора на основе оценок канала скорости для передачи данных по каналу MIMO.
28. Способ приема передачи с инкрементной избыточностью (IR) в беспроводной системе связи со многими входами и многими выходами (MIMO), заключающийся в том, что
принимают блок принятых символов для пакета данных, причем принятый блок символов предназначен для блока символов данных, переданного от множества передающих антенн на передатчике и принятого множеством приемных антенн на приемнике, и при этом блок символов данных является одним из множества блоков символов данных, сформированных для пакета данных;
обнаруживают все принятые блоки символов, принятые для пакета данных, для получения обнаруженных блоков символов, один обнаруженный блок символов для каждого принятого блока символов;
декодируют обнаруженные блоки символов для пакета данных для получения информации обратной связи декодера;
выполняют обнаружение и декодирование для множества итераций, причем информацию обратной связи декодера от декодирования для текущей итерации используют при обнаружении для последующих итераций; и
формируют декодированный пакет на основе выходной информации от декодирования для последней итерации из множества итераций,
определяют, является ли декодированный пакет безошибочным или с ошибкой; и
повторяют прием, обнаружение, декодирование, выполнение и формирование для другого блока из множества блоков символов данных, если декодированный пакет с ошибкой и все из множества блоков символов данных не переданы.
29. Способ по п.28, в котором дополнительно
определяют, является ли декодированный пакет безошибочным или с ошибкой; и
повторяют прием, обнаружение, декодирование, выполнение и формирование для другого блока из множества блоков символов данных, если декодированный пакет с ошибкой и если все из множества блоков символов данных не переданы.
30. Способ по п.28, в котором обнаружение основано на детекторе минимальной среднеквадратической ошибки (MMSE), детекторе объединения с максимальным отношением (MRC) или линейном детекторе обращения в нуль (ZF) незначащих коэффициентов.
31. Способ по п.33, в котором детектор MMSE используют для обнаружения в течение N итераций, а детектор MRC или детектор ZF используют для обнаружения после N итераций, где N равно единице или больше.
32. Способ по п.28, дополнительно заключающийся в том, что
получают оценки канала для канала MIMO между множеством передающих антенн и множеством приемных антенн; и
выбирают на основе оценок канала скорость для передачи данных по каналу MIMO.
33. Приемник, выполненный с возможностью приема передачи с инкрементной избыточностью (IR) в беспроводной системе связи со многими входами и многими выходами (MIMO), содержащий
буфер, выполненный с возможностью приема и хранения блока принятых символов для пакета данных, причем принятый блок символов предназначен для блока символов данных, переданного от множества передающих антенн и принятого множеством приемных антенн, и при этом блок символов данных является одним из множества блоков символов данных, сформированных для пакета данных;
детектор, выполненный с возможностью обнаружения всех принятых блоков символов, принятых для пакета данных для получения обнаруженных блоков символов, один обнаруженный блок символов для каждого принятого блока символов; и
декодер, выполненный с возможностью декодирования всех обнаруженных блоков символов для пакета данных для получения информации обратной связи декодера,
при этом детектор и декодер выполнены с возможностью осуществления обнаружения и декодирования для множества итераций, причем информация обратной связи декодера от декодера для текущей итерации используется детектором для последующей итерации, и при этом формируется декодированный пакет на основе выходной информации от декодера для последней итерации из множества итераций;
контроллер, выполненный с возможностью указания буферу принять и сохранить другой принятый блок символов для другого блока из множества блоков символов данных, если декодированный пакет с ошибкой и если все из множества блоков символов данных не переданы и указания детектору и декодеру выполнить обнаружение и декодирование на всех принятых блоках символов, принятых для пакета данных, для получения декодированного пакета.
34. Приемник по п.33, дополнительно содержащий блок оценки канала, выполненный с возможностью получения оценок канала для канала MIMO между множеством передающих антенн и множеством приемных антенн; и
селектор скорости, выполненный с возможностью выбора на основе оценок канала скорости для передачи данных по каналу MIMO.
35. Устройство для приема передачи с инкрементной избыточностью (IR) в беспроводной системе связи со многими входами и многими выходами (MIMO), содержащее
средство для приема блока принятых символов для пакета данных, причем принятый блок символов предназначен для блока символов данных, переданного от множества передающих антенн на передатчике и принятого множеством приемных антенн на приемнике, и при этом блок символов данных является одним из множества блоков символов данных, сформированных для пакета данных;
средство для обнаружения всех принятых блоков символов, принятых для пакета данных для получения обнаруженных блоков символов, один обнаруженный блок символов для каждого принятого блока символов;
средство для декодирования всех обнаруженных блоков символов для пакета данных для получения информации обратной связи декодера;
средство для выполнения обнаружения и декодирования для множества итераций, причем информация обратной связи декодера от декодирования для текущей итерации используется при обнаружении для последующей итерации; и
средство для формирования декодированного пакета на основе выходной информации декодера от декодирования для последней итерации из множества итераций;
средство для определения, является ли декодированный пакет безошибочным или с ошибкой; и
средство для повторения приема, обнаружения, декодирования, выполнения и формирования для другого блока из множества блоков символов данных, если декодированный пакет с ошибкой и все из множества блоков символов данных не переданы.
36. Устройство по п.35, дополнительно содержащее
средство для получения оценок канала для канала MIMO между множеством передающих антенн и множеством приемных антенн; и
средство для выбора на основе оценок канала скорости для передачи данных по каналу MIMO.
37. Способ приема передачи данных в беспроводной системе связи со многими входами и многими выходами (MIMO) заключающийся в том, что
обнаруживают принятые символы для пакета данных для получения обнаруженных символов;
декодируют обнаруженные символы для получения информации обратной связи декодера;
выполняют обнаружение и декодирование для множества итераций, причем информацию обратной связи декодера от декодирования для текущей итерации используют при обнаружении для последующей итерации, при этом обнаружение выполняют на основе детектора минимальной среднеквадратической ошибки (MMSE) для первых N итераций, где N равно единице или больше, и на основе детектора объединения с максимальным отношением (MRC) или линейного детектора обращения в нуль (ZF) незначащих коэффициентов для оставшихся итераций из множества итераций; и
формируют декодированный пакет на основе выходной информации от декодирования для последней итерации из множества итераций;
получают оценки канала для канала MIMO между множеством передающих антенн и множеством приемных антенн; и
выбирают на основе оценок канала скорость для передачи данных по каналу MIMO.
38. Способ по п.37, в котором N равно единице.
39. Считываемый процессором носитель, содержащий инструкции, сохраненные на нем и выполняемые процессором для передачи данных в беспроводной системе связи со многими входами и многими выходами (MIMO), причем инструкции предназначены для:
получения выбранной скорости для передачи данных по каналу MIMO между множеством передающих антенн и множеством приемных антенн
обработки пакета данных в соответствии с выбранной скоростью для получения множества блоков символов для пакета данных, причем множество блоков символов содержит разную информацию избыточности для пакета данных;
передачи первого блока символов от множества передающих антенн множеству приемных антенн, причем первый блок символов является одним из множества блоков символов, и
передачи оставшихся блоков из множества блоков символов, одного блока символов за раз, пока не получено подтверждение приема (АСК) для пакета, либо все из множества блоков символов не будут переданы.
40. Считываемый процессором носитель, содержащий инструкции, сохраненные на нем и выполняемые процессором для приема данных в беспроводной системе связи со многими входами и многими выходами (MIMO), причем инструкции предназначены для:
получения блока обнаруженных символов для пакета данных, причем блок обнаруженных символов является оценкой блока символов данных, переданного от множества передающих антенн и принятого множеством приемных антенн, и при этом блок символов данных является одним из множества блоков символов данных, сформированных для пакета данных, причем множество блоков символов содержит разную информацию избыточности для пакета данных;
декодирования всех блоков обнаруженных символов, полученных для пакета данных для предоставления декодированного пакета;
определения, является ли декодированный пакет безошибочным или с ошибкой;
повторения получения, декодирования и определения для другого блока из множества блоков символов данных, если декодированный пакет с ошибкой.
RU2009120027/08A 2003-09-09 2004-09-09 Передача с инкрементной избыточностью в системе связи mimo RU2502197C2 (ru)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US50177703P 2003-09-09 2003-09-09
US60/501,777 2003-09-09
US53139103P 2003-12-18 2003-12-18
US60/531,391 2003-12-18
US10/801,624 US8908496B2 (en) 2003-09-09 2004-03-15 Incremental redundancy transmission in a MIMO communication system
US10/801,624 2004-03-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2006111513/09A Division RU2369021C2 (ru) 2003-09-09 2004-09-09 Передача с инкрементной избыточностью в системе связи mimo

Publications (2)

Publication Number Publication Date
RU2009120027A RU2009120027A (ru) 2010-12-10
RU2502197C2 true RU2502197C2 (ru) 2013-12-20

Family

ID=34279830

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009120027/08A RU2502197C2 (ru) 2003-09-09 2004-09-09 Передача с инкрементной избыточностью в системе связи mimo

Country Status (22)

Country Link
US (1) US8908496B2 (ru)
EP (4) EP1959600B1 (ru)
JP (3) JP4741495B2 (ru)
KR (3) KR101285901B1 (ru)
CN (3) CN101142774B (ru)
AR (1) AR045622A1 (ru)
AT (2) ATE480061T1 (ru)
AU (1) AU2004303128C1 (ru)
BR (1) BRPI0414188B1 (ru)
CA (1) CA2538057C (ru)
DE (2) DE602004026491D1 (ru)
DK (1) DK2146455T3 (ru)
ES (1) ES2342444T3 (ru)
HK (2) HK1112339A1 (ru)
IL (1) IL174142A0 (ru)
MX (1) MXPA06002662A (ru)
PL (3) PL1959600T3 (ru)
RU (1) RU2502197C2 (ru)
SI (1) SI2146455T1 (ru)
TR (1) TR201815083T4 (ru)
TW (3) TWI353129B (ru)
WO (1) WO2005025117A2 (ru)

Families Citing this family (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
CN100380856C (zh) * 2002-12-03 2008-04-09 皇家飞利浦电子股份有限公司 用于比特交织cofdm-mimo系统的简化解码器
US7873022B2 (en) * 2004-02-19 2011-01-18 Broadcom Corporation Multiple input multiple output wireless local area network communications
US7848442B2 (en) * 2004-04-02 2010-12-07 Lg Electronics Inc. Signal processing apparatus and method in multi-input/multi-output communications systems
JP2005348116A (ja) * 2004-06-03 2005-12-15 Sharp Corp 無線通信装置
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US7440777B2 (en) * 2004-08-13 2008-10-21 Broadcom Corporation Multi-transceiver system with MIMO and beam-forming capability
US20060039344A1 (en) * 2004-08-20 2006-02-23 Lucent Technologies, Inc. Multiplexing scheme for unicast and broadcast/multicast traffic
US7283499B2 (en) * 2004-10-15 2007-10-16 Nokia Corporation Simplified practical rank and mechanism, and associated method, to adapt MIMO modulation in a multi-carrier system with feedback
US20090122899A1 (en) * 2005-03-01 2009-05-14 Elektrobit System Test Oy Method, Device, Arrangement, Transmitter Unit and Receiver Unit for Generating Data Characterising Mimo Environment
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
CN102209062B (zh) 2005-03-10 2013-06-12 松下电器产业株式会社 无线接收装置和无线接收方法
US8724740B2 (en) 2005-03-11 2014-05-13 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8995547B2 (en) * 2005-03-11 2015-03-31 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
US7593489B2 (en) * 2005-03-14 2009-09-22 Koshy John C Iterative STBICM MIMO receiver using group-wise demapping
US8446892B2 (en) * 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
JP4711750B2 (ja) * 2005-04-13 2011-06-29 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、移動局及び基地局並びに通信制御方法
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8599945B2 (en) * 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US7574645B2 (en) 2005-08-18 2009-08-11 Interdigital Technology Corporation Wireless communication method and apparatus for detecting and decoding enhanced dedicated channel hybrid automatic repeat request indicator channel transmissions
US8073068B2 (en) * 2005-08-22 2011-12-06 Qualcomm Incorporated Selective virtual antenna transmission
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US20070041457A1 (en) * 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US8098773B1 (en) * 2005-09-19 2012-01-17 Piesinger Gregory H Communication method and apparatus
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9210651B2 (en) * 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9225488B2 (en) * 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US7770092B2 (en) * 2005-12-29 2010-08-03 Stmicroelectronics S.R.L. Method for iterative decoding in a digital system and apparatus implementing the method
US7552379B2 (en) * 2005-12-29 2009-06-23 Stmicroelectronics S.R.L. Method for iterative decoding employing a look-up table
US20070206558A1 (en) * 2006-03-01 2007-09-06 Motorola, Inc. Method and apparatus for transmitting distributed fdma and localized fdma within a same frequency band
US8213548B2 (en) * 2006-04-04 2012-07-03 Qualcomm Incorporated Methods and apparatus for dynamic packet reordering
US8139612B2 (en) * 2006-04-04 2012-03-20 Qualcomm Incorporated Methods and apparatus for dynamic packet mapping
US7916775B2 (en) * 2006-06-16 2011-03-29 Lg Electronics Inc. Encoding uplink acknowledgments to downlink transmissions
US8312335B2 (en) 2006-07-06 2012-11-13 Lg Electronics Inc. Method and apparatus for correcting errors in a multiple subcarriers communication system using multiple antennas
US7751495B1 (en) * 2006-09-06 2010-07-06 Marvell International Ltd. Equal power output spatial spreading matrix for use in a wireless MIMO communication system
EP2060022B1 (en) 2006-09-06 2016-02-17 Qualcomm Incorporated Codeword permutation and reduced feedback for grouped antennas
US7729439B2 (en) 2006-09-18 2010-06-01 Marvell World Trade Ltd. Calibration correction for implicit beamforming in a wireless MIMO communication system
TWI337462B (en) * 2006-09-26 2011-02-11 Realtek Semiconductor Corp Receiver of mimo multi-carrier system and associated apparatus and method for receive antenna selection
JP4995916B2 (ja) 2006-10-04 2012-08-08 クゥアルコム・インコーポレイテッド 無線通信システムにおけるsdmaのためのアップリンクack伝送
US8031795B2 (en) * 2006-12-12 2011-10-04 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Pre-processing systems and methods for MIMO antenna systems
US20080139153A1 (en) * 2006-12-12 2008-06-12 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Antenna configuration selection using outdated channel state information
KR101431271B1 (ko) * 2007-01-12 2014-08-20 삼성전자주식회사 다중 입력 다중 출력 방식의 이동 통신 시스템에서 피드백정보 송수신 방법 및 장치
WO2008084392A2 (en) * 2007-01-12 2008-07-17 Nokia Corporation Method and apparatus for providing automatic control channel mapping
US7889766B2 (en) * 2007-01-19 2011-02-15 Lg Electronics Inc. Digital broadcasting system and method of processing data
US8379738B2 (en) 2007-03-16 2013-02-19 Samsung Electronics Co., Ltd. Methods and apparatus to improve performance and enable fast decoding of transmissions with multiple code blocks
WO2008120925A1 (en) 2007-03-29 2008-10-09 Lg Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
US20080273452A1 (en) * 2007-05-04 2008-11-06 Farooq Khan Antenna mapping in a MIMO wireless communication system
WO2008153330A1 (en) * 2007-06-15 2008-12-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data in mobile communication system
US8386878B2 (en) 2007-07-12 2013-02-26 Samsung Electronics Co., Ltd. Methods and apparatus to compute CRC for multiple code blocks
EP2180629B1 (en) 2007-08-14 2017-11-29 LG Electronics Inc. Method for acquiring resource region information for PHICH and method of receiving PDCCH
KR101397039B1 (ko) * 2007-08-14 2014-05-20 엘지전자 주식회사 전송 다이버시티를 사용하는 다중안테나 시스템에서 채널예측 오류의 영향을 감소시키기 위한 cdm 방식 신호전송 방법
KR101405974B1 (ko) * 2007-08-16 2014-06-27 엘지전자 주식회사 다중입력 다중출력 시스템에서 코드워드를 전송하는 방법
KR101507785B1 (ko) * 2007-08-16 2015-04-03 엘지전자 주식회사 다중 입출력 시스템에서, 채널품질정보를 송신하는 방법
JP5109707B2 (ja) * 2008-02-19 2012-12-26 コニカミノルタビジネステクノロジーズ株式会社 定着装置及び画像形成装置
JP5397367B2 (ja) 2008-02-26 2014-01-22 日本電気株式会社 復号装置、復号方法及びプログラム
US8477830B2 (en) 2008-03-18 2013-07-02 On-Ramp Wireless, Inc. Light monitoring system using a random phase multiple access system
US8958460B2 (en) * 2008-03-18 2015-02-17 On-Ramp Wireless, Inc. Forward error correction media access control system
US9184874B2 (en) * 2008-03-31 2015-11-10 Qualcomm Incorporated Storing log likelihood ratios in interleaved form to reduce hardware memory
US8867565B2 (en) 2008-08-21 2014-10-21 Qualcomm Incorporated MIMO and SDMA signaling for wireless very high throughput systems
US20100067331A1 (en) * 2008-09-12 2010-03-18 Yang Tsih C Iterative correlation-based equalizer for underwater acoustic communications over time-varying channels
US8266497B1 (en) 2008-10-17 2012-09-11 Link—A—Media Devices Corporation Manufacturing testing for LDPC codes
US8175186B1 (en) * 2008-11-20 2012-05-08 L-3 Services, Inc. Preserving the content of a communication signal corrupted by interference during transmission
US8363699B2 (en) 2009-03-20 2013-01-29 On-Ramp Wireless, Inc. Random timing offset determination
EP2502378B1 (en) * 2009-11-17 2015-12-16 Sony Corporation Transmitter and transmission method for broadcasting data in a broadcasting system providing incremental redundancy
EP2502351B1 (en) * 2009-11-17 2018-07-25 Saturn Licensing LLC Receiver and receiving method for receiving data in a broadcasting system using incremental redundancy
US8750270B2 (en) * 2010-02-25 2014-06-10 Lg Electronics Inc. Method and apparatus for transmitting feedback request and method and apparatus for receiving feedback request in wireless communication system
US8914709B1 (en) * 2010-03-04 2014-12-16 Sk Hynix Memory Solutions Inc. Manufacturing testing for LDPC codes
US8473804B2 (en) * 2010-04-26 2013-06-25 Via Telecom, Inc. Enhanced wireless communication with HARQ
CN102939733B (zh) * 2010-04-29 2016-08-03 尚兰坡无线股份有限公司 前向纠错媒体接入控制系统
JP2012178727A (ja) * 2011-02-25 2012-09-13 Sharp Corp 受信装置、送信装置、受信方法、送信方法、プログラムおよび無線通信システム
US9154969B1 (en) 2011-09-29 2015-10-06 Marvell International Ltd. Wireless device calibration for implicit transmit
CN103138821B (zh) * 2011-11-30 2017-02-08 华为技术有限公司 一种数据传输方法、装置及系统
US9332541B2 (en) * 2012-04-17 2016-05-03 Telefonaktiebolaget L M Ericsson Methods and devices for transmission of signals in a telecommunication system
KR102078221B1 (ko) * 2012-10-11 2020-02-17 삼성전자주식회사 무선통신시스템에서 채널 추정 장치 및 방법
ES2816014T3 (es) 2013-02-13 2021-03-31 Ericsson Telefon Ab L M Ocultación de error de trama
KR102046343B1 (ko) * 2013-04-18 2019-11-19 삼성전자주식회사 디지털 영상 방송 시스템에서의 송신 장치 및 방법
US9661579B1 (en) 2013-05-03 2017-05-23 Marvell International Ltd. Per-tone power control in OFDM
US9843097B1 (en) 2013-07-08 2017-12-12 Marvell International Ltd. MIMO implicit beamforming techniques
CN103596168A (zh) * 2013-11-18 2014-02-19 无锡赛思汇智科技有限公司 一种无线通讯中自适应抗干扰的消息发送与接收方法及装置
WO2015089741A1 (zh) * 2013-12-17 2015-06-25 华为技术有限公司 接收数据的方法及设备,以及发送数据的方法及设备
US10171119B2 (en) * 2014-07-29 2019-01-01 Ramot At Tel Aviv University Communication terminals and a method for exchanging information between communication terminals in a noisy environment
EP3187002B1 (en) * 2014-08-31 2021-04-07 Ubiquiti Inc. Methods and apparatuses for monitoring and improving wireless network health
CN104869086B (zh) * 2015-05-27 2017-11-14 东南大学 基于二维压缩感知的mimo‑ofdm通信系统下行信道估计方法、装置
EP3335393A1 (en) * 2015-08-12 2018-06-20 Istanbul Teknik Universitesi Rektorlugu Multiple input multiple output orthogonal frequency division multiplexing with index modulation, mimo-ofdm-im, communications system
US10277439B2 (en) * 2016-07-18 2019-04-30 Qualcomm Incorporated Dual stage channel interleaving for data transmission
US20180063849A1 (en) * 2016-08-26 2018-03-01 Qualcomm Incorporated Transmission and detection methods for range extension
US10581554B2 (en) * 2017-01-13 2020-03-03 Dolby Laboratories Licensing Corporation Systems and methods to generate copies of data for transmission over multiple communication channels
JP2018191033A (ja) * 2017-04-28 2018-11-29 ルネサスエレクトロニクス株式会社 無線送信装置、無線受信装置、及び無線送信方法
US10862620B2 (en) 2017-09-25 2020-12-08 Dolby Laboratories Licensing Corporation Systems and methods to optimize the load of multipath data transportation
US10873373B2 (en) 2018-03-16 2020-12-22 Huawei Technologies Co., Ltd. Simplified detection for spatial modulation and space-time block coding with antenna selection
CN108540420B (zh) * 2018-04-09 2020-11-03 中原工学院 一种高速运动下基于两步检测ofdm信号的接收方法
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
CN113169764A (zh) 2018-11-27 2021-07-23 艾斯康实验室公司 非相干协作式多输入多输出通信
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
EP3915198A1 (en) * 2019-01-21 2021-12-01 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus and machine-readable mediums relating to adjusting beam gain in wireless communication networks
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
US11032841B2 (en) 2019-04-26 2021-06-08 XCOM Labs, Inc. Downlink active set management for multiple-input multiple-output communications
US10756782B1 (en) 2019-04-26 2020-08-25 XCOM Labs, Inc. Uplink active set management for multiple-input multiple-output communications
US10735057B1 (en) 2019-04-29 2020-08-04 XCOM Labs, Inc. Uplink user equipment selection
US10686502B1 (en) 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
CN115699605A (zh) 2020-05-26 2023-02-03 艾斯康实验室公司 干扰感知波束成形
CA3195885A1 (en) 2020-10-19 2022-04-28 XCOM Labs, Inc. Reference signal for wireless communication systems
WO2022093988A1 (en) 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems
WO2022186853A1 (en) * 2021-03-03 2022-09-09 Zeku, Inc. Dynamic cyclic redundancy check update for iterative decoding
CN113282523B (zh) * 2021-05-08 2022-09-30 重庆大学 一种缓存分片的动态调整方法、装置以及存储介质
US11616597B1 (en) 2022-01-11 2023-03-28 Qualcomm Incorporated Hierarchical cyclic redundancy check techniques

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2120184C1 (ru) * 1993-10-28 1998-10-10 Квэлкомм Инкорпорейтед Устройство для приема множества сигналов через набор систем антенн и способ обеспечения связи между подвижным объектом и базовой станцией
EP1207645A1 (en) * 2000-11-16 2002-05-22 Lucent Technologies Inc. Feedback technique for wireless systems with multiple transmit and receive antennas

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304593B1 (en) * 1997-10-06 2001-10-16 California Institute Of Technology Adaptive modulation scheme with simultaneous voice and data transmission
US6778558B2 (en) * 1998-02-23 2004-08-17 Lucent Technologies Inc. System and method for incremental redundancy transmission in a communication system
US6363121B1 (en) 1998-12-07 2002-03-26 Lucent Technologies Inc. Wireless transmission method for antenna arrays using unitary space-time signals
CA2298325A1 (en) 1999-03-01 2000-09-01 Lucent Technologies, Inc. Iterative differential detector
EP1069722A2 (en) 1999-07-12 2001-01-17 Hughes Electronics Corporation Wireless communication system and method having a space-time architecture, and receiver for multi-user detection
US6308294B1 (en) 1999-11-17 2001-10-23 Motorola, Inc. Adaptive hybrid ARQ using turbo code structure
US6351499B1 (en) * 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
US7068628B2 (en) * 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
US7233625B2 (en) 2000-09-01 2007-06-19 Nortel Networks Limited Preamble design for multiple input—multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system
US7031371B1 (en) * 2000-09-25 2006-04-18 Lakkis Ismail A CDMA/TDMA communication method and apparatus for wireless communication using cyclic spreading codes
US6930981B2 (en) 2000-12-06 2005-08-16 Lucent Technologies Inc. Method for data rate selection in a wireless communication system
US6987819B2 (en) * 2000-12-29 2006-01-17 Motorola, Inc. Method and device for multiple input/multiple output transmit and receive weights for equal-rate data streams
US6731668B2 (en) * 2001-01-05 2004-05-04 Qualcomm Incorporated Method and system for increased bandwidth efficiency in multiple input—multiple output channels
KR100781969B1 (ko) * 2001-03-26 2007-12-06 삼성전자주식회사 직교 주파수 분할 다중 접속에 기반한 데이타 통신 장치및 방법
US6859503B2 (en) 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
DE10296698B4 (de) 2001-04-24 2007-07-12 Intel Corporation, Santa Clara Verfahren und Vorrichtung zum Kodieren und Dekodieren von Daten mit unterschiedlichen Modulationsschemata und Kodierungen und einem ARQ-Protokoll
GB0110125D0 (en) 2001-04-25 2001-06-20 Koninkl Philips Electronics Nv Radio communication system
US7133459B2 (en) * 2001-05-01 2006-11-07 Texas Instruments Incorporated Space-time transmit diversity
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
JP3583388B2 (ja) 2001-06-29 2004-11-04 松下電器産業株式会社 データ通信装置およびデータ通信方法
US7031419B2 (en) 2001-06-29 2006-04-18 Nokia Corporation Data transmission method and system
DE10132492A1 (de) * 2001-07-03 2003-01-23 Hertz Inst Heinrich Adaptives Signalverarbeitungsverfahren zur bidirektionalen Funkübertragung in einem MIMO-Kanal und MIMO-System zur Verfahrensdurchführung
US7447967B2 (en) 2001-09-13 2008-11-04 Texas Instruments Incorporated MIMO hybrid-ARQ using basis hopping
US20030066004A1 (en) * 2001-09-28 2003-04-03 Rudrapatna Ashok N. Harq techniques for multiple antenna systems
US7116652B2 (en) 2001-10-18 2006-10-03 Lucent Technologies Inc. Rate control technique for layered architectures with multiple transmit and receive antennas
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US7154936B2 (en) 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
US7155171B2 (en) * 2001-12-12 2006-12-26 Saraband Wireless Vector network analyzer applique for adaptive communications in wireless networks
KR100747464B1 (ko) 2002-01-05 2007-08-09 엘지전자 주식회사 고속하향링크패킷접속(hsdpa)시스템을 위한타이머를 이용한 교착상황 회피방법
KR100810350B1 (ko) 2002-01-07 2008-03-07 삼성전자주식회사 안테나 어레이를 포함하는 부호분할다중접속 이동통신시스템에서 다양한 채널상태에 따른 데이터 송/수신 장치 및 방법
US7020110B2 (en) 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US7287206B2 (en) * 2002-02-13 2007-10-23 Interdigital Technology Corporation Transport block set transmission using hybrid automatic repeat request
US7292647B1 (en) * 2002-04-22 2007-11-06 Regents Of The University Of Minnesota Wireless communication system having linear encoder
US7184713B2 (en) 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US7397864B2 (en) * 2002-09-20 2008-07-08 Nortel Networks Limited Incremental redundancy with space-time codes
US6873606B2 (en) * 2002-10-16 2005-03-29 Qualcomm, Incorporated Rate adaptive transmission scheme for MIMO systems
US20040081131A1 (en) * 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8208364B2 (en) * 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US20050003378A1 (en) * 2002-12-19 2005-01-06 Moshe Szyf Inhibitor of demethylase, antitumorigenic agent, and an in vitro assay for demethylase inhibitors
US7885228B2 (en) 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
KR100591890B1 (ko) * 2003-04-01 2006-06-20 한국전자통신연구원 다중 안테나 무선 통신 시스템에서의 적응 송수신 방법 및그 장치
US7668125B2 (en) 2003-09-09 2010-02-23 Qualcomm Incorporated Incremental redundancy transmission for multiple parallel channels in a MIMO communication system
US7431775B2 (en) 2004-04-08 2008-10-07 Arkema Inc. Liquid detergent formulation with hydrogen peroxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2120184C1 (ru) * 1993-10-28 1998-10-10 Квэлкомм Инкорпорейтед Устройство для приема множества сигналов через набор систем антенн и способ обеспечения связи между подвижным объектом и базовой станцией
EP1207645A1 (en) * 2000-11-16 2002-05-22 Lucent Technologies Inc. Feedback technique for wireless systems with multiple transmit and receive antennas

Also Published As

Publication number Publication date
ATE463894T1 (de) 2010-04-15
EP2146456A2 (en) 2010-01-20
TWI427947B (zh) 2014-02-21
CN101917257B (zh) 2013-04-24
BRPI0414188A (pt) 2006-10-31
TW201042936A (en) 2010-12-01
EP2146455B1 (en) 2018-08-29
HK1112339A1 (en) 2008-08-29
DE602004028947D1 (de) 2010-10-14
US8908496B2 (en) 2014-12-09
AU2004303128C1 (en) 2010-09-02
JP2010252366A (ja) 2010-11-04
TWI353129B (en) 2011-11-21
MXPA06002662A (es) 2006-06-05
JP2007509511A (ja) 2007-04-12
JP5280404B2 (ja) 2013-09-04
PL1665602T3 (pl) 2011-03-31
EP1959600A1 (en) 2008-08-20
TW201042935A (en) 2010-12-01
WO2005025117A3 (en) 2007-03-29
TR201815083T4 (tr) 2018-11-21
RU2009120027A (ru) 2010-12-10
TW200522566A (en) 2005-07-01
CN101917262B (zh) 2013-01-23
CA2538057A1 (en) 2005-03-17
DK2146455T3 (en) 2018-12-10
CN101142774A (zh) 2008-03-12
CN101917262A (zh) 2010-12-15
JP5204152B2 (ja) 2013-06-05
KR20100090793A (ko) 2010-08-17
KR20060121867A (ko) 2006-11-29
CA2538057C (en) 2014-07-08
KR101280734B1 (ko) 2013-07-01
EP1959600B1 (en) 2010-04-07
EP2146455A2 (en) 2010-01-20
ATE480061T1 (de) 2010-09-15
US20050052991A1 (en) 2005-03-10
CN101142774B (zh) 2012-11-21
KR101285901B1 (ko) 2013-07-12
KR20100082385A (ko) 2010-07-16
CN101917257A (zh) 2010-12-15
IL174142A0 (en) 2006-08-01
HK1125756A1 (en) 2009-08-14
EP2146455A3 (en) 2012-08-08
EP1665602A2 (en) 2006-06-07
SI2146455T1 (sl) 2018-12-31
PL2146455T3 (pl) 2019-04-30
EP1665602A4 (en) 2008-03-26
TWI426724B (zh) 2014-02-11
ES2342444T3 (es) 2010-07-06
AU2004303128A1 (en) 2005-03-17
BRPI0414188B1 (pt) 2018-08-07
EP1665602B1 (en) 2010-09-01
PL1959600T3 (pl) 2010-09-30
AR045622A1 (es) 2005-11-02
DE602004026491D1 (de) 2010-05-20
AU2004303128B2 (en) 2010-01-28
JP4741495B2 (ja) 2011-08-03
WO2005025117A2 (en) 2005-03-17
EP2146456A3 (en) 2012-08-01
JP2010252365A (ja) 2010-11-04

Similar Documents

Publication Publication Date Title
RU2502197C2 (ru) Передача с инкрементной избыточностью в системе связи mimo
JP5420259B2 (ja) Ofdmシステムのためのレート選択
US20040022179A1 (en) Wireless communication system having error-control coder and linear precoder
WO2009104764A1 (ja) 通信装置、通信システム、受信方法およびプログラム
EP2247019A1 (en) Communication device, communication system, reception method, and communication method
JPWO2009131094A1 (ja) 通信装置、通信システム、受信方法およびプログラム
Dinis et al. Soft combining ARQ techniques for wireless systems employing SC-FDE schemes
RU2369021C2 (ru) Передача с инкрементной избыточностью в системе связи mimo
Roman et al. Hybrid ARQ schemes for future wireless systems based on MC-CDMA