RU2489348C2 - Применение биометанола для получения водорода и биотоплива, способ получения биоводорода и установка для производства биотоплива - Google Patents

Применение биометанола для получения водорода и биотоплива, способ получения биоводорода и установка для производства биотоплива Download PDF

Info

Publication number
RU2489348C2
RU2489348C2 RU2010119343/05A RU2010119343A RU2489348C2 RU 2489348 C2 RU2489348 C2 RU 2489348C2 RU 2010119343/05 A RU2010119343/05 A RU 2010119343/05A RU 2010119343 A RU2010119343 A RU 2010119343A RU 2489348 C2 RU2489348 C2 RU 2489348C2
Authority
RU
Russia
Prior art keywords
biomethanol
biohydrogen
production
hydrogen
purified
Prior art date
Application number
RU2010119343/05A
Other languages
English (en)
Other versions
RU2010119343A (ru
Inventor
Петри КУККОНЕН
Пекка КНУУТТИЛА
Пекка ЙОКЕЛА
Original Assignee
Юпм-Киммене Ойй
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39386023&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2489348(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FI20075794A external-priority patent/FI20075794L/fi
Application filed by Юпм-Киммене Ойй filed Critical Юпм-Киммене Ойй
Publication of RU2010119343A publication Critical patent/RU2010119343A/ru
Application granted granted Critical
Publication of RU2489348C2 publication Critical patent/RU2489348C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/06Treatment of pulp gases; Recovery of the heat content of the gases; Treatment of gases arising from various sources in pulp and paper mills; Regeneration of gaseous SO2, e.g. arising from liquors containing sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/049Composition of the impurity the impurity being carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/169Integration of gasification processes with another plant or parts within the plant with water treatments
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/42Fischer-Tropsch steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0007Recovery of by-products, i.e. compounds other than those necessary for pulping, for multiple uses or not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Paper (AREA)

Abstract

Изобретение может быть использовано в химической и целлюлозной промышленности. Для получения биоводорода и углеводородного биотоплива используют биометанол, полученный из черного щелока, представляющего собой водный раствор, содержащий остатки лигнина, гемицеллюлозу и неорганические реагенты, используемые в крафт-процессе получения целлюлозы. Биометанол очищают и подвергают риформингу с получением биоводорода. Полученный биоводород очищают и выделяют. Затем его используют в качестве источника водорода на стадии получения потока биоуглеводородов. Стадию получения потока биоуглеводородов осуществляют с использованием реакции Фишера-Тропша для синтеза синтез-газа из биомассы, гидродеоксигенации биологических триглицеридов или жирных кислот или их комбинаций. Стадия получения потока биоуглеводородов включает одну из операций, выбранную из регулирования соотношения водорода и монооксида углерода в синтез-газе, крекинга/изомеризации парафинов Фишера-Тропша, гидродеоксигенации вышеуказанных биологических триглицеридов или жирных кислот, гидроизомеризации н-парафинов и восстановления катализаторов. Полученный поток биоуглеводородов разделяют на фракции. Затем из одной из этих фракций выделяют биотопливо. Установка для производства биотоплива (20) включает установку (19) для получения целлюлозы с использованием крафт-процесса, блок (12) для выделения биометанола, блок (13) для очистки биометанола, риформинг - блок (7) и блок (8) для очистки газовой смеси с получением очищенного биоводорода. Изобретение позволяет производить биотопливо, имеющее 100%-ное природное происхождение. 4 н. и 15 з.п. ф-лы, 3 ил., 3 пр.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к применению биометанола, полученного при производстве биоводорода в целлюлозной промышленности. Предпочтительный биометанол представляет собой очищенный биометанол, полученный из черного щелока. Изобретение также относится к способу производства биоводорода из биометанола, полученного из черного щелока, и к способам производства углеводородного биотоплива с использованием такого биоводорода в качестве источника водорода. Наконец, изобретение относится к установке для производства биотоплива, предназначенной для производства топлива из биоводорода и биоуглеводорода, и к биотопливу, произведенному таким способом.
Настоящее изобретение обеспечивает усовершенствования известных способов использования биоматериалов для производства биотоплива с использованием процессов получения углеводородов, таких как процесс Фишера-Тропша и гидродеоксигенация. Биоводород согласно настоящему изобретению может быть использован для преобразования промежуточных углеводородов в конечные продукты, имеющие желаемые химические и физические свойства. Для всех процессов, указанных выше, в качестве реагента требуется водород, и многие реакции предпочтительно протекают при повышенном давлении водорода.
Настоящее изобретение обеспечивает преимущества для деревообрабатывающей промышленности, так как оно способствует утилизации одного из ее низкосортных побочных продуктов, а именно - биометанола. Использование биометанола для производства биоводорода означает, что могут быть получены продукты, представляющие собой углеводородное биотопливо и имеющие 100%-но биологическое происхождение. В предшествующем уровне техники производство биотоплива обычно зависело от внешних источников водорода, который обычно получали посредством парового риформинга природного газа.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Сокращающиеся резервы ископаемого топлива и выбросы вредных газов, связанные с их использованием, повысили интерес к использованию биологических материалов, особенно происходящих из непищевых обновляемых ресурсов, для получения жидкого топлива, способного заменить ископаемое топливо. Из предшествующего уровня техники известно несколько способов получения жидкого топлива из биологических исходных материалов. Один из способов, достигший коммерческого успеха, представляет собой производство биодизельного топлива (FAME-топлива на основе сложных метиловых эфиров жирных кислот) посредством трансэстерификации спиртами масел, полученных из биомассы.
Биотопливо также успешно получали из углеводородов, полученных из продуктов газификации биомассы, с использованием синтеза Фишера-Тропша и из углеводородов, полученных посредством гидродеоксигенации триглицеридов и жирных кислот биологического происхождения. Кроме того, спирты, такие как этанол и метанол, полученные из биологических материалов, предлагались для использования в качестве заменителей ископаемого топлива в двигателях внутреннего сгорания.
Метанол - простейший из спиртов, и он имеет химическую формулу СН3ОН. Его используют в качестве растворителя и в качестве промышленного химиката при производстве широкого спектра сырьевых материалов, в том числе формальдегида, метилтретбутилового эфира (МТВЕ), уксусной кислоты, диметилтерефталата (DMT), метилметакрилата (ММА), метиламинов, антифризов и т.п. Метанол также предлагали для использования в производстве неископаемого топлива, такого как сложные метиловые эфиры жирных кислот (FAME), диметиловый эфир (DME), метанол, конвертированный в бензин (MTG), и метанол, конвертированный в олефины (МТО). Кроме того, предлагалось использовать метанол в качестве источника водорода для топливных элементов.
Метанол также называют «древесным спиртом», поскольку первоначально его получали в качестве побочного продукта деструктивной перегонки древесины. В настоящее время его обычно получают синтетически в многоступенчатом процессе, в котором осуществляют риформинг природного газа и пара в печи с получением водорода и монооксида углерода. Затем газообразные водороды и монооксид углерода реагируют между собой в присутствии катализатора с образованием метанола.
Биометанол, т.е. метанол биологического происхождения, можно получить из различных источников. Обычно его получают посредством анаэробного разложения биомассы, такой как отходы различных сельскохозяйственных или лесных культур, отходов жизнедеятельности животных и сточных вод, муниципальных отходов и мусора, пульпы сахарной свеклы, глицерина и т.п.
Черный щелок, образующийся в процессе сульфатной варки целлюлозы (в крафт-процессе), был предложен в качестве сырья для производства метанола, предназначенного для использования в качестве неископаемого топлива. В этом случае черный щелок газифицируют с получением смеси водорода и монооксида углерода (синтез-газа), который затем конвертируют в метанол.
Биометанол также получают в качестве прямого побочного продукта в процессе получения целлюлозы из древесины. В крафт-процессе нежелательные побочные реакции сульфида натрия с различными компонентами древесины приводят к образованию большого числа различных органических серосодержащих соединений. При испарении черного щелока образуется конденсат, содержащий биометанол. Однако этот биометанол загрязнен вышеуказанными соединениями серы и имеет очень неприятный запах. Загрязненный метанол на целлюлозно-бумажных фабриках традиционно сжигали с целью получения содержащейся в нем энергии и разрушения компонентов, придающих неприятный запах.
Очистка метанола, полученного из черного щелока, описана на предшествующем уровне техники. Так, в Патенте США 5,450,892 описан процесс очистки отходящих газов, образующихся в процессе получения конденсата выпарки черного щелока. Щелочная очистка удаляет газы, такие как сероводород, метилмеркаптан, диметилсульфид и диметилдисульфид, но оставляет большую часть метанола в очищенных газах. Затем газы сжигают.
В Патенте США 5,718,810 описан способ выделения метанола из процессов получения целлюлозы из древесины на основе серы с использованием экстрактивной перегонки. Согласно этому способу, метанол выделяют из паров, образующихся в процессе получения целлюлозы, которые содержат по меньшей мере метанол и диметилсульфид. Пары перегоняют в две или три стадии с получением метанола, чистота которого может достигать 100%.
В производстве биотоплива на основе углеводородов исходным материалом обычно является биомасса, которую газифицируют с получением синтез-газа, или сингаза. Синтез-газ затем подают в реактор Фишера-Тропша (ФТ) для получения биоуглеводородов. Примерами подходящих источников биомассы являются отходы лесозаготовок, городские древесные отходы, побочные продукты и отходы целлюлозно-бумажной промышленности, отходы пиломатериалов, древесная щепа, опилки, солома, дровяная древесина, сельскохозяйственные отходы, фекалии и т.п.
Газификаторы исследовались в течение более чем ста лет, и разработано много различных типов газификаторов. Однако один из недостатков газификаторов биомассы существует до сих пор, а именно - их неспособность обеспечивать постоянный поток синтез-газа, имеющего оптимальное соотношение Н2/СО, равное примерно 2, для использования в наиболее эффективном трехстадийном синтезе Фишера-Тропша в суспензии на основе кобальтового катализатора. Для корректировки соотношения водорода и монооксида углерода в синтез-газе, полученном из биомассы, необходим дополнительный водород.
Другая возможность получения биотоплива на основе углеводородов состоит в использовании в качестве исходных материалов биологических триглицеридов (биомасел) или биологических жирных кислот (биокислот). Для получения биотоплива исходный материал обрабатывают с использованием процесса гидродеоксигенации (HDO). В каталитическом HDO-процессе водород соединяется с кислородом с образованием воды, при этом выделяется желаемый парафиновый биоуглеводородный каркас, пригодный для химических манипуляций.
Следующая после FT- или HDO-процесса фаза получения биотоплива состоит в конверсии биоуглеводородного продукта. Процессы конверсии обычно включают в себя процессы крекинга и/или изомеризации, требующие водорода. Для получения подходящей (диапазона дизельного топлива) длины молекул биоуглеводородов и для обеспечения структуры боковых цепей, определяющей желаемую температуру помутнения и желаемое цетановое число, используют катализаторы типа одномерного молекулярного сита, такие как Pt/морденит, Pt-силикоалюминофосфат (SAPO) или Pt-цеолит ZSM-23,22 или эквивалентные. В типичных случаях в этих процессах конверсии используются относительно высокие давления водорода без значительного расхода водорода.
Паровой риформинг природного газа является наиболее распространенным способом массового коммерческого производства водорода. Это также наиболее дешевый способ. Он основан на подходе, состоящем в том, что при высоких температурах (700-1100°С) и в присутствии никелевого катализатора пар реагирует с метаном с образованием водорода согласно уравнению
СН4+H2O→СО+3Н2.
Дополнительный водород можно получить в низкотемпературной реакции конверсии водяного пара с полученным монооксидом углерода.
Дополнительный водород можно также получить из синтез-газа, полученного из биомассы, и из отходящих газов, образующихся при фракционировании биотоплива. Стандартной процедурой получения дополнительного водорода является хорошо известная реакция конверсии водяного пара (WGS) (СО+H2O→CO22). Однако WGS-реакция имеет свои недостатки. WGS-реакция - это каталитический процесс, который является трудно управляемым и чувствительным к загрязнениям синтез-газа. Кроме того, поскольку в WGS-реакции используется монооксид углерода, который является частью синтез-газа, то снижается общая конверсия углерода во всей схеме процесса.
Поэтому существует потребность в обеспечении альтернативных источников водорода для производства биотоплива. Для получения 100%-но биологического и неископаемого топлива необходим биоводородный продукт по разумным ценам. Биоводород должен предпочтительно производиться без использования монооксида углерода в WGS-реакции, поскольку монооксил углерода является компонентом, образующим строительные блоки биоуглеводородного топлива. Настоящее изобретение способствует удовлетворению этой потребности. Настоящее изобретение обеспечивает получение биоводорода из отходов целлюлозно-бумажной промышленности, а именно - из биометанола.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к применению биометанола, полученного в целлюлозно-бумажной промышленности, для производства биоводорода. Биометанол в типичном случае представляет собой очищенный биометанол, полученный из отработанного варочного щелока, или черного щелока. Биометанол можно получить из черного щелока, например, посредством дистилляции и/или отгонки. Перед использованием для производства биоводорода биометанол очищают. Перед использованием газообразного биоводорода для производства биоуглеводородного топлива могут быть проведены дополнительные операции очистки.
В одной из форм осуществления настоящего изобретения биоводород используют в установке для производства биотоплива, объединенной с установкой для получения целлюлозы и/или с установкой для получения бумаги.
Настоящее изобретение также относится к способу получения биоводорода, в котором неочищенный биометанол, полученный из черного щелока, очищают и подвергают риформингу, после чего выделяют биоводород. В процессе очистки удаляют серосодержащие примеси с неприятным запахом, которые загрязняют неочищенный биометанол, образующийся в крафт-процессе получения целлюлозы из древесины.
Изобретение также относится к способу производства углеводородного биотоплива, который включает в себя стадии, при которых
а) неочищенный биометанол, выделенный из черного щелока, очищают и подвергают риформингу с получением биоводорода и выделяют очищенный биоводород;
б) получают поток биоуглеводородов с использованием способа, выбранного из реакции Фишера-Тропша для синтеза синтез-газа из биомассы, гидродеоксигенации биологических триглицеридов или жирных кислот, или их комбинаций, причем
в) вышеуказанное получение потока биоуглеводородов на стадии б) включает в себя по меньшей мере одну операцию, выбранную из регулирования соотношения водорода и монооксида углерода в синтез-газе, крекинга/изомеризации парафинов Фишера-Тропша, гидродеоксигенации вышеуказанных биологических триглицеридов или жирных кислот, гидроизомеризации н-парафинов и восстановления катализаторов; и
г) вышеуказанный очищенный биоводород, полученный на стадии а), используют в качестве источника водорода по меньшей мере в одной операции, определенной в пункте в), а полученный поток биоуглеводородов разделяют на фракции, и по меньшей мере из одной из этих фракций выделяют биотопливо.
Биометанол может быть подвергнут риформингу совместно с потоком (или потоками) газов, выделяющихся в одной или более технологических стадиях процесса производства биотоплива и содержащих газообразные компоненты, пригодные для получения водорода посредством риформинга. Образующийся биоводород обычно используют непосредственно для производства биотоплива.
Настоящее изобретение также относится к комплексной установке для производства целлюлозы/биотоплива, которая состоит из установки для получения целлюлозы с использованием крафт-процесса, из которой берут черный щелок; блока для выделения неочищенного биометанола из вышеуказанного черного щелока; блока для очистки метанола, предназначенного для очистки вышеуказанного неочищенного биометанола с получением очищенного биометанола; риформинг-блока для риформинга вышеуказанного очищенного биометанола с получением газовой смеси, содержащей биоводород; блока для очистки водорода, предназначенной для очистки вышеуказанной газовой смеси с получением очищенного биоводорода; и блока для производства биотоплива, производящего биотопливо на основе биоуглеводородов, полученных из вышеуказанного биоводорода и биомассы.
В одной из форм осуществления настоящего изобретения биомасса представляет собой биологические отходы и/или побочные продукты установки для получения целлюлозы с использованием крафт-процесса, такие как отходы древесины, отходы лесозаготовок, кора, древесная щепа, черный щелок, талловое масло и жирные кислоты таллового масла и т.п. Установка для производства целлюлозы и установка для производства биотоплива предпочтительно соединены с одной или более дополнительными установками.
Конечным продуктом согласно настоящему изобретению является биотопливо, полученное из отходов и/или побочных продуктов деревообрабатывающей промышленности, причем это биотопливо состоит из биоуглеводородов, полученных из биологических отходов и/или побочных продуктов крафт-процесса, и биоводорода, полученного из черного щелока.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Фиг.1 представляет собой блок-схему производства биотоплива с использованием биоводорода, полученного из биометанола, полученного в процессе производства целлюлозы.
Фиг.2 представляет собой блок-схему производства биоводорода из неочищенного биометанола, полученного в процессе производства целлюлозы.
Фиг.3 представляет собой блок-схему использования биоводорода, полученного в установке для получения целлюлозы, соединенной с установкой для производства биотоплива.
СВЕДЕНИЯ, ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к производству биоводорода для использования в производстве биотоплива. В одной из форм осуществления настоящего изобретения изобретение относится к комплексной промышленной установке, в которой установка для производства биотоплива использует биологические отходы и/или побочные продукты соседней установки для производства целлюлозы для производства ценного биотоплива, способного заменить ископаемое топливо.
В настоящем описании и в формуле изобретения приведенные ниже термины имеют значения, указанные ниже.
Термин «биометанол» относится к метанолу СН3ОН, полученному из биологических источников, то есть из возобновляемых биологических (неископаемых) источников. В типичном случае биометанол согласно настоящему изобретению получают из отработанного варочного щелока (черного щелока).
Термины «биоводород» и «биоуглеводород» относятся к водороду и углеводороду, соответственно, полученным из биологических источников, то есть из возобновляемых биологических (неископаемых) источников.
Термины «биологический», «биоматериал» и «биологического происхождения» относятся к широкому спектру материалов, полученных из растений, животных и/или рыб, т.е. из биологических возобновляемых источников, в противоположность ископаемым источникам.
Термин «биомасса» относится к любому материалу биологического происхождения, который пригоден для газификации с целью получения синтез-газа, и/или который содержит триглицериды и/или жирные кислоты, пригодные для производства углеводородов. Биомасса обычно выбрана из необработанных материалов и отходов, происходящих от растений, животных и/или рыб, например -муниципальных отходов, промышленных отходов или побочных продуктов, сельскохозяйственных отходов или побочных продуктов (включая навоз), отходов или побочных продуктов деревообрабатывающей промышленности, отходов или побочных продуктов пищевой промышленности, морских растений (таких как водоросли) и их комбинаций. Материал биомассы предпочтительно выбран из непищевых ресурсов и непищевых растительных материалов, включая масла, жиры и воски:
Конкретный материал биомассы согласно настоящему описанию и формуле изобретения представляет собой «биологические отходы и/или побочные продукты деревообрабатывающей промышленности». Эта биомасса, полученная из древесины, включает в себя сорную древесину, отходы лесозаготовок, кору, городские древесные отходы, отходы пиломатериалов, древесную щепу, опилки, дрова, древесные материалы, бумагу, целлюлозу, побочные продукты процессов производства бумаги или строительных пиломатериалов, черный щелок, талловое масло и жирные кислоты таллового масла и т.п.
Термин «деревообрабатывающая промышленность» относится к любой отрасли промышленности, в которой в качестве сырьевого материала используется древесина. Типичными промышленными предприятиями деревообрабатывающей промышленности являются целлюлозно-бумажные фабрики, лесопильные заводы, фабрики по производству древесно-стружечных плит, производители дров, производители древесных гранул и т.п.
Термин «биологические отходы и/или побочные продукты установки для производства целлюлозы посредством крафт-процесса» относится к любым биологическим отходам и/или побочным продуктам, которые образуются в крафт-процессе производства целлюлозы, и которые можно использовать для получения углеводородов. Этот термин обычно относится к остаткам древесины, отходам лесопильного производства, коре, древесной щепе и черному щелоку, а также к талловому маслу и жирным кислотам таллового масла.
Термин «биотопливо» относится к топливу, произведенному большей частью или полностью из биологических источников. Биотопливо согласно настоящему изобретению практически не содержит кислорода.
Термин «биодизельное топливо» относится в данном описании только к таким традиционным биологическим топливным продуктам, которые получены посредством трансэстерификации спиртами масел, полученных из биомассы, и которые содержат кислород.
«Отработанный варочный щелок» или «черный щелок» - это водный раствор, содержащий остатки лигнина, гемицеллюлозу и неорганические реагенты, используемые в крафт-процессе получения целлюлозы.
Термин «средний дистиллят» относится к углеводородной фракции, в которой углеводороды состоят преимущественно из углеводородов с длиной углеродной цепи от 11 до 20 атомов.
Термин «тяжелая фракция» относится к углеводородной фракции, в которой углеводороды состоят преимущественно из углеводородов с длиной углеродной цепи более 20 атомов.
Термин «нафта-фракция» относится к дистиллированной углеводородной фракции, в которой углеводороды состоят преимущественно из углеводородов с длиной углеродной цепи от 5 до 10 атомов.
Термин «легкая фракция» относится к углеводородной фракции, в которой длина углеводородной цепи составляет от 1 до 4 атомов. Легкая фракция содержит также другие газообразные компоненты, такие как водород и монооксид углерода, в зависимости от процесса, в котором получена легкая фракция.
Термин «синтез-газ», или «сингаз», относится к смеси газов, которая содержит различные количества монооксида углерода и водорода, полученных посредством газификации углеродсодержащего вещества. Газификация биологических материалов обеспечивает соотношение водорода и монооксида углерода, близкое к 2. Этот газ пригоден для получения углеводородов с использованием синтеза Фишера-Тропша после добавления некоторого количества дополнительного водорода.
Термин «конверсия биомассы в жидкое топливо» (BTL) относится к многостадийному способу получения жидкого топлива из биомассы. В этом способе используется единая установка для улучшения баланса CO2 и повышения выхода. Основным процессом, используемым для BTL, является синтез Фишера-Тропша.
«Синтез Фишера-Тропша» (FT) является каталитической химической реакцией, в которой водород и монооксид углерода (синтез-газ) преобразуются в соответствии по существу с Гауссовым распределением в углеводородные цепи различной длины. В основе типичных используемых катализаторов лежат железо и кобальт.
Термин «каталитическая гидродеоксигенация» (HDO), используемый в данном описании и в формуле изобретения, относится к каталитической обработке биологического триглицерида (масла, жира, воска) и/или жирной кислоты водородом в каталитических условиях, при которой происходит следующая реакция: разрушение структуры триглицерида, деоксигенация или удаление кислорода в виде воды и гидрогенизация для насыщения двойных связей. В ходе предпочтительной HDO согласно настоящему изобретению также удаляются нежелательные примеси, такие как сера в форме сероводорода и азот в форме аммиака. Пригодными для HDO катализаторами являются, например, катализаторы, указанные в публикации US 7,232,935 в качестве подходящих для описанной в ней HDO-стадии.
Термины «изомеризация» и «гидроизомеризация» относятся к катализируемому и осуществляемому в присутствии водорода внедрению коротких боковых цепей (в типичном случае - метильных групп) в н-парафиновые углеводороды.
Термин «некрекинговая гидроизомеризация», которая используется для HDO потока углеводородов согласно настоящему изобретению, относится к изомеризации, выполняемой с использованием катализатора, который оказывает малый эффект или вообще не оказывает эффекта на крекинг соответствующих углеводородов. Типичными некрекинговыми катализаторами являются силикоалюминофосфатные катализаторы типа молекулярного сита (SAPO) с промежуточным размером пор. Пригодными для некрекинговой изомеризации катализаторами являются, например, катализаторы, предложенные в публикации US 7,232,935 для стадии изомеризации, описанной в этой публикации.
Термин «каталитический крекинг/изомеризация», используемый для парафинов согласно настоящему изобретению, полученных в процессе Фишера-Тропша, относится к стадии одновременного крекинга и гидроизомеризации, протекающей в соответствии с так называемым карбокатионным механизмом (G.A.Olah et al., Superacids, Wiley- Interscience, 1985, Chapter 5). Типичные катализаторы изомеризации выполняют одновременно функцию гидрогенизации-дегидрогенизации (Pt, Pd) и кислотообразующую функцию (молекулярные сита). Процесс осуществляется в присутствии водорода с использованием катализатора, обладающего одновременно крекинговыми и изомеризующими свойствами. Типичными крекинговыми/изомеризующими катализаторами являются цеолитный ZSM-катализатор, например - катализаторы ZSM-5 и ZSM-23, предложенные в публикациях US 4,222,855, 4,229,282 и 4,247,388 для использования для селективного крекинга и изомеризации парафиновых исходных материалов, таких как воск Фишера-Тропша.
Термин «автотермический риформинг» (ATR) относится к каталитическому получению водорода из таких исходных материалов, как углеводороды и метанол, посредством сочетания частичного окисления и парового риформинга.
Термин «конверсия водяного пара» (WGS) относится к неорганической химической реакции, в которой вода и монооксид углерода реагируют с образованием диоксида углерода и водорода (разложение воды).
Термин «получение» при использовании в связи с биометанолом и биоводородом в данном описании и формуле изобретения не обязательно подразумевает, что метанол или водород выделяют в виде отдельного продукта. Этот термин также применим к прямому использованию полученного метанола или водорода, соответственно, в последующем процессе.
Термин «комплексный процесс» обозначает процесс, в котором две или более родственных функций, которые могут быть выполнены по отдельности, объединяют так, что по меньшей мере одна важная стадия процесса является общей для двух процессов.
Термин «цетановое число», или «цетановый показатель», относится к характеристике воспламенения дизельного топлива. Его значение получают путем стандартизованного сравнения анализируемого топлива с топливами или их смесями с известным цетановым числом. Стандартное топливо н-цетан (С16) имеет цетановое число, равное 100.
Форма осуществления, представляющая особый интерес для настоящего изобретения, относится к получению метанола из черного щелока. Неочищенный биометанол можно получить посредством отгонки и/или дистилляции черного щелока, или его можно получить в качестве побочного продукта при дистилляции таллового масла, которое получают посредством подкисления черного щелока.
Биометанол является малоценным побочным продуктом при производстве целлюлозы, и его обычно сжигают для получения энергии. Согласно настоящему изобретению, однако, биометанол, полученный из черного щелока, используют в качестве источника биоводорода для процессов Фишера-Тропша и/или HDO через процесс риформинга.
Биометанол, полученный из черного щелока, содержит ряд соединений азота и серы, происходящих от химикатов, используемых в процессе производства целлюлозы. Некоторые соединения азота образуются также в процессе дезаминирования белков древесины в процессе производства целлюлозы.
Различные соединения, особенно соединения азота и серы, содержащиеся в неочищенном биометаноле, могут повреждать катализаторы конверсии, используемые при производстве биотоплива, и необходимы дополнительные стадии очистки для удаления серы из биометанола для каталитических стадий.
Неочищенный биометанол можно очистить с использованием таких технологических стадий, как промывка, мокрая газоочистка, отгонка, разделение жидкостей, дистилляция, каталитическая конверсия, ионный обмен, абсорбция и адсорбция. На рынке имеются специальные адсорбенты, ионообменники, катализаторы и очистные устройства.
Было обнаружено, что наиболее распространенным из соединений азота является аммиак, и что наиболее распространенными из соединений серы являются сероводород, диметилсульфид, диметилдисульфид и метантиол. Все эти соединения являются газами или жидкостями с низкими точками кипения, и их можно удалить посредством отгонки и/или дистилляции. Биометанол также содержит тиольные соединения, которые содержат в своих молекулах меркаптогруппу (-SH). Считается, что они ответственны за неприятный запах биометанола. После отгонки легких фракций и/или перегонки биометанол все еще содержит некоторые более высокомолекулярные загрязнения, которые удаляют, например, посредством адсорбции. На рынке имеются подходящие адсорбенты. При необходимости можно использовать комбинации адсорбентов, устройств для промывки, катализаторов и т.п.
Например, адсорбентные материалы на основе ZnO способны адсорбировать органические соединения серы, и их можно использовать для очистки биометанола до приемлемого уровня. Некоторые соединения серы и особенно диоксид углерода можно удалить с использованием процесса очистки, который включает в себя обработку потока неочищенного биометанола охлажденным метанолом под высоким давлением. Охлажденный метанол действует как физический растворитель и абсорбирует загрязнения из биометанола. Абсорбированные загрязнения затем удаляют из физического растворителя путем понижения давления и/или обработки паром. Также для очистки биометанола, используемого в настоящем изобретении, можно использовать растворители, основанные на химических реакциях для удаления загрязнений, и катализаторы, разрушающие загрязнения. Также для очистки биометанола согласно настоящему изобретению можно использовать процессы, описанные в Патентах США 5,450,892 и 5,718,810, упомянутых выше. Комбинации различных процессов очистки дают наилучшие результаты.
Очищенный биометанол все еще может содержать некоторые высокомолекулярные соединения серы и азота. Эти соединения будут попадать в риформер вместе с метанолом и разрушаться до более мелких соединений, в конечном итоге - до аммиака и сероводорода, которые могут адсорбироваться адсорбентами-молекулярными ситами, работающими по принципу адсорбции при изменении давления (PSA).
Очищенный биометанол подвергают риформингу, обычно - в процессе автотермического риформинга (ATR). Также может быть использован паровой риформинг с отдельным источником тепла. ATR-конверсионный блок - это технология, хорошо известная специалистам в данной области техники и имеющаяся на рынках. Принципы парового риформинга также хорошо известны специалистам в данной области техники.
Специалистам в данной области техники хорошо известно, что метанол можно риформировать до водорода различными способами, отличающимися от автотермического риформинга. Тем не менее, поскольку риформинг является эндотермической реакцией, он требует внешнего источника энергии для поддержания реакции. За исключением тех случаев, когда доступно дешевое внешнее топливо, целесообразно использовать часть подаваемого метанола в качестве топлива для поддержания оптимальной температуры реакции риформинга, обеспечивая автономный риформинг.
Автотермический риформинг метанола является комбинацией экзотермического частичного окисления метанола и эндотермической конверсии монооксида углерода водяным паром с получением диоксида углерода и водорода.
4СН3ОН+3H2O→4CO2+11Н2.
Эта реакция была разработана в конце 1980-х годов Джонсоном-Мэттью, и она имеет общее изменение энтальпии реакции, равное нулю. Вследствие этого, реактор для осуществления этого процесса не требует внешнего нагрева после того, как он достиг температуры реакции. Максимальное достижимое содержание водорода в получаемом газе равно 65% при использовании стехиометрических соотношений и при 300°С.
После риформинга полученный биоводород обычно дополнительно очищают и отделяют от полученного CO2. Для очистки и разделения обычно используют блок адсорбции при изменении давления (pressure swing adsorption - PSA) или сходные устройства. Образующийся очищенный биоводород готов для дальнейшего использования.
Биоводород, полученный из черного щелока, предпочтительно используют в процессе производства углеводородного биотоплива.
Углеводороды для биотоплива могут быть получены или в реакции Фишера-Тропша (FT) из синтез-газа, полученного посредством газификации биомассы, или путем гидродеоксигенации (HDO) биологических триглицеридов или жирных кислот. Биоуглеводороды, конечно же, можно получить в виде смеси углеводородов, полученных в обоих процессах.
Материал биомассы для газификации может быть любым материалом биомассы, пригодным для получения синтез-газа. В предпочтительной форме осуществления настоящего изобретения биомасса представляет собой биологические отходы и/или побочные продукты деревообрабатывающей промышленности. В одной из форм осуществления настоящего изобретения деревообрабатывающее промышленное предприятие представляет собой установку для получения целлюлозы крафт-способом, а биомасса представляет собой биологические отходы и/или побочные продукты этой установки.
После газификации исходной биомассы используется реакция Фишера-Тропша (FT) для получения углеводородов из водорода и монооксида углерода, входящих в состав синтез-газа. Биоводород, полученный из биометанола согласно настоящему изобретению, используется для доведения соотношения Н2 и СО в полученном синтез-газе примерно до 2, чего достаточно для FT-реакции. Реакция дает биоуглеводороды с различными длинами цепи.
После удаления отходящих газов оставшиеся биоуглеводороды подвергают крекингу/изомеризации с целью укорочения длины цепей. В этой реакции можно снова использовать биоводород согласно настоящему изобретению для обеспечения достаточного давления водорода. Крекинг увеличивает долю С1120-парафинов в потоке биоуглеводородов. Одновременно изомеризация обеспечивает разветвленные углеводороды, которые улучшают температуру помутнения конечного топливного продукта.
Биомассой для процесса гидродеоксигенации (HDO) может быть любой триглицеридный или жирнокислотный материал, который пригоден для получения углеводородов с использованием HDO-процесса. Такой материал в типичном случае содержит несъедобные масла, такие как ятрофовое масло, касторовое масло, талловое масло или жирные кислоты таллового масла (TOFA) и т.п.В предпочтительной форме осуществления настоящего изобретения биомасса представляет собой биологический побочный продукт деревообрабатывающей промышленности, такой как талловое масло или жирные кислоты таллового масла. Биоводород, полученный из биометанола, может быть использован в HDO-процессе, который обеспечивает поток насыщенных н-парафинов, обогащенных биоуглеводородами с 16 и 18 атомами углерода в цепи.
HDO-обработка также насыщает ненасыщенные цепи, н-парафины обычно гидроизомеризуют с целью увеличения доли i-парафинов в потоке биоуглеводородов. Биоводород согласно настоящему изобретению обеспечивает достаточную подачу водорода для обеспечения давления водорода, необходимого для катализатора некрекинговой гидроизомеризации. Гидроизомеризацию можно осуществить в отдельном изомеризационном реакторе, или ее можно провести в том же реакторе, что и гидродеоксигенацию.
Время от времени катализаторы, используемые на определенных стадиях процесса производства биотоплива, необходимо регенерировать посредством восстановления их водородом. Это можно также осуществить с использованием биоводорода согласно настоящему изобретению. Роль водородной регенерации катализатора двоякая: во-первых, снижение перехода активного металла в металлическое состояние с нулевой валентностью, и, во-вторых, отмывание тяжелых восковых компонентов, в конечном итоге блокирующих систему катализатора.
Поток (или потоки) гидрогенизированных и/или изомеризованных биоуглеводородов, полученных в FT- или HDO-процессах, впоследствии разделяют на фракции, пригодные для использования в качестве биотоплива. Типичными фракциями являются легкая фракция, нафта-фракция, фракция среднего дистиллята и тяжелая фракция. Средний дистиллят представляет собой желаемое углеводородное биотопливо, так как он имеет идеальный диапазон температур кипения, хорошее цетановое число и температуру помутения, и он может заменить ископаемое дизельное топливо.
В предпочтительной форме осуществления настоящего изобретения установка для производства биотоплива соединена с установкой для производства целлюлозы и/или бумаги. В этом случае биологические отходы и/или побочные продукты последней установки можно использовать в качестве биомассы для газификации с получением сингаза. Если установка для производства целлюлозы представляет собой установку, где используется крафт-процесс, то черный щелок обычно служит исходным продуктом для получения биометанола, а талловое масло или жирные кислоты талового масла могут служить исходным материалом для HDO-процесса.
Типичная комплексная установка для производства целлюлозы/биотоплива включает в себя установку для получения целлюлозы с использованием крафт-процесса, которая обеспечивает черный щелок, содержащий биометанол. Комплексная установка содержит блоки для выделения, очистки и риформинга вышеуказанного биометанола и блоки для очистки и выделения произведенного биоводорода. Предусмотрена установка для производства биотоплива, которая производит топливо на основе биоуглеводородов из биоводорода и биомассы, представляющей собой биологические отходы и/или побочные продукты установки для производства целлюлозы с использованием крафт-процесса.
Блок для выделения биометанола включает в себя одно или более устройств для отгонки и/или дистилляции для получения неочищенного биометанола. Поскольку биометанол, полученный при производстве целлюлозы, обладает неприятным запахом и содержит загрязнения, которые могут повреждать катализаторы, то могут быть предусмотрены различные блоки для очистки неочищенного биометанола. Сюда относятся устройства, выбранные из устройства для мокрой газоочистки, промывки, устройства для отгонки, адсорбера, абсорбера, каталитического реактора и их комбинаций.
После очистки биометанол подвергают риформингу с получением водорода. Наиболее предпочтительным риформером является автотермический риформер, хотя может быть использован и паровой риформер.
Газ, полученный в риформере, содержит загрязнения, то есть другие газы, кроме водорода, и установка, соответственно, включает в себя устройства для очистки биоводорода. Блок для очистки водорода обычно включает в себя блок адсорбции при изменении давления (PSA), который способен обеспечивать очищенный биоводород под давлением.
Блок для получения биотоплива или блок для конверсии биомассы в жидкое топливо (BTL) установки для производства биотоплива согласно настоящему изобретению имеет хорошо известную конструкцию и содержит реактор Фишера-Тропша (FT) или гидродеоксигенационный (HDO) реактор, или оба типа реакторов. Сепарация и выделение биотоплива осуществляются хорошо известным способом.
Согласно одной из форм осуществления настоящего изобретения, биотопливный продукт получают из отходов и/или побочных продуктов деревообрабатывающей промышленности. Биотопливо предпочтительно состоит из биоуглеводородов, полученных из биологических отходов и/или побочных продуктов крафт-установки для получения целлюлозы и биоводорода, полученного из биометанола, выделенного из черного щелока.
ОПИСАНИЕ ПРИМЕРОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Приведенные ниже примеры предназначены для дополнительной иллюстрации изобретения и не ограничивают его объем.
Пример 1
На Фиг. 1 изображена схема последовательности технологических операций процесса конверсии биомассы в жидкое топливо (BTL), расположенного рядом с крафт-установкой для производства целлюлозы и бумаги (не показана)и соединенного с ней. В BTL-процессе биотопливо получают с использованием биоводорода, полученного из биометанола, полученного в процессе производства целлюлозы.
Процесс конверсии биомассы в жидкое топливо включает в себя подачу биомассы 1 в устройство 2 для предварительной обработки сырьевого материала, после чего сырьевой материал направляют в устройство 3 для газификации и кондиционирования газа для получения синтез-газа. Устройство 3 для газификации и кондиционирования газа содержит блок для мокрой газоочистки и блок для конверсии водяным паром (WGS). Устройство 3 соединено с устройством 4 для отделения воздуха (ASU) для получения кислорода. Перед подачей в устройство 6 для проведения синтеза Фишера-Тропша (FT) газ обрабатывают в устройстве 5 для обработки и очистки газа.
Биоводород получают в блоке 7 для автотермического риформинга (ATR) из очищенного биометанола 16, полученного из установки для производства целлюлозы с использованием крафт-процесса. Хвостовые газы 14 и отходящие газы 15 из BTL-процесса также подают в ATR-блок 7 для риформинга. Образующийся биоводород очищают и отделяют в блоке 8 адсорбции при изменении давления (PSA). Очищенный биоводород подают в блок 6 FT-синтеза для регулирования соотношения Н2 и СО в газе, вступающем в реакцию, до примерно 2.
Газообразный продукт из блока 6 для FT-синтеза транспортируют в блок 11 для конверсии продукта. Хвостовые газы 14 из синтеза Фишера-Тропша и отходящие газы 15 удаляют из блока 6 FT-синтеза и блока 11 для конверсии продукта, соответственно, и направляют в ATR-блок 7. Нафта-фракцию 9 и фракцию 10 среднего дистиллята получают в виде фракций газообразного продукта синтеза Фишера-Тропша из блока 11 для конверсии продукта.
Пример 2
Биоводород получают из неочищенного биометанола, выделенного из крафт-процесса получения целлюлозы, в соответствии со схемой, изображенной на Фиг.2.
Неочищенный биометанол, полученный из крафт-процесса получения целлюлозы, дистиллируют и/или отгоняют в блоке 12 для выделения биометанола и направляют в блок 13 для очистки метанола, который может удалять соединения серы. В изображенном примере осуществления настоящего изобретения блок 13 для очистки содержит два абсорбера, каждый из которых содержит слой адсорбента. Адсорберы используют поочередно, т.е. когда один из них используется, второй регенерируют. При необходимости могут быть добавлены другие очистные устройства, такие как скрубберы, устройства для промывки, абсорберы и каталитические реакторы.
Очищенный биометанол направляют в блок 7 автотермического риформинга, в который также подается воздух. ATR-блок 7 производит смесь газов, содержащую биоводород, диоксид углерода, азот, аммиак и сероводород. Газ также содержит малые количества более высокомолекулярных соединений серы с неприятным запахом. Газовую смесь смешивают с рециклизованным биоводородом Н2 и затем направляют в блок 8 для очистки водорода, содержащий блок адсорбции при изменении давления (PSA). Газ очищают с помощью адсорбентов и получают биоводород 17 под давлением со степенью чистоты более 99%.
Пример 3
Фиг. 3 представляет собой блок-схему последовательности технологических операций при использовании биоводорода, полученного в установке 19 для получения целлюлозы на основе крафт-процесса, соединенной с установкой 20 для производства биотоплива.
Древесину для установки 19 для производства целлюлозы приобретают и обрабатывают в отделе 18 логистики древесины для использования в качестве сырьевого материала для производства целлюлозы. Кору, полученную в ходе обработки древесины в отделе 18, сжигают в бойлере (не показан) установки 19 для производства целлюлозы для получения энергии. Энергетическую древесину (главным образом, остатки лесоматериалов) 1 из стандартного отдела 18 логистики древесины подают в установку 20 для конверсии биомассы в жидкое топливо (BTL).
В этом примере примерно 2,1 ТВт·ч/год (тераваттчасов в год), или примерно 1 млн м3/год (миллионов кубических метров в год), остатков лесоматериалов подают в BTL-установку 20. BTL-процесс обеспечивает 65000-88000 т/год (метрических тонн/год) среднего дистиллята и 20000-27000 т/год нафта-фракции. Крафт-процесс получения целлюлозы обеспечивает примерно 600000-700000 т/год целлюлозы.
Установка 19 для получения целлюлозы с использованием крафт-процесса обеспечивает черный щелок, из которого в блоке 12 для выделения метанола посредством отгонки и дистилляции выделяют примерно 20000 т/год неочищенного биометанола. Неочищенный биометанол, полученный в процессе производства целлюлозы, подвергают предварительной очистке в абсорберах 13, и весь биометанол или его часть направляют в ATR-блок BTL-установки 20 для получения дополнительного биоводорода, если водорода, полученного в BTL-процессе, недостаточно.
Интегрированные установка 19 для производства целлюлозы/бумаги и BTL-установка 20 предпочтительно включают и другие интегрированные процессы, помимо вышеупомянутых подач древесного сырьевого материала и биометанола. Так, между процессами могут транспортироваться пар, энергия и вода, и/или они могут перерабатываться в интегрированных устройствах. На Фиг.3 изображен пример дополнительной интеграции в виде интегрированной водоочистной установки 21. В этом случае в BTL-процессе для синтеза Фишера-Тропша используется кобальтовый катализатор, и, соответственно, в BTL-процессе образуется загрязненная спиртом вода. Загрязненную воду разбавляют водой из установки 19 для получения целлюлозы и бумаги и затем очищают в стандартной установке 21 с использованием процесса биологической очистки. Загрязненную воду из установки 19 для получения целлюлозы и бумаги очищают в той же установке 21 для очистки сточных вод.
Настоящее изобретение было описано в данной заявке со ссылками на конкретные примеры его осуществления. Однако специалисту в данной области техники должно быть очевидно, что этот процесс (или процессы) можно варьировать в рамках формулы изобретения.

Claims (19)

1. Применение черного щелока для производства биоводорода, при котором из указанного черного щелока получают очищенный биометанол, и биоводород получают из указанного очищенного биометанола.
2. Применение по п.1, отличающееся тем, что биометанол получен из черного щелока посредством дистилляции и/или отгонки.
3. Применение по п.1 или 2, отличающееся тем, что биоводород используют для производства углеводородного биотоплива.
4. Применение по п.3, отличающееся тем, что биоводород используют на стадии процесса производства биотоплива, выбранной из стадий регулирования соотношения водорода и монооксида углерода в синтез-газе, крекинга/изомеризации парафинов Фишера-Тропша, гидродеоксигенации природных масел, гидроизомеризации н-парафинов, восстановления катализаторов и их комбинаций.
5. Применение по п.4, отличающееся тем, что все указанные стадии осуществляют в установке для производства биотоплива, объединенной с установкой для производства целлюлозы и/или бумаги.
6. Способ получения биоводорода, характеризующийся тем, что неочищенный биометанол, полученный из черного щелока, очищают и подвергают риформингу, после чего выделяют биоводород.
7. Способ по п.6, отличающийся тем, что указанная очистка включает в себя стадии, выбранные из промывки, мокрой газоочистки, отгонки, разделения жидкостей, дистилляции, каталитической конверсии, ионного обмена, абсорбции и адсорбции.
8. Способ по п.6, отличающийся тем, что указанный риформинг представляет собой автотермический риформинг или паровой риформинг.
9. Способ по любому из пп.6-8, отличающийся тем, что биоводород получают посредством отделения его от диоксида углерода в блоке адсорбции при изменении давления.
10. Способ производства углеводородного биотоплива, характеризующийся тем, что:
а) неочищенный биометанол, выделенный из черного щелока, очищают и подвергают риформингу с получением биоводорода и выделяют очищенный биоводород;
б) получают поток биоуглеводородов с использованием способа, выбранного из реакции Фишера-Тропша для синтеза синтез-газа из биомассы, гидродеоксигенации биологических триглицеридов, или жирных кислот, или их комбинаций, причем
в) указанное получение потока биоуглеводородов на стадии б) включает в себя по меньшей мере одну операцию, выбранную из регулирования соотношения водорода и монооксида углерода в синтез-газе, крекинга/изомеризации парафинов Фишера-Тропша, гидродеоксигенации вышеуказанных биологических триглицеридов или жирных кислот, гидроизомеризации н-парафинов и восстановления катализаторов; и
г) указанный очищенный биоводород, полученный на стадии а), используют в качестве источника водорода по меньшей мере в одной операции, определенной в пункте в), а полученный поток биоуглеводородов разделяют на фракции, и по меньшей мере из одной из этих фракций выделяют биотопливо.
11. Способ по п.10, отличающийся тем, что биомасса включает биологические отходы или побочные продукты деревообрабатывающей промышленности.
12. Способ по п.10 или 11, отличающийся тем, что триглицериды или жирные кислоты содержат талловое масло или жирные кислоты таллового масла.
13. Способ по п.12, отличающийся тем, что биометанол подвергают риформингу совместно с потоком или потоками газов, которые выделяются на одной или более стадиях указанного процесса производства биотоплива, и который содержит газообразные компоненты, способные образовывать водород в процессе риформинга.
14. Установка для производства биотоплива, характеризующаяся тем, что включает
- установку (19) для получения целлюлозы с использованием крафт-процесса, которая обеспечивает черный щелок;
- блок (12) для выделения биометанола, предназначенный для выделения неочищенного биометанола из указанного черного щелока;
- блок (13) для очистки метанола, предназначенный для очистки неочищенного биометанола с получением очищенного биометанола;
- риформинг-блок (7), предназначенный для риформинга очищенного биометанола с получением газовой смеси, содержащей биоводород;
- блок (8) для очистки водорода, предназначенный для очистки указанной газовой смеси с получением очищенного биоводорода; и
- установку (20) для производства биотоплива, которая производит биотопливо на основе биоуглеводородов из биоводорода и биомассы.
15. Установка по п.14, отличающаяся тем, что указанная биомасса содержит биологические отходы и/или побочные продукты из указанной установки для производства целлюлозы с использованием крафт-процесса.
16. Установка по п.14, отличающаяся тем, что блок (12) для выделения метанола, предназначенный для выделения вышеуказанного биометанола, содержит устройства, выбранные из устройства для отгонки, дистилляции и их комбинаций.
17. Установка по п.14, отличающаяся тем, что блок (13) для очистки метанола, предназначенный для очистки биометанола, содержит устройства, выбранные из устройства для мокрой газоочистки, промывки, перегонки, адсорбера, абсорбера, каталитического реактора и их комбинаций.
18. Установка по п.14, отличающаяся тем, что блок (7) для риформинга представляет собой блок автотермического риформинга или блок парового риформинга.
19. Установка по любому из пп.14-18, отличающаяся тем, что блок (8) для очистки водорода содержит по меньшей мере один адсорбер.
RU2010119343/05A 2007-11-09 2008-10-29 Применение биометанола для получения водорода и биотоплива, способ получения биоводорода и установка для производства биотоплива RU2489348C2 (ru)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
FI20075794A FI20075794L (fi) 2007-11-09 2007-11-09 Integroitu prosessi diesel-polttoaineen valmistamiseksi biologisesta materiaalista ja prosessiin liittyvät tuotteet, käyttötavat ja laitteisto
FI20075794 2007-11-09
FI20085400 2008-04-30
FI20085400A FI20085400A0 (fi) 2007-11-09 2008-04-30 Menetelmä jäteveden integroidulle käsittelylle
FI20085697A FI20085697A0 (fi) 2007-11-09 2008-07-04 Metanolin käyttö vedyn ja polttoaineen valmistuksessa, menetelmät ja laitokset vedyn ja polttoaineen valmistamiseksi
FI20085697 2008-07-04
PCT/EP2008/064675 WO2009059920A2 (en) 2007-11-09 2008-10-29 Use of methanol in the production of hydrogen and fuel, processes and plants for the production of hydrogen and fuel

Publications (2)

Publication Number Publication Date
RU2010119343A RU2010119343A (ru) 2011-12-20
RU2489348C2 true RU2489348C2 (ru) 2013-08-10

Family

ID=39386023

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2010119341/04A RU2480425C2 (ru) 2007-11-09 2008-07-18 Обработка сточных вод, полученных в процессе переработки биомассы в жидкое биотопливо, который включает получение синтез-газа, и интегрированная производственная установка
RU2010119343/05A RU2489348C2 (ru) 2007-11-09 2008-10-29 Применение биометанола для получения водорода и биотоплива, способ получения биоводорода и установка для производства биотоплива

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2010119341/04A RU2480425C2 (ru) 2007-11-09 2008-07-18 Обработка сточных вод, полученных в процессе переработки биомассы в жидкое биотопливо, который включает получение синтез-газа, и интегрированная производственная установка

Country Status (8)

Country Link
US (3) US8591737B2 (ru)
EP (2) EP2238084B1 (ru)
CN (2) CN101939264B (ru)
BR (2) BRPI0819176A2 (ru)
CA (2) CA2705064C (ru)
FI (2) FI20085400A0 (ru)
RU (2) RU2480425C2 (ru)
WO (2) WO2009059819A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2776076C2 (ru) * 2016-11-01 2022-07-13 Коля КУЗЕ Углеродные волокна, производимые из возобновляемых или частично возобновляемых источников диоксида углерода с применением комбинированных способов производства

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20085400A0 (fi) 2007-11-09 2008-04-30 Upm Kymmene Oyj Menetelmä jäteveden integroidulle käsittelylle
US7999143B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption
US7982077B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7982075B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption
US7999142B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7982076B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7982078B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7915460B2 (en) 2007-09-20 2011-03-29 Uop Llc Production of diesel fuel from biorenewable feedstocks with heat integration
US8003834B2 (en) 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US8742183B2 (en) 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
US8058492B2 (en) 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US8039682B2 (en) 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US8193400B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel from renewable feedstocks
US8193399B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel and aviation fuel from renewable feedstocks
US8198492B2 (en) 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
US8324438B2 (en) 2008-04-06 2012-12-04 Uop Llc Production of blended gasoline and blended aviation fuel from renewable feedstocks
US8329968B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended gasoline aviation and diesel fuels from renewable feedstocks
CA2720599C (en) 2008-04-06 2015-02-24 Michael J. Mccall Fuel and fuel blending components from biomass derived pyrolysis oil
US8329967B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended fuel from renewable feedstocks
US8766025B2 (en) 2008-06-24 2014-07-01 Uop Llc Production of paraffinic fuel from renewable feedstocks
US8304592B2 (en) 2008-06-24 2012-11-06 Uop Llc Production of paraffinic fuel from renewable feedstocks
US20100017312A1 (en) * 2008-07-17 2010-01-21 Martin Evans Material delivery system to one or more units and methods of such delivery
KR101646292B1 (ko) * 2008-09-05 2016-08-05 인터캣 이큅먼트, 인코포레이티드 하나 이상의 유닛 내의 재료 재고를 조절하는 재료 회수 장치 및 방법
US7982079B2 (en) 2008-09-11 2011-07-19 Uop Llc Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
US8921627B2 (en) 2008-12-12 2014-12-30 Uop Llc Production of diesel fuel from biorenewable feedstocks using non-flashing quench liquid
US8471079B2 (en) 2008-12-16 2013-06-25 Uop Llc Production of fuel from co-processing multiple renewable feedstocks
US8283506B2 (en) 2008-12-17 2012-10-09 Uop Llc Production of fuel from renewable feedstocks using a finishing reactor
US8314274B2 (en) 2008-12-17 2012-11-20 Uop Llc Controlling cold flow properties of transportation fuels from renewable feedstocks
US8236247B2 (en) 2008-12-23 2012-08-07 Intercat Equipment, Inc. Material withdrawal apparatus and methods of regulating material inventory in one or more units
US10471384B2 (en) 2009-04-22 2019-11-12 The Babcock & Wilcox Company System and method for reducing halogen levels necessary for mercury control, increasing the service life and/or catalytic activity of an SCR catalyst and/or control of multiple emissions
US8471081B2 (en) 2009-12-28 2013-06-25 Uop Llc Production of diesel fuel from crude tall oil
WO2012054812A2 (en) * 2010-10-21 2012-04-26 Packaging Corporation Of America Method for biological treatment of hydrolyzate from pulp washing by balancing chemical oxygen demand
FI20115038L (fi) * 2011-01-14 2012-07-15 Vapo Oy Menetelmä btl-tehtaassa muodostuvien kaasujen sisältämän lämpöenergian hyödyntämiseksi
FI127304B (fi) * 2011-02-03 2018-03-15 Stora Enso Oyj Menetelmä puhdistetun metanolin valmistamiseksi sulfaattisellukeiton lauhteesta
EP2484427B1 (en) 2011-02-08 2017-07-19 Neste Oyj A two-stage gas washing method
FI123086B (fi) * 2011-02-28 2012-10-31 Aalto Korkeakoulusaeaetioe Menetelmä kemikaalien talteenottamiseksi
WO2012122622A1 (en) * 2011-03-17 2012-09-20 Nexterra Systems Corp. Control of syngas temperature using a booster burner
US8900443B2 (en) 2011-04-07 2014-12-02 Uop Llc Method for multi-staged hydroprocessing using quench liquid
SE535947C2 (sv) * 2011-04-26 2013-03-05 Chemrec Ab Förgasning av alkaliinnehållande energirika vattenhaltiga lösningar från massabruk
ES2785988T3 (es) * 2011-05-30 2020-10-08 Neste Oyj Procedimiento de producción de una composición de hidrocarburo
WO2012175796A1 (en) * 2011-06-23 2012-12-27 Upm-Kymmene Corporation Integrated biorefinery plant for the production of biofuel
ES2746912T3 (es) * 2011-06-30 2020-03-09 Neste Oyj Método para ajustar la relación de hidrógeno a monóxido de carbono en un gas de síntesis
EP2561916A1 (en) * 2011-08-24 2013-02-27 Neste Oil Oyj Method for naphthalene removal
EP2564918B1 (en) 2011-08-31 2018-03-07 Neste Oyj A two-stage gas washing method applying sulfide precipitation and alkaline absorption
US8546629B2 (en) * 2011-09-23 2013-10-01 Uop Llc Methods for co-production of alkylbenzene and biofuel from natural oils
US9163180B2 (en) * 2011-12-07 2015-10-20 IFP Energies Nouvelles Process for the conversion of carbon-based material by a hybrid route combining direct liquefaction and indirect liquefaction in the presence of hydrogen resulting from non-fossil resources
CN102703107B (zh) * 2012-06-26 2015-04-01 武汉凯迪工程技术研究总院有限公司 一种由生物质生产的合成气制造液态烃产品的方法
US9533899B2 (en) 2013-03-12 2017-01-03 General Electric Company Gasification waste water treatment using air separation unit oxygen
SI24343A (sl) * 2013-04-03 2014-10-30 Univerza V Ljubljani Procedura za odstranjevanje cianida iz onesnaĹľenih vod in produkcija bioplina iz cianida
CN105358231A (zh) * 2013-08-08 2016-02-24 巴布科克和威尔科克斯能量产生集团公司 降低汞控制所需的卤素含量的系统和方法
SE539579C2 (en) 2013-10-11 2017-10-17 Andritz Oy Process for removal of sulfur from raw methanol
CN105084506B (zh) * 2014-05-14 2017-10-27 中国石油化工股份有限公司 湿式氧化降低废水中cod的方法
CN105084505B (zh) * 2014-05-14 2017-10-27 中国石油化工股份有限公司 多相湿式氧化处理工业废水的方法
CN104150578B (zh) * 2014-07-10 2016-01-13 唐国民 臭氧催化氧化水处理装置
JP6404024B2 (ja) * 2014-07-30 2018-10-10 積水化学工業株式会社 化学品製造装置及び化学品製造方法
WO2016036698A1 (en) * 2014-09-01 2016-03-10 Rachid Taha Hydrotreatment catalyst regeneration
CN104449846A (zh) * 2014-12-09 2015-03-25 贵州开阳化工有限公司 煤粉的制备及输送方法及装置
RU2605714C1 (ru) * 2015-06-26 2016-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВО "ВГУИТ"). Способ получения загрузки биофильтра с иммобилизационными свойствами
US10435343B2 (en) 2016-04-13 2019-10-08 Northwestern University Efficient catalytic greenhouse gas-free hydrogen and aldehyde formation from alcohols
US10260005B2 (en) 2016-08-05 2019-04-16 Greyrock Technology LLC Catalysts, related methods and reaction products
DE202016006700U1 (de) * 2016-11-01 2017-04-26 Kolja Kuse Carbonfaser
RU2658404C1 (ru) * 2016-12-23 2018-06-21 Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) Способ очистки сточных вод от растворенных органических загрязнений
SE1850706A1 (en) * 2018-06-11 2019-12-12 Valmet Oy A method and a system for obtaining methanol from foul condensate of a pulping process
SE542659C2 (en) * 2018-07-10 2020-06-23 Stora Enso Oyj Method for desulfurization of methanol
EP3863963B1 (en) * 2018-10-12 2023-09-27 UPM-Kymmene Corporation Process for the production of hydrogen
WO2020074094A1 (en) * 2018-10-12 2020-04-16 Upm-Kymmene Corporation Process for the production of hydrogen
CN110357366B (zh) * 2019-08-13 2022-02-11 南京工业大学 一种费托合成废水生化处理方法
CN110486989B (zh) * 2019-08-27 2021-02-02 安徽省智慧产业研究院股份有限公司 一种生物质气化炉冷电联产系统
KR102425227B1 (ko) * 2020-05-22 2022-07-26 한국화학연구원 바이오오일 부산물로부터 합성가스를 제조하는 방법 및 제조장치
CN112480971B (zh) * 2020-10-28 2022-10-11 中石化宁波工程有限公司 一种掺烧高浓度有机废液的粉煤气化工艺的控制方法
CN115385300A (zh) * 2022-07-04 2022-11-25 西北农林科技大学 一种自农林废弃物生产氨的工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2101273C1 (ru) * 1994-04-27 1998-01-10 Коваленко Владимир Васильевич Способ выделения метанола из смесей с углеводородами с4 или с5
US5718810A (en) * 1996-03-19 1998-02-17 The Dow Chemical Company Methanol recovery using extractive distillation
RU2122991C1 (ru) * 1993-07-06 1998-12-10 Хальдор Топсеэ А/С Способ регенерации отработанного кислотного катализатора
RU2189968C1 (ru) * 2001-01-23 2002-09-27 Открытое акционерное общество "Акрон" Способ получения метанола

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344184B2 (ru) 1974-10-16 1978-11-27
FI52710C (fi) * 1976-04-22 1977-11-10 Kemi Oy Menetelmä sulfaattiprosessin lauhteista erotetun metanolin puhdistamis eksi.
US4188260A (en) * 1977-05-05 1980-02-12 Erco Envirotech Ltd. Low effluent pulp mill, bleach plant operation
US4222855A (en) * 1979-03-26 1980-09-16 Mobil Oil Corporation Production of high viscosity index lubricating oil stock
US4229282A (en) * 1979-04-27 1980-10-21 Mobil Oil Corporation Catalytic dewaxing of hydrocarbon oils
US4247388A (en) * 1979-06-27 1981-01-27 Mobil Oil Corporation Hydrodewaxing catalyst performance
US4592762A (en) * 1981-10-22 1986-06-03 Institute Of Gas Technology Process for gasification of cellulosic biomass
US4648956A (en) 1984-12-31 1987-03-10 North American Philips Corporation Electrode configurations for an electrophoretic display device
US4906671A (en) * 1985-08-29 1990-03-06 Mobil Oil Corporation Fischer-tropsch process
GB8702199D0 (en) 1987-01-31 1987-03-04 Man Oil Ltd Liquefaction of cellulose
US4968325A (en) * 1987-08-24 1990-11-06 Centre Quebecois De Valorisation De La Biomasse Fluidized bed gasifier
US4992325A (en) * 1987-12-15 1991-02-12 The Dexter Corporation Inorganic whisker containing impact enhanced prepregs and formulations formulations
US4992605A (en) * 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
FR2631949B1 (fr) * 1988-05-27 1990-09-14 Inst Francais Du Petrole Procede de production d'hydrogene de haute purete par reformage catalytique du methanol
US5450892A (en) * 1993-03-29 1995-09-19 Alliedsignal Inc. Alkaline scrubber for condensate stripper off-gases
CA2149685C (en) * 1994-06-30 1999-09-14 Jacques Monnier Conversion of depitched tall oil to diesel fuel additive
SE503351C2 (sv) * 1994-09-06 1996-05-28 Ahlstroem Oy Förfarande för rening av sekundära kondensat vid indunstning av avlutar
US5833837A (en) * 1995-09-29 1998-11-10 Chevron U.S.A. Inc. Process for dewaxing heavy and light fractions of lube base oil with zeolite and sapo containing catalysts
US6090312A (en) * 1996-01-31 2000-07-18 Ziaka; Zoe D. Reactor-membrane permeator process for hydrocarbon reforming and water gas-shift reactions
FI100248B (fi) 1996-02-05 1997-10-31 Fortum Oil Oy Keskitisleen valmistus
US20020007595A1 (en) * 1997-06-24 2002-01-24 Uli Maier-Roeltgen Method for reforming hydrocarbons autothermally
BR0013342B1 (pt) * 1999-08-17 2011-05-03 reator quìmico, processo para conduzir uma reação quìmica catalìtica em um reator com pelo menos um reagente em fase gasosa.
US6533945B2 (en) 2000-04-28 2003-03-18 Texaco Inc. Fischer-Tropsch wastewater utilization
US20020045010A1 (en) 2000-06-14 2002-04-18 The Procter & Gamble Company Coating compositions for modifying hard surfaces
DE10049377C2 (de) 2000-10-05 2002-10-31 Evk Dr Oberlaender Gmbh & Co K Katalytische Erzeugung von Dieselöl und Benzinen aus kohlenwasserstoffhaltigen Abfällen und Ölen
CN1151955C (zh) 2001-03-07 2004-06-02 中国科学院山西煤炭化学研究所 一种甲醇裂解制氢的方法
JP4259777B2 (ja) 2001-07-31 2009-04-30 井上 斉 バイオマスのガス化方法
US6656387B2 (en) * 2001-09-10 2003-12-02 Texaco Inc. Ammonia injection for minimizing waste water treatment
US6924399B2 (en) * 2001-12-28 2005-08-02 Mitsubishi Heavy Industries, Ltd. Method of manufacturing dimethyl ether
CN100445219C (zh) * 2002-06-18 2008-12-24 萨索尔技术(控股)有限公司 净化f-t产生的水的方法
US7232935B2 (en) * 2002-09-06 2007-06-19 Fortum Oyj Process for producing a hydrocarbon component of biological origin
US7279018B2 (en) * 2002-09-06 2007-10-09 Fortum Oyj Fuel composition for a diesel engine
EP1403216B1 (en) * 2002-09-26 2011-03-23 Haldor Topsoe A/S Process for the preparation of synthesis gas
US20040102315A1 (en) * 2002-11-27 2004-05-27 Bailie Jillian Elaine Reforming catalyst
DE10346892B4 (de) * 2002-12-23 2007-03-01 Bernd Rüdiger Kipper Verfahren und Vorrichtung zur Aufbereitung von organische Bestandteile enthaltenden festen und flüssigen Abfallgemischen
WO2005018034A1 (en) * 2003-08-19 2005-02-24 Hydrogenics Corporation Method and system for distributing hydrogen
US8690972B2 (en) * 2004-07-12 2014-04-08 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and reforming apparatus
WO2006131293A1 (de) 2005-06-09 2006-12-14 Lignosol Gmbh & Co. Kg Verfahren zur erzeugung von treibstoffen aus biogenen rohstoffen sowie anlage und katalysatorzusammensetzung zur durchführung des verfahrens
US7754931B2 (en) * 2005-09-26 2010-07-13 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Production of high-cetane diesel fuel from low-quality biomass-derived feedstocks
US20070209966A1 (en) * 2006-03-07 2007-09-13 Syntroleum Corporation Catalytic distillation process for hydroprocessing Fischer-Tropsch liquids
BRPI0709156B1 (pt) * 2006-03-24 2016-08-02 Virent Energy Systems Inc método para fabricar hidrocarbonetos e hidrocarbonetos oxigenados, hidrocarbonetos lineares ou ramificados de c2 a c36
FI20085400A0 (fi) 2007-11-09 2008-04-30 Upm Kymmene Oyj Menetelmä jäteveden integroidulle käsittelylle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2122991C1 (ru) * 1993-07-06 1998-12-10 Хальдор Топсеэ А/С Способ регенерации отработанного кислотного катализатора
RU2101273C1 (ru) * 1994-04-27 1998-01-10 Коваленко Владимир Васильевич Способ выделения метанола из смесей с углеводородами с4 или с5
US5718810A (en) * 1996-03-19 1998-02-17 The Dow Chemical Company Methanol recovery using extractive distillation
RU2189968C1 (ru) * 2001-01-23 2002-09-27 Открытое акционерное общество "Акрон" Способ получения метанола

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVDA R.R. et al., A review of catalytic issue and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts, Applied Catalysis B: Environmental, 2005, v.56, Abs., Intr., c.172-174, с.180, 181. ЕКВОМ Т. et. al., High efficient motor fuel production from biomass via black liquor gasification, International Symposium on Alcohol Fuels, 2005, Abstract, Introduction 1.1, 1.3, Pulp&Paper 2.2, Process Description 3.1, 3.2, фиг.3. *
ДОЛГОВ Б.Н. Катализ в органической химии. - Л.: Государственное научно-техническое издательство химической литературы, 1949, с.52, 53. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2776076C2 (ru) * 2016-11-01 2022-07-13 Коля КУЗЕ Углеродные волокна, производимые из возобновляемых или частично возобновляемых источников диоксида углерода с применением комбинированных способов производства
RU2806323C1 (ru) * 2022-06-30 2023-10-31 Федеральное государственное бюджетное учреждение науки Объединённый институт высоких температур Российской академии наук (ОИВТ РАН) Углероднейтральная энергетическая система с жидким энергоносителем

Also Published As

Publication number Publication date
WO2009059819A1 (en) 2009-05-14
WO2009059920A3 (en) 2009-11-05
BRPI0819109A2 (pt) 2019-09-24
CN101939264B (zh) 2012-11-28
CA2704999A1 (en) 2009-05-14
FI20085697A0 (fi) 2008-07-04
EP2238084B1 (en) 2014-12-24
US20160083252A1 (en) 2016-03-24
FI20085400A0 (fi) 2008-04-30
RU2010119341A (ru) 2011-12-20
US10407304B2 (en) 2019-09-10
US8591737B2 (en) 2013-11-26
US20100317905A1 (en) 2010-12-16
BRPI0819176A2 (pt) 2015-05-05
CN101918305A (zh) 2010-12-15
CA2705064C (en) 2016-09-06
RU2010119343A (ru) 2011-12-20
EP2238084A1 (en) 2010-10-13
CA2704999C (en) 2015-12-29
EP2229339A2 (en) 2010-09-22
CN101939264A (zh) 2011-01-05
EP2229339B2 (en) 2021-09-01
US20100317749A1 (en) 2010-12-16
CA2705064A1 (en) 2009-05-14
RU2480425C2 (ru) 2013-04-27
EP2229339B1 (en) 2012-08-01
WO2009059920A2 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
RU2489348C2 (ru) Применение биометанола для получения водорода и биотоплива, способ получения биоводорода и установка для производства биотоплива
RU2491319C2 (ru) Интегрированный способ получения дизельного топлива из биологического материала, продукты, применение и установка, относящиеся к этому способу
Gollakota et al. A review on the upgradation techniques of pyrolysis oil
US20110155631A1 (en) Integrated Process for Producing Diesel Fuel from Biological Material and Products and Uses Relating to Said Process
CA2699897C (en) Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption
US8648226B2 (en) Process for producing renewable gasoline, and fuel compositions produced therefrom
Perego et al. Diesel fuel from biomass
US10011785B2 (en) Integrated process for producing hydrocarbons
WO2015101713A1 (en) Integrated process for producing hydrocarbons
US20120151828A1 (en) Hydroprocessing of fats, oils, and waxes to produce low carbon footprint distillate fuels
Kumar et al. Thermochemical conversion routes of hydrogen production from organic biomass: processes, challenges and limitations
Pirola et al. Fossil or renewable sources for methanol production?
WO2015092143A1 (en) Intergrated pyrolysis process
Halmenschlager et al. PRODUCTION OF BIOFUELS FROM WASTE BIOMASS VIA FISCHER-TROPSCH SYNTHESIS
EP4341363A1 (en) Process for conversion of biological feedstocks to middle distillates with catalytic inhibitor removal
Halmenschlager et al. Production of Biofuels from Waste Biomass Via Fischer-Tropsch Synthesis an Overview
CA3239073A1 (en) Process for producing a liquid hydrocarbon from renewable sources
Mustaffa Pyrolysis of Agricultural Waste: Effect of Catalyst Application
Vyankatesh Catalytic pyrolysis of castor seed into liquid hydrocarbon transportation fuels