RU2482914C2 - Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия - Google Patents

Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия Download PDF

Info

Publication number
RU2482914C2
RU2482914C2 RU2011104392/05A RU2011104392A RU2482914C2 RU 2482914 C2 RU2482914 C2 RU 2482914C2 RU 2011104392/05 A RU2011104392/05 A RU 2011104392/05A RU 2011104392 A RU2011104392 A RU 2011104392A RU 2482914 C2 RU2482914 C2 RU 2482914C2
Authority
RU
Russia
Prior art keywords
protium
solution
silver
catalyst
reverse micellar
Prior art date
Application number
RU2011104392/05A
Other languages
English (en)
Other versions
RU2011104392A (ru
Inventor
Алексей Юрьевич Антонов
Ольга Анатольевна Боева
Александра Анатольевна Ревина
Михаил Олегович Сергеев
Карина Фаритовна Нуртдинова
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) filed Critical Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева)
Priority to RU2011104392/05A priority Critical patent/RU2482914C2/ru
Publication of RU2011104392A publication Critical patent/RU2011104392A/ru
Application granted granted Critical
Publication of RU2482914C2 publication Critical patent/RU2482914C2/ru

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия. Способ включает получение наночастиц серебра при радиационно-химическом восстановлении ионов серебра из обратномицеллярного раствора с последующим нанесением на носитель, в качестве которого используют Сибунит, причем наночастицы серебра получают путем приготовления обратномицеллярного раствора серебра из 0,02-0,5 М раствора бис(2-этилгексил)сульфосукцината натрия в неполярном растворителе и 0,003-2,0 М водного раствора AgNO3, приготовленный раствор обрабатывают ультразвуком до получения обратномицеллярной дисперсии с последующей ее деаэрацией, после чего суспензию подвергают воздействию γ-излучения 60Со с дозой от 5 до 30 кГр. Изобретение позволяет получить катализатор, предназначенный для работы при температурах, максимально приближенных к температурам сжижения протия и дейтерия. 5 табл., 4 пр., 1 ил.

Description

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия.
Известен способ получения катализатора путем ионного обмена, при котором носитель из огнеупорного оксида, содержащего катион водорода, обрабатывают раствором, содержащим катионы металлов. Непосредственно после обработки оксид промывают водой для отделения химически несвязанных металлических катионов. Далее оксид сушат, при этом часть металлических катионов восстанавливается при нагревании огнеупорного оксида до элементарного металла путем отделения от связанной воды, которая ассоциирована с металлическими катионами (пат. Германии №1542012, кл. B01Y 37/30 от 21.10.76 г.). Этот катализатор используется только для ионного обмена.
Известен способ получения катализатора для изотопного обмена между водой и водородом, где катализатор включает гидрофобную пористую матрицу с диспергированной в ней платиной и по крайней мере другой металл, выбранный из группы хрома или титана (пат. ЕР №1486457, кл. B01D 59/00, B01Y 37/00-37/02 от 06.06.2003 г.). Однако этот катализатор используется только для изотопного обмена между водой и водородом.
Известен способ получения катализатора, используемого для эпоксидирования этилена в паровой фазе, включающий пропитку предварительно сформованного носителя из альфа оксида алюминия, который подвергали прокаливанию и необязательно другим видам обработки при предварительном формовании в качестве части процесса предварительного формования, по меньшей мере, одним модификатором из гидрооксида щелочного металла, необязательную сушку упомянутого пропитанного носителя, прокаливание упомянутого пропитанного носителя, промывку упомянутого прокаленного носителя, нанесение серебряного каталитического материала на упомянутый прокаленный носитель. Далее на носитель наносят серебряный каталитический материал с одним или несколькими промоторами. Для этого проводят пропитку пористого модифицированного носителя из оксида алюминия раствором, содержащим растворитель или растворяющий агент, комплекс серебра и один или более промоторов, и после этого проводят обработку пропитанного носителя с превращением соли серебра в металлическое серебро (Российский патент №2340607, кл. С07D 301/10 от 29. 12.2008).
Известен способ получения серебряного катализатора для изотопного обмена протия-дейтерия [М.А.Авдеенко, Г.К.Боресков, М.Г.Слинько. Каталитическая активность металлов в отношении гомомолекулярного изотопного обмена водорода. Сборник «Проблемы кинетики и катализа». - М.: АН СССР, 1957, с.61], представляющего собой массивное серебро. Авторы не измеряли адсорбцию водорода. В работе измерена удельная каталитическая активность серебра при комнатной и более высоких температурах. Авторами измерена каталитическая активность массивного серебра при температуре 77 К. В промежутке между комнатной температурой и азотной температурой измерений удельной каталитической активности серебра (Куд) сделано не было. Значение активности очень мало и составляет при Т=77 К всего ~1011 молекул/(с·см2).
Наиболее близким по технической сущности и достигаемому результату является способ получения катализатора Ptмиц/Al2O3 для изотопного обмена протия и дейтерия и о-п конверсии протия. Наночастицы Pt образуются при радиационно-химическом восстановлении ионов платины в обратномицеллярных системах Н2[РtСl6]/H2O/ацетон/бис(2-этилгексил)сульфосукцинат натрия (АОТ/изооктан. Наночастицы получены из трех различных исходных обратномицеллярных растворов, отличающихся значениями коэффициента солюбилизации ω=1,5, 3 и 5 («Перспективные материалы», стр.288-293, 2010 г.).
Однако этот способ требует затрат платины, что экономически нецелесообразно.
Техническим результатом изобретения является получение катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия, предназначенного для работы при температурах, максимально приближенных к температурам сжижения протия и дейтерия.
Этот технический результат достигается способом получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия, включающего получение наночастиц металла при радиационно-химическом восстановлении ионов металла из обратномицеллярного раствора с последующим нанесением на носитель Сибунит, причем получают наночастицы путем приготовления обратномицеллярного раствора серебра из 0,02-0,5 М раствора бис(2-этилгексил)сульфосукцината натрия в неполярном растворителе и 0,003-2,0 М водного раствора AgNO3, полученный раствор обрабатывают ультразвуком до получения обратномицеллярной дисперсии с последующей ее деаэрацией и герметизацией, после чего суспензию подвергают воздействию γ-излучения 60Со с дозой от 5 до 30 кГр.
В качестве неполярного растворителя используют изооктан.
Описание способа приготовления
Синтез катализаторов Ag/Сибунит проводился в соответствии со следующими принципами.
Синтез исходных обратномицеллярных растворов с металлическими наноструктурными частицами серебра на основе использования обратных мицелл в качестве микрореакторов для восстановления ионов серебра при воздействии на обратномицеллярный раствор ионизирующего излучения и формирования наноструктурных частиц серебра. Последующая адсорбция полученных обратных мицелл с наноструктурными частицами серебра на поверхность носителя Сибунит. Отмывка от растворителя и поверхностно-активного вещества.
Приготовление обратномицеллярного раствора включает в себя следующие стадии:
1. приготовление в стеклянном или металлическом реакторе обратномицеллярной дисперсии на основе поверхностно-активного вещества в неполярном растворителе (бис(2-этилгексил)сульфосукцинат натрия (АОТ) в изооктане в диапазоне концентраций 0,02÷0,5 М),
2. введение водного или водно-спиртового раствора соли (0,003-2,0 М водного либо водно-спиртового раствора AgNO3),
3. проведение перед началом процесса восстановления перемешивания или ультразвуковой обработки,
4. деаэрирование,
5. герметизация,
6. проведение восстановления ионов серебра сольватированными электронами и радикалами, генерируемыми под воздействием ионизирующего излучения (в интервале поглощенных доз 5÷30 кГр). В качестве источника излучения использован источник гамма-лучей 60Со.
В результате процесса радиационно-химического восстановления в обратномицеллярных растворах получены наночастицы различных размеров от 1 до 40 нм, определенных методом атомно-силовой микроскопии.
Пример 1
Готовилась обратномицеллярная дисперсия на основе поверхностно-активного вещества в неполярном растворителе. Для этого использовался 0,02 М раствор бис(2-этилгексил)сульфосукцината натрия (АОТ) в изооктане, в который вводился 0,003 М водный раствор нитрата серебра. Взвешен 1 г носителя Сибунит и помещен в 5 мл обратномицеллярного раствора, предварительно подвергнутого излучению 60Со при комнатной температуре при мощности дозы 0,15 Гр/с до достижения дозы 5 кГр.
По убыли интенсивности пиков, соответствующих наночастицам серебра в растворе с погруженным в него носителем Сибунит, судили о факте адсорбции наночастиц серебра. Факт образования наноструктурированных частиц серебра фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами серебра извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами серебра подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ag/Сибунит по отношению к реакции изотопного обмена протия-дейтерия составила 1,8·1014 молекул/(см2·с), что сопоставимо с активностью катализатора Ptмиц/Al2O3, выбранного в качестве прототипа, и более чем на 3 порядка превышает активность массивного серебра, выбранного в качестве аналога. Значения удельной каталитической активности для массивного серебра представлены в таблице 1 и на фигуре 1 (линия 3). Данные по активности образца катализатора Ag/Сибунит, приготовленного по примеру 1, в интервале температур 77-243 К представлены в таблице 2 и на фигуре 1 (линия 1). Фигура 1 представляет собой графическое отображение температурной зависимости логарифма каталитической активности катализаторов от обратной температуры. По оси ординат отложены значения десятичного логарифма удельной каталитической активности, выраженной в размерности молекул/(см2·с), по оси абсцисс - значения обратной температуры, помноженной на тысячу: 103/T. Температура выражена в кельвинах.
Пример 2
Готовилась обратномицеллярная дисперсия на основе поверхностно-активного вещества в неполярном растворителе. Для этого использовался 0,5 М раствор бис(2-этилгексил)сульфосукцината натрия (АОТ) в изооктане, в который вводился 2,0 М водный раствор нитрата серебра. Взвешен 1 г носителя Сибунит и помещен в 5 мл обратномицеллярного раствора, предварительно подвергнутого излучению 60Со при комнатной температуре при мощности дозы 0,15 Гр/с до достижения дозы 30 кГр.
По убыли интенсивности пиков, соответствующих наночастицам серебра в растворе с погруженным в него носителем Сибунит, судили о факте адсорбции наночастиц серебра. Факт образования наноструктурированных частиц серебра фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами серебра извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами серебра подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ag/Сибунит по отношению к реакции изотопного обмена протия-дейтерия составила 2,0·1014 молекул/(см2·с), что сопоставимо с активностью катализатора Ptмиц/Al2O3, выбранного в качестве прототипа, и более чем на 3 порядка превышает активность массивного серебра, выбранного в качестве аналога. Значения удельной каталитической активности для массивного серебра представлены в таблице 1 и на фигуре 1 (линия 3).
Данные по активности образца катализатора Ag/Сибунит, приготовленного по примеру 2, в интервале температур 77-293 К представлены в таблице 3 и на фигуре 1 (линия 2). Фигура 1 представляет собой графическое отображение температурной зависимости логарифма каталитической активности катализаторов от обратной температуры. По оси ординат отложены значения десятичного логарифма удельной каталитической активности, выраженной в размерности молекул/(см2·с), по оси абсцисс - значения обратной температуры, помноженной на тысячу: 103/T. Температура выражена в кельвинах.
Пример 3
Готовилась обратномицеллярная дисперсия на основе поверхностно-активного вещества в неполярном растворителе. Для этого использовался 0,02 М раствор бис(2-этилгексил)сульфосукцината натрия (АОТ) в изооктане, в который вводился 0,003 М водный раствор нитрата серебра. Взвешен 1 г носителя Сибунит и помещен в 5 мл обратномицеллярного раствора, предварительно подвергнутого излучению 60Со при комнатной температуре при мощности дозы 0,15 Гр/с до достижения дозы 5 кГр.
По убыли интенсивности пиков, соответствующих наночастицам серебра в растворе с погруженным в него носителем Сибунит, судили о факте адсорбции наночастиц серебра. Факт образования наноструктурированных частиц серебра фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами серебра извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами серебра подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ag/Сибунит по отношению к реакции орто-пара конверсии протия составила 1,5·1014 молекул/(см2·с), что сопоставимо с активностью катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.
Данные по активности данного образца катализатора Ag/Сибунит, приготовленного по примеру 3, в интервале температур 77-110 К представлены в таблице 4.
Пример 4
Готовилась обратномицеллярная дисперсия на основе поверхностно-активного вещества в неполярном растворителе. Для этого использовался 0,5 М раствор бис(2-этилгексил)сульфосукцинат натрия (АОТ) в изооктане, в который вводился 2,0 М водный раствор нитрата серебра. Взвешен 1 г носителя Сибунит и помещен в 5 мл обратномицеллярного раствора, предварительно подвергнутого излучению 60Со при комнатной температуре при мощности дозы 0,15 Гр/с до достижения дозы 30 кГр.
По убыли интенсивности пиков, соответствующих наночастицам серебра в растворе с погруженным в него носителем Сибунит, судили о факте адсорбции наночастиц серебра. Факт образования наноструктурированных частиц серебра фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами серебра извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами серебра подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ag/Сибунит по отношению к реакции орто-пара конверсии протия составила 1,9·1014 молекул/(см2·с), что сопоставимо с активностью катализатора Ptмиц/Al2O3.
Данные по активности данного образца катализатора Ag/Сибунит, приготовленного по примеру 4, в интервале температур 77-110 К представлены в таблице 5.
Таблица 1
Значения удельной каталитической активности массивного серебра в отношении реакции изотопного обмена протия-дейтерия в молекулярном водороде
Куд·10-11 молекул/(см2·с) при Т, К
77 293 393 453 530
2,7 11 13 21 30
Таблица 2
Значения удельной каталитической активности Ag/Сибунит, приготовление которого рассмотрено в примере 1, в отношении реакции изотопного обмена протия-дейтерия в молекулярном водороде
Куд·10-14 молекул/(см2·с) при Т, К
77 110 133 143 163 183 193 223 243 293
1,8 1,3 1,5 1,4 2,5 5,4 6,7 15,8 20,9 26,4
Таблица 3
Значения удельной каталитической активности Ag/Сибунит, приготовление которого рассмотрено в примере 2, в отношении реакции изотопного обмена протия-дейтерия в молекулярном водороде
Куд·10-14 молекул/(см2·с) при Т, К
77 153 193 203 213 223 233 243 253 273 293
2,0 7,9 6,8 10,2 10,2 11,9 12,1 31,2 36,4 85,2 95,1
Таблица 4
Значения удельной каталитической активности Ag/Сибунит, приготовление которого рассмотрено в примере 3, в отношении реакции орто-пара конверсии протия
Куд·10-14 молекул/(см2·с) при Т, К
77 110
1,5 1,7
Таблица 5
Значения удельной каталитической активности Ag/Сибунит, приготовление которого рассмотрено в примере 4, в отношении реакции орто-пара конверсии протия
Куд·10-14 молекул/(см2·с) при Т, К
77 110
1,9 2,1
Каталитическая активность катализатора в отношении реакций изотопного обмена протия-дейтерия и орто-пара конверсии протия, приготовленного по примерам 1-4, имеет тот же порядок величин, что и у катализатора Ptмиц/Al2O3., выбранного в качестве прототипа. Как видно из таблицы 1, значение активности массивного серебра, взятого в качестве аналога, очень мало и составляет при Т=77 К всего ~1011 молекул/(с·см2), что на три порядка уступает активности катализатора, приготовленного по примерам 1. Данные об активности катализатора, приготовленного по примеру 1-4, указаны в таблицах 2-5 соответственно.
Представленные данные показывают отсутствие значимых различий в величинах каталитической активности при концентрациях реагентов, лежащих в заданных интервалах: C(ПАВ)=0,02÷0,5 М,
Figure 00000001
, поглощенная доза = 5÷30 кГр.

Claims (1)

  1. Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия, включающий получение наночастиц металла при радиационно-химическом восстановлении ионов металла из обратномицеллярного раствора с последующим нанесением на носитель, отличающийся тем, что в качестве носителя используют сибунит, наночастицы серебра получают путем приготовления обратномицеллярного раствора серебра из 0,02-0,5 М раствора бис(2-этилгексил)сульфосукцината натрия в неполярном растворителе и 0,003-2,0 М водного раствора AgNO3, полученный раствор обрабатывают ультразвуком до получения обратномицеллярной дисперсии с последующей ее деаэрацией, после чего суспензию подвергают воздействию γ-излучения 60Со с дозой от 5 до 30 кГр.
RU2011104392/05A 2011-02-08 2011-02-08 Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия RU2482914C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011104392/05A RU2482914C2 (ru) 2011-02-08 2011-02-08 Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011104392/05A RU2482914C2 (ru) 2011-02-08 2011-02-08 Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия

Publications (2)

Publication Number Publication Date
RU2011104392A RU2011104392A (ru) 2012-08-20
RU2482914C2 true RU2482914C2 (ru) 2013-05-27

Family

ID=46936088

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011104392/05A RU2482914C2 (ru) 2011-02-08 2011-02-08 Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия

Country Status (1)

Country Link
RU (1) RU2482914C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486457A1 (en) * 2003-06-06 2004-12-15 Atomic Energy of Canada Limited Water repellent catalysts for hydrogen isotope exchange
RU2316394C1 (ru) * 2006-12-18 2008-02-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Способ приготовления моно- и биметаллического катализатора и процессы с участием кислорода и/или водорода
RU2322327C2 (ru) * 2006-01-19 2008-04-20 Александра Анатольевна Ревина Препарат наноструктурных частиц металлов и способ его получения
RU2374172C1 (ru) * 2008-10-27 2009-11-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Способ регулирования дисперсности углеродметаллических катализаторов (варианты)
RU2394668C1 (ru) * 2008-12-19 2010-07-20 Валерий Павлович Герасименя Способ получения наноструктурных металлических частиц

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486457A1 (en) * 2003-06-06 2004-12-15 Atomic Energy of Canada Limited Water repellent catalysts for hydrogen isotope exchange
RU2322327C2 (ru) * 2006-01-19 2008-04-20 Александра Анатольевна Ревина Препарат наноструктурных частиц металлов и способ его получения
RU2316394C1 (ru) * 2006-12-18 2008-02-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Способ приготовления моно- и биметаллического катализатора и процессы с участием кислорода и/или водорода
RU2374172C1 (ru) * 2008-10-27 2009-11-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Способ регулирования дисперсности углеродметаллических катализаторов (варианты)
RU2394668C1 (ru) * 2008-12-19 2010-07-20 Валерий Павлович Герасименя Способ получения наноструктурных металлических частиц

Also Published As

Publication number Publication date
RU2011104392A (ru) 2012-08-20

Similar Documents

Publication Publication Date Title
JP6284197B2 (ja) 金属ナノ粒子複合体の製造方法およびその方法により製造された金属ナノ粒子複合体
Zhou et al. Dual-dehydrogenation-promoted catalytic oxidation of formaldehyde on alkali-treated Pt clusters at room temperature
JP7060523B2 (ja) 封入された二元金属クラスターを有するゼオライト材料
Yamamoto et al. In-situ FT-IR study on the mechanism of CO2 reduction with water over metal (Ag or Au) loaded Ga2O3 photocatalysts
Ivanova et al. Preparation of alumina supported gold catalysts: Gold complexes genesis, identification and speciation by mass spectrometry
Liu et al. gC 3 N 4 supported metal (Pd, Ag, Pt) catalysts for hydrogen-production from formic acid
WO2009027439A2 (en) Catalyst support and process for the preparation thereof
Yang et al. Understanding preparation variables in the synthesis of Au/Al2O3 using EXAFS and electron microscopy
CN111013644A (zh) 杂原子W-β分子筛及其制备方法和应用
Mdlovu et al. Formulation and characterization of W-doped titania nanotubes for adsorption/photodegradation of methylene blue and basic violet 3 dyes
Pang et al. Toward economical purification of styrene monomers: Eggshell Mo2C for front‐end hydrogenation of phenylacetylene
Hu et al. Preparation of 4A-zeolite-based Ag nanoparticle composite catalyst and research of the catalytic properties
Bron et al. Towards the “pressure and materials gap”: Hydrogenation of acrolein using silver catalysts
RU2482914C2 (ru) Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия
CN111051238A (zh) 氨的氧化方法
RU2461413C1 (ru) СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРA Ag/SiO2 ДЛЯ ГЕТЕРОГЕННОГО КАТАЛИЗА МОЛЕКУЛЯРНОГО ВОДОРОДА В РЕАКЦИЯХ ИЗОТОПНОГО ОБМЕНА ПРОТИЯ-ДЕЙТЕРИЯ И ОРТО-ПАРА КОНВЕРСИИ ПРОТИЯ
RU2477174C2 (ru) Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия
RU2461412C1 (ru) СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА Ag/SiO2 ДЛЯ ГЕТЕРОГЕННОГО КАТАЛИЗА МОЛЕКУЛЯРНОГО ВОДОРОДА В РЕАКЦИЯХ ИЗОТОПНОГО ОБМЕНА ПРОТИЯ-ДЕЙТЕРИЯ И ОРТО-ПАРА КОНВЕРСИИ ПРОТИЯ
Pomogailo et al. Polymer-immobilized rhodium complexes forming in situ: preparation and catalytic properties
Okhlopkova et al. Internal Surface Coating of a Capillary Microreactor for the Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol Using a PdZn/TiO 2 Catalyst. The Effect of the Catalyst’s Activation Conditions on Its Catalytic Properties
RU2452570C1 (ru) Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия
RU2243033C1 (ru) Способ приготовления катализатора на основе диоксида титана (варианты)
RU2452569C1 (ru) Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия
CN109952151A (zh) 用于用来产生乙酸乙烯酯单体的增强的催化剂的氧化铝载体的压碎强度和孔隙率
Mavrič et al. The role of polyvinylpyrrolidone in hydrothermally synthesized Ag/ZnO nanocomposites and their photocatalytic activities

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130209