RU2490095C2 - Способ изготовления электрода и разрядная обработка поверхности с помощью него - Google Patents

Способ изготовления электрода и разрядная обработка поверхности с помощью него Download PDF

Info

Publication number
RU2490095C2
RU2490095C2 RU2011138003/02A RU2011138003A RU2490095C2 RU 2490095 C2 RU2490095 C2 RU 2490095C2 RU 2011138003/02 A RU2011138003/02 A RU 2011138003/02A RU 2011138003 A RU2011138003 A RU 2011138003A RU 2490095 C2 RU2490095 C2 RU 2490095C2
Authority
RU
Russia
Prior art keywords
electrode
powder
discharge
bodies
compressed powder
Prior art date
Application number
RU2011138003/02A
Other languages
English (en)
Other versions
RU2011138003A (ru
Inventor
Мицутоси ВАТАНАБЕ
Хироки ЙОСИДЗАВА
Хироюки ОТИАИ
Кеухеи НОМУРА
Юкихиро СИМОДА
Original Assignee
АйЭйчАй КОРПОРЕЙШН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by АйЭйчАй КОРПОРЕЙШН filed Critical АйЭйчАй КОРПОРЕЙШН
Publication of RU2011138003A publication Critical patent/RU2011138003A/ru
Application granted granted Critical
Publication of RU2490095C2 publication Critical patent/RU2490095C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

Изобретение относится к порошковой металлургии, в частности к получению спеченного электрода и разрядной обработке поверхности с его помощью. Порошок, включающий электропроводный материал, размещают в пресс-форме так, чтобы получить множество спрессованных порошковых тел. Множество спрессованных порошковых тел размещают во взаимном плотном контакте, прикладывают к ним изостатическое давление и спекают. При разрядной обработке спеченное тело подводят к поверхности и создают электрический разряд. 3 н. и 2 з.п. ф-лы, 7 ил.

Description

Область техники
[0001] Настоящее изобретение относится к электроду для использования электрического разряда при формировании покрытия или осаждении на объекте, а также к способу формирования покрытия или осаждения с помощью него.
Уровень техники
[0002] Подведением нерасходуемого электрода близко к телу-объекту в масле или в воздухе и созданием электрического разряда между ними тело-объект может быть подвергнуто размерной обработке. Эту технологию обычно называют «электроискровой обработкой» и используют для обеспечения точной размерной обработки и образования сложных форм. В определенных условиях, таких как те, когда вместо нерасходуемого электрода используется расходуемый электрод, например, спрессованное порошковое тело или иное, предпочтительно происходит расходование электрода вместо размерной обработки тела-объекта. Материал, составляющий электрод, или результат его реакции в это время покрывает противоположную электроду область на теле-объекте, тем самым позволяя проводить обработку поверхности тела-объекта. Соответствующая технология раскрыта в международной публикации WO 99/58744. В этой публикации данная технология названа «разрядной обработкой поверхности».
Раскрытие изобретения
[0003] Из вышеприведенного описания понятно, что объект разрядной обработки поверхности по существу ограничен областью, противоположной электроду. Это свойство является одним из преимуществ разрядной обработки поверхности, так как оно обеспечивает локализованную обработку поверхности. С другой стороны, в том случае, где обработка поверхности должна осуществляться на большой площади равномерно, это может быть недостатком.
[0004] Настоящее изобретение было создано с учетом вышеуказанной проблемы, и его цель заключается в обеспечении такой технологии, которая позволяет обрабатывать поверхность большой площади, будучи основанной на разрядной обработке поверхности.
[0005] По первому аспекту настоящего изобретения способ изготовления электрода для разрядной обработки поверхности содержит этапы: укладку и прессование порошка, включающего электропроводный материал, в пресс-форме так, чтобы получить множество спрессованных порошковых тел; соединение множества спрессованных порошковых тел вместе размещением множества спрессованных порошковых тел во взаимном плотном контакте и прикладыванием изостатического давления к размещенным спрессованным порошковым телам; и спекание соединенных спрессованных порошковых тел так, чтобы получить спеченное тело.
[0006] Предпочтительно, способ изготовления дополнительно включает этап предварительного изостатического прессования, на котором изостатическое давление прикладывают к каждому спрессованному порошковому телу отдельно. Более предпочтительно, в способе изготовления изостатическое давление на этапе соединения идентично давлению на этапе укладки и прессования, а второе изостатическое давление на этапе предварительного изостатического прессования ниже изостатического давления на этапе соединения.
[0007] По второму аспекту настоящего изобретения способ обработки поверхности тела-объекта содержит этапы: укладка и прессование порошка, включающего электропроводный материал, в пресс-форме так, чтобы получить множество спрессованных порошковых тел; соединение множества спрессованных порошковых тел вместе размещением множества спрессованных порошковых тел во взаимном плотном контакте и прикладыванием изостатического давления к размещенным спрессованным порошковым телам; спекание соединенных спрессованных порошковых тел так, чтобы получить спеченное тело; и осуществление разрядной обработки поверхности подведением спеченного тела близко к телу-объекту и созданием электрического разряда.
[0008] Предпочтительно, способ обработки поверхности дополнительно включает этап предварительного изостатического прессования, на котором изостатическое давление прикладывают к каждому спрессованному порошковому телу отдельно. Более предпочтительно, в способе обработки поверхности изостатическое давление на этапе соединения идентично давлению на этапе укладки и прессования, а второе изостатическое давление на этапе предварительного изостатического прессования ниже изостатического давления на этапе соединения.
Краткое описание чертежей
[0009] Фиг.1 представляет собой чертеж, поясняющий способ изготовления электрода в соответствии с вариантом воплощения настоящего изобретения, который иллюстрирует этап получения спрессованного порошкового тела прессованием.
Фиг.2 представляет собой чертеж, поясняющий этап в способе изготовления, на котором изостатическое давление прикладывают к каждому спрессованному порошковому телу отдельно.
Фиг.3 представляет собой чертеж, поясняющий этап в способе изготовления, на котором размещают множество спрессованных порошковых тел и далее соединяют их вместе.
Фиг.4 представляет собой вид в перспективе, иллюстрирующий пример множества спрессованных порошковых тел, размещенных во взаимном плотном контакте.
Фиг.5 представляет собой схематический чертеж, показывающий этап спекания в способе изготовления.
Фиг.6 представляет собой схематический чертеж, показывающий способ разрядной обработки поверхности в соответствии с данным вариантом воплощения.
Фиг.7 представляет собой схематический чертеж, показывающий вариант способа разрядной обработки поверхности, в котором электрод и тело-объект установлены в электроискровой машине.
Лучший вариант осуществления изобретения
[0010] По всему настоящему описанию и приложенным чертежам термин «разрядная обработка поверхности» определяется и используется как действие по использованию электрического разряда в электроискровой машине для расходования электрода вместо размерной обработки тела-объекта и адгезии составляющего электрод материала или продукта реакции между составляющим электрод материалом и жидкостью для обработки или газом для обработки к телу-объекту в качестве покрытия.
[0011] Далее будет описан вариант воплощения настоящего изобретения со ссылкой на приложенные чертежи.
[0012] В данном варианте воплощения сначала получают расходуемый электрод для разрядной обработки поверхности.
[0013] В качестве материала для расходуемого электрода предпочтительным является электропроводный порошок. Электропроводный порошок может, в целом, состоять из любого металла или любого вещества-полупроводника или, альтернативно, смеси любого метала или вещества-полупроводника и другого вещества, такого как подходящая керамика. Что выбрать, определяется в соответствии со свойствами, требуемыми покрытию, образуемому на теле-объекте.
[0014] Предпочтительно, в порошок добавляют связующее и затем соответственно смешивают с ним. В качестве примеров связующего могут быть приведены парафин, карнаубкский воск, полипропилен, полиэтилен, акриловая смола, метакриловая смола и ацетальные смолы, однако может быть применимым любое вещество, которое способствует свободному связыванию между частицами порошка и не оставляет нежелательные остаточные вещества после спекания.
[0015] Порошок 7 с добавленным к нему связующим или тому подобным укладывают, как показано на фиг.1(а), в пресс-форму 9. Пресс-форма 9 содержит матрицу 11, например, цилиндрической формы, верхний пуансон 13 и нижний пуансон 15, которые оба соответствуют внутреннему отверстию 11h матрицы 11. Пуансоны 13, 15 способны скользить относительно внутреннего отверстия 11h, а также устанавливают плотную посадку с внутренним отверстием 11h с тем, чтобы предотвращать утечку порошка 7 во время прессования.
[0016] Пресс-форму 9 с уложенным в нее порошком 7 загружают в подходящую прессовочную машину. Верхний и нижний пуансоны 13, 15 сжимают посредством толкателей 17, 19 прессовочной машины так, что уложенный в пресс-форму 9 порошок 7 спрессовывается. Посредством этого прессования порошок 7, как показано на фиг.1(b), агрегируют, тем самым получая спрессованное порошковое тело 21, которое трудно разрушить. Форма спрессованного порошкового тела 21 может должным образом регулироваться за счет формы внутреннего отверстия 11h и количества порошка 7 и представляет собой, например, форму четырехугольной призмы с размерами 15(В)Ч8(Ш)Ч100(Д) мм3. Конечно, возможны другие различные формы, такие как форма шестиугольной призмы. Этот этап осуществляют повторно и в результате получают множество спрессованных порошковых тел 21.
[0017] Предпочтительно, предварительно перед последовательными этапами осуществляют процесс приложения изостатического давления к спрессованным порошковым телам 21 по отдельности, такой как холодное изостатическое прессование (ХИП). Более конкретно, каждое спрессованное порошковое тело 21, как показано на фиг.2(а), отдельно уплотняют в тонком резиновом мешке 23. Вместо резины может быть использован любой подходящий упругий материал. Сжатое порошковое тело 21 вместе с мешком 23 в этом состоянии, как показано на фиг.2(b), погружают в жидкость L в сосуде 25 высокого давления и далее изостатически прессуют. Этот этап улучшает равномерность плотности спрессованного порошкового тела 21 и соответственно улучшает однородность конечного продукта.
[0018] Предпочтительно, изостатическое давление на этапе предварительного изостатического прессования является более низким, чем давление на этапе прессования порошка 7. Такое изостатическое давление благоприятно для предотвращения деформации спрессованного порошкового тела 21.
[0019] Далее спрессованные порошковые тела 21 размещают во взаимном плотном контакте. Фиг.3(а) иллюстрирует один из таких примеров. Может быть применен вариант, в котором спрессованные порошковые тела 21, имеющие общую длину, размещены параллельно, а также они могут содержать размещенные последовательно короткие спрессованные порошковые тела 21. Количество спрессованных порошковых тел 21 может быть при необходимости увеличено или уменьшено. Предпочтительно, они приводятся в состояние, в котором их концы совмещены заподлицо друг с другом, как показано на фиг.3(а).
[0020] Множество спрессованных порошковых тел 21 уплотняют в мешке 27 из резины или тому подобного, а затем в отношении них осуществляют ХИП, как показано на фиг.3(b). Альтернативно, вместо ХИП может быть применено горячее изостатическое прессование (ГИП). В случае применения ГИП условия нагревания могут быть заданы так, что в спрессованных порошковых телах 21 должным образом протекает предварительное спекание. Альтернативно, оно может быть модифицировано так, что при ГИП одновременно осуществляют этап спекания, как описывается позже. Приложением изостатического давления посредством жидкости L в сосуде 25 высокого давления множество спрессованных порошковых тел 21 соединяют вместе с получением соединенного тела 29, как показано на фиг.4.
[0021] Предпочтительно, изостатическое давление, прикладываемое к множеству спрессованных порошковых тел 21, идентично давлению на этапе прессования порошка 7. Такое изостатическое давление благоприятно для способствования соединению при предотвращении деформации спрессованных порошковых тел 21.
[0022] Хотя соединенное тело 29 состоит из множества спрессованных порошковых тел 21, эти спрессованные порошковые тела 21 взаимно соединены, и поэтому соединительное тело 29 трудно разрушить. При сохранении этого состояния соединенное тело 29, как показано на фиг.5, вводят в нагревательную печь 31.
[0023] Что касается нагревательной печи 31, то предпочтительной является любая печь, обладающая способностью управления атмосферой с целью предотвращения окисления. Предпочтительно, атмосферу в нагревательной печи 31 устанавливают неокислительной. В качестве примера неокислительной атмосферы могут быть приведены вакуум ниже 10-1 Па и инертные атмосферы с инертными газами, такими как азот или аргон.
[0024] Нагревательная печь 31 дополнительно содержит соответствующее нагревающее средство 33, такое как углеродный нагреватель. При нагревании соединенного тела 29 посредством нагревающего средства 33 протекает спекание. В отношении температуры нагревания предпочтительны более высокие температуры в силу содействия спеканию, однако, температуры значительно ниже температуры плавления материала, составляющего порошок 7, являются предпочтительными в силу предотвращения явления, при котором электрод становится трудно расходуемым, когда спекание протекает чрезмерно. Поэтому в качестве примера температуры нагревания можно привести 0,5-0,8 Tпл, где Tпл (в градусах С) представляет собой температуру плавления материала, составляющего порошок 7.
[0025] По мере протекания спекания добавки, такие как связующее, содержащиеся в спрессованных порошковых телах 21, испаряются и затем улетучиваются, при этом между частицами в порошке появляются дополнительные прочные связи. Более того, также прочные связи появляются между множеством спрессованных порошковых тел 21. В результате спеченное тело становится единым сплошным твердым телом. Чтобы использовать его в качестве электрода для разрядной обработки поверхности, спекание должно быть оставлено на стадии, когда пустоты между частицами не исчезают. Согласно вышеупомянутому процессу в значительных случаях пустоты между частицами не появляются без принятия каких-либо особых мер, тем самым давая пористое спеченное тело.
[0026] Между тем, соединение и спекание могут быть осуществлены одновременно, как уже описано, посредством ГИП вместо независимого выполнения этапа спекания и этапа соединения.
[0027] После завершения спекания спеченное тело должным образом охлаждают с тем, чтобы предотвратить чрезмерный тепловой удар по нему. После этого спеченное тело вынимают из нагревательной печи 31. Спеченное тело, как показано на фиг.6, может быть использовано в качестве электрода 1 для разрядной обработки поверхности.
[0028] Разрядная обработка поверхности с использованием электрода 1, образованного из спеченного тела, полученного описанным выше способом, далее будет описана со ссылкой на фиг.6 и 7. Хотя такая разрядная обработка поверхности будет применимой к различным продуктам, фиг.6 иллюстрирует пример, в котором телом-объектом 3 обработки поверхности является лопатка ротора газотурбинного двигателя, а областью объекта является вершина пера лопатки ротора.
[0029] Ссылаясь на фиг.7, электроискровая машина 41 содержит электропроводное основание 43, ванну 45 обработки, выполненную с возможностью вмещать жидкость F для обработки, блок 47 питания и головку 49, к которой крепится электрод. Головка 49 выполнена с возможностью подниматься и опускаться посредством любого подходящего средства, при этом дополнительно электроискровая машина 41 может содержать сервопривод 51 для поднятия и опускания головки. В ванне 45 обработки помещается непроводящая жидкость F для обработки, такая как масло, а рабочий конец электрода 1 и тело-объект 3 оба погружаются в жидкость F для обработки. Альтернативно, разрядная обработка поверхности может быть осуществлена в воздухе или каком-либо газе вместо жидкости F. Тело-объект 3 крепится на основании 43 так, чтобы обеспечить проводимость тока через него. Оба полюса блока 47 питания соответственно электрически соединены с основанием 43 и головкой 49, тем самым обеспечивая проводимость тока от блока 47 питания к электроду 1 и телу-объекту 3.
[0030] В электроискровой машине 41, как описано выше, электрод 1 подводится близко к интересующей области тела-объекта 3. Затем подается электричество от блока 47 питания и тем самым между электродом 1 и телом-объектом 3 создается разряд. Предпочтительно, электричество подается прерывисто так, что разряд создается в импульсном режиме. Так как электрод 1 является пористым, как описано выше, он претерпевает расходование (износ) предпочтительно относительно тела-объекта 3, тем самым материал, составляющий электрод 1, в качестве покрытия прилипает к интересующей области на теле-объекте 3. Альтернативно, при надлежащем выборе составляющего электрод 1 материала и жидкости F для обработки покрытием 5 может быть продукт их реакции. Часть энергии разряда тратится на интересующую область тела-объекта 3, вызывая местное расплавление, и потому связывание между покрытием 5 и телом-объектом 3 является прочным. Дополнительно, так как та часть в теле-объекте 3, на которую тратится энергия разряда, является локализованной и поверхностной, тело-объект 3 почти не испытывает термического повреждения и деформации.
[0031] По мере того как электрод 1 расходуется, на нижнем конце электрода 1 развивается выемка 1t, как показано на фиг.6(b). Выемка 1t имеет форму, соответствующую интересующей области тела-объекта 3. Когда такое расходование достигает значительного уровня, предпочтительно немного переместить электрод 1 или тело-объект 3 так, чтобы иметь противоположной области объекта «свежую» поверхность электрода 1. Фиг.6(b) иллюстрирует состояние после повторения таких процессов несколько раз. Альтернативно, вместо того, чтобы немного перемещать электрод 1 или тело-объект 3, может быть предпочтительно переворачивать его горизонтально. Фиг.6(с) иллюстрирует такой пример.
[0032] Так как согласно данному варианту воплощения множественные спрессованные порошковые тела 21 образуются отдельно, каждое спрессованное порошковое тело 21 является точным по форме, а также равномерным по плотности. Так как электрод 1 образуется их соединением и спеканием, эти свойства отражаются и в получаемом продукте, тем самым электрод 1 обладает высокой точностью по форме и высокой равномерностью. Напротив, в соответствии с исследованиями авторов настоящего изобретения, когда электрод относительно большого размера не образуется данным способом, а образуется непосредственно формованием и спеканием, это приводит к возникновению неравномерности плотности от его периферии к его центру и часто деформации из-за усадки вокруг его центра. Такое спеченное тело не является пригодным в качестве электрода для разрядной обработки поверхности в силу его формы и неоднородности. По сравнению с такой ситуацией, данный вариант воплощения обладает заметным преимуществом по точности формы и однородности.
[0033] Согласно данному варианту воплощения электрод с точностью формы и однородностью может быть выполнен, даже если он является крупноразмерным. Сделано возможным масштабируемое увеличение его размеров при том, что точность формы и однородность остаются на высоких уровнях. Данный вариант воплощения делает возможной равномерную обработку поверхность на большой площади. Так как он основан на разрядной обработке поверхности, все еще можно воспользоваться тем преимуществом, что площадь обрабатываемой поверхности ограничена в пределах области, противоположной электроду.
[0034] Несмотря на то, что изобретение было описано выше со ссылкой на определенные варианты воплощения изобретения, изобретение не ограничивается описанными выше вариантами воплощения. В свете вышеуказанных сведений специалистам в данной области техники придут на ум модификации и изменения описанных выше вариантов воплощения.
Промышленная применимость
[0035] Предусмотрена технология, которая обеспечивает обработку поверхности большой площади при том, что она основана на разрядной обработке поверхности.

Claims (5)

1. Способ изготовления электрода для разрядной обработки поверхности, содержащий этапы:
укладка и прессование порошка, включающего электропроводный материал, в пресс-форме так, чтобы получить множество спрессованных порошковых тел;
соединение множества спрессованных порошковых тел вместе размещением множества спрессованных порошковых тел во взаимном плотном контакте и прикладыванием изостатического давления к размещенным спрессованным порошковым телам; и
спекание соединенных спрессованных порошковых тел так, чтобы получить спеченное тело.
2. Способ по п.1, дополнительно содержащий этап предварительного изостатического прессования, на котором изостатическое давление прикладывают к каждому спрессованному порошковому телу отдельно.
3. Способ по п.2, в котором изостатическое давление на этапе соединения идентично давлению на этапе укладки и прессования, а второе изостатическое давление на этапе предварительного изостатического прессования ниже изостатического давления на этапе соединения.
4. Электрод для разрядной обработки поверхности, характеризующийся тем, что он изготовлен способом по любому из пп.1-3.
5. Способ разрядной обработки поверхности, включающий подведение электрода к поверхности и обработку созданием электрического разряда, характеризующийся тем, что используют электрод по п.4.
RU2011138003/02A 2009-02-18 2010-02-15 Способ изготовления электрода и разрядная обработка поверхности с помощью него RU2490095C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-035205 2009-02-18
JP2009035205 2009-02-18
PCT/JP2010/052191 WO2010095590A1 (ja) 2009-02-18 2010-02-15 電極の製造方法及びこれを利用した放電表面処理

Publications (2)

Publication Number Publication Date
RU2011138003A RU2011138003A (ru) 2013-03-27
RU2490095C2 true RU2490095C2 (ru) 2013-08-20

Family

ID=42633872

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011138003/02A RU2490095C2 (ru) 2009-02-18 2010-02-15 Способ изготовления электрода и разрядная обработка поверхности с помощью него

Country Status (6)

Country Link
US (1) US20110300311A1 (ru)
EP (1) EP2399696B1 (ru)
JP (1) JP5344030B2 (ru)
CN (2) CN104107916A (ru)
RU (1) RU2490095C2 (ru)
WO (1) WO2010095590A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4307444B2 (ja) 2002-09-24 2009-08-05 株式会社Ihi 高温部材の擦動面のコーティング方法および高温部材と放電表面処理用電極
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
CA2483528C (en) * 2002-10-09 2015-07-21 Ishikawajima-Harima Heavy Industries Co., Ltd. Rotating member and method for coating the same
CN101146930B (zh) * 2005-03-09 2010-11-24 株式会社Ihi 表面处理方法及修理方法
CN110899693B (zh) * 2019-12-09 2022-06-14 株洲钻石切削刀具股份有限公司 一种粉末冶金零件的成型方法及成型装置
CN111014852B (zh) * 2019-12-11 2021-02-09 深圳大学 粉末冶金复合材料电极及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU745624A1 (ru) * 1977-07-11 1980-07-07 Ждановский металлургический институт Способ получени порошковых электродных материалов
SU1625636A1 (ru) * 1989-03-27 1991-02-07 Краматорский Индустриальный Институт Плав щийс электрод и способ его изготовлени
RU2294397C2 (ru) * 2002-07-30 2007-02-27 Мицубиси Денки Кабусики Кайся Электрод для обработки поверхности электрическим разрядом, способ обработки поверхности электрическим разрядом и устройство для обработки поверхности электрическим разрядом

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193800A (ja) * 1985-02-21 1986-08-28 Kobe Steel Ltd 複合ビレツトの製造法
US5774779A (en) * 1996-11-06 1998-06-30 Materials And Electrochemical Research (Mer) Corporation Multi-channel structures and processes for making such structures
AT1770U1 (de) * 1996-12-04 1997-11-25 Miba Sintermetall Ag Verfahren zum herstellen eines sinterformkörpers, insbesondere eines zahnriemen- oder kettenrades
JPH10296498A (ja) * 1997-04-22 1998-11-10 Toshiba Mach Co Ltd 粉末成形体の製造方法
WO1999058744A1 (fr) 1998-05-13 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Electrode pour traitement de surface par decharge, procede de fabrication de ladite electrode et procede et dispositif de traitement de surface par decharge
CN1126628C (zh) * 1999-02-24 2003-11-05 三菱电机株式会社 放电表面处理方法以及装置
JP3976991B2 (ja) * 2000-07-12 2007-09-19 本田技研工業株式会社 金属製被鋳包み部材
EP1643007B1 (en) * 2003-05-29 2014-01-15 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment electrode and process for its manufacture
JP2004359998A (ja) * 2003-06-04 2004-12-24 Hitachi Ltd 化合物粒子分散合金層を有する金属部材の製造方法及び摺動部材
JP4508736B2 (ja) * 2004-06-15 2010-07-21 靖 渡辺 銅系材料およびその製造方法
JP2006249462A (ja) * 2005-03-08 2006-09-21 Ishikawajima Harima Heavy Ind Co Ltd 電極の製造方法、及び電極
CN101146930B (zh) * 2005-03-09 2010-11-24 株式会社Ihi 表面处理方法及修理方法
KR101108818B1 (ko) * 2006-09-11 2012-01-31 가부시키가이샤 아이에이치아이 방전표면처리용 전극의 제조방법 및 방전표면처리용 전극
EP2179808B8 (en) * 2007-07-18 2015-01-07 IHI Corporation Process for producing electrode for discharge surface treatment.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU745624A1 (ru) * 1977-07-11 1980-07-07 Ждановский металлургический институт Способ получени порошковых электродных материалов
SU1625636A1 (ru) * 1989-03-27 1991-02-07 Краматорский Индустриальный Институт Плав щийс электрод и способ его изготовлени
RU2294397C2 (ru) * 2002-07-30 2007-02-27 Мицубиси Денки Кабусики Кайся Электрод для обработки поверхности электрическим разрядом, способ обработки поверхности электрическим разрядом и устройство для обработки поверхности электрическим разрядом

Also Published As

Publication number Publication date
WO2010095590A1 (ja) 2010-08-26
EP2399696A4 (en) 2013-11-06
JP5344030B2 (ja) 2013-11-20
RU2011138003A (ru) 2013-03-27
US20110300311A1 (en) 2011-12-08
EP2399696A1 (en) 2011-12-28
EP2399696B1 (en) 2017-09-27
JPWO2010095590A1 (ja) 2012-08-23
CN104107916A (zh) 2014-10-22
CN102317011A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
RU2490095C2 (ru) Способ изготовления электрода и разрядная обработка поверхности с помощью него
JP6811808B2 (ja) 生成的に形成すべき3次元物体を支持するための支持構造を製造するための方法
CN108558398B (zh) 一种脉冲放电室温闪速烧结纳米陶瓷材料的方法
KR100659008B1 (ko) 선택적 소결 억제 방법을 이용한 금속 부품 제작
JP6785323B2 (ja) ワークピースを機械加工するためのシステムおよび方法ならびにワークピースから機械加工した物品
CN107498047A (zh) 一种钨铜复合材料及其制备方法
CN108290216B (zh) 3d打印用粉末及3d打印方法
RU2465981C2 (ru) Способ изготовления электрода для искровой модификации поверхности и электрод для искровой модификации поверхности
CN101612665B (zh) 压制部件的选择性烧结
KR100873467B1 (ko) 통전 소결방법 및 장치
EP1659196B1 (en) Metal product producing method, metal product, metal component connecting method, and connection structure
WO2018194481A1 (en) Additive manufacturing technique including direct resistive heating of a workpiece
CN214920480U (zh) 一种高效放电等离子体烧结模具
CN112157265A (zh) 一种电阻烧结制备金属纤维多孔材料的方法及设备
CN1802454A (zh) 放电表面处理方法及放电表面处理装置
CN109478655B (zh) 用于制造用于燃料电池的集电器的方法和燃料电池
WO2008010263A1 (fr) Procédé de production d'une électrode pour le traitement de surface par décharge et procédé de traitement de surface par décharge
CN112091211B (zh) 一种扩散多元节的制备方法
CN113020545B (zh) 一种激光烧结砂芯的二次固化方法及固化装置
JPS61270336A (ja) 中空工具の製造方法
JPS60127209A (ja) 炭素部品の製造方法
Tada et al. Fabrication of a dense long rod through pulse discharge sintering assisted by traveling zone heating
RU2593564C1 (ru) Способ горячего прессования с целью получения комбинированных изделий из твердого сплава и стали типа "шип"
CN115338425A (zh) 复杂形状零件复合制造方法
CN117026140A (zh) 一种致密陶瓷涂层及其制备方法和化学气相沉积设备

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190216