RU2477174C2 - Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия - Google Patents

Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия Download PDF

Info

Publication number
RU2477174C2
RU2477174C2 RU2011104394/05A RU2011104394A RU2477174C2 RU 2477174 C2 RU2477174 C2 RU 2477174C2 RU 2011104394/05 A RU2011104394/05 A RU 2011104394/05A RU 2011104394 A RU2011104394 A RU 2011104394A RU 2477174 C2 RU2477174 C2 RU 2477174C2
Authority
RU
Russia
Prior art keywords
protium
solution
silver
catalyst
reverse micellar
Prior art date
Application number
RU2011104394/05A
Other languages
English (en)
Other versions
RU2011104394A (ru
Inventor
Алексей Юрьевич Антонов
Ольга Анатольевна Боева
Александра Анатольевна Ревина
Михаил Олегович Сергеев
Карина Фаритовна Нуртдинова
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) filed Critical Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева)
Priority to RU2011104394/05A priority Critical patent/RU2477174C2/ru
Publication of RU2011104394A publication Critical patent/RU2011104394A/ru
Application granted granted Critical
Publication of RU2477174C2 publication Critical patent/RU2477174C2/ru

Links

Images

Abstract

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия. Способ включает получение наночастиц серебра при радиационно-химическом восстановлении ионов серебра из обратномицеллярного раствора с последующим нанесением на носитель Al2O3, причем обратномицеллярный раствор серебра получают из 0,02-0,5 М раствора бис(2-этилгексил)сульфосукцината натрия в неполярном растворителе и 0,003-2,0 М водного раствора AgNO3, приготовленный раствор обрабатывают ультразвуком до получения обратномицеллярной дисперсии с последующей ее деаэрацией, после чего суспензию подвергают воздействию γ-излучения 60Co с дозой от 5 до 30 кГр. Изобретение позволяет получить катализатор, предназначенный для работы при температурах, максимально приближенных к температурам сжижения протия и дейтерия. 5 табл., 1 ил., 4 пр.

Description

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия.
Известен способ получения катализатора путем ионного обмена, при котором носитель из огнеупорного оксида, содержащего катион водорода, обрабатывают раствором, содержащим катионы металлов. Непосредственно после обработки оксид промывают водой для отделения химически не связанных металлических катионов. Далее оксид сушат, при этом часть металлических катионов восстанавливается при нагревании огнеупорного оксида до элементарного металла путем отделения от связанной воды, которая ассоциирована с металлическими катионами (Пат. Германии №1542012, кл. B01Y 37/30 от 21.10.76 г.). Этот катализатор используется только для ионного обмена.
Известен способ получения катализатора для изотопного обмена между водой и водородом, где катализатор включает гидрофобную пористую матрицу с диспергированной в ней платиной и по крайней мере другой металл, выбранный из группы хрома или титана (пат. ЕР №1486457, кл. B01D 59/00, B01Y 37/00-37/02 от 06.06.2003 г). Однако этот катализатор используется только для изотопного обмена между водой и водородом.
Известен способ получения катализатора, используемого для эпоксидирования этилена в паровой фазе, включающий пропитку предварительно сформованного носителя из альфа оксида алюминия, который подвергали прокаливанию и необязательно другим видам обработки при предварительном формовании в качестве части процесса предварительного формования, по меньшей мере, одним модификатором из гидрооксида щелочного металла, необязательную сушку упомянутого пропитанного носителя, прокаливание упомянутого пропитанного носителя, промывку упомянутого прокаленного носителя, нанесение серебряного каталитического материала на упомянутый прокаленный носитель. Далее на носитель наносят серебряный каталитический материал с одним или несколькими промоторами. Для этого проводят пропитку пористого модифицированного носителя из оксида алюминия раствором, содержащим растворитель или растворяющий агент, комплекс серебра и один или более промоторов и после этого проводят обработку пропитанного носителя с превращением соли серебра в металлическое серебро (Российский патент №2340607, кл. C07 301/10 от 29.12.2008).
Известен способ получения серебряного катализатора для изотопного обмена протия-дейтерия [М.А.Авдеенко, Г.К.Боресков, М.Г.Слинько. Каталитическая активность металлов в отношении гомомолекулярного изотопного обмена водорода». Сборник «Проблемы кинетики и катализа. - М.: АН СССР, 1957, с.61], представляющего собой массивное серебро. Авторы не измеряли адсорбцию водорода. В работе измерена удельная каталитическая активность серебра при комнатной и более высоких температурах. Авторами измерена каталитическая активность массивного серебра при температуре 77 К. В промежутке между комнатной температурой и азотной температурой измерений удельной каталитической активности серебра (Куд) сделано не было. Значение активности очень мало и составляет при Т=77 К всего ~1011 молекул/с·см2.
Наиболее близким по технической сущности и достигаемому результату является способ получения катализатора Ptмиц/Al2O3 для изотопного обмена протия и дейтерия и о-п конверсии протия. Наночастицы Pt образуются при радиационно-химическом восстановлении ионов платины в обратномицеллярных системах H2[PtCl6]/H2O/ацетон/бис(2 этилгексил)сульфосукцинат натрия (АОТ)/изооктан. Наночастицы получены из трех различных исходных обратномицеллярных растворов, отличающихся значениями коэффициента солюбилизации ω=1,5, 3 и 5 («Перспективные материалы» стр.288-293, 2010 г.)
Однако этот способ требует затрат платины, что экономически нецелесообразно.
Техническим результатом изобретения является получение катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия, предназначенного для работы при температурах, максимально приближенных к температурам сжижения протия и дейтерия.
Этот технический результат достигается способом получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия, включающего получение наночастиц серебра при радиационно-химическом восстановлении ионов серебра из обратномицеллярного раствора с последующим нанесением на носитель Al2O3, причем получают наночастицы путем приготовления обратномицеллярного раствора серебра из 0,02-0,5 М раствора бис(2-этилгексил)сульфосукцината натрия в неполярном растворителе и 0,003-2,0 М водного раствора AgNO3, полученный раствор обрабатывают ультразвуком до получения обратномицеллярной дисперсии с последующей ее деаэрацией, после чего суспензию подвергают воздействию γ-излучения 60Co с дозой от 5 до 30 кГр.
В качестве неполярного растворителя используют изооктан.
Описание способа приготовления
Синтез катализаторов Ag/Al2O3 проводился в соответствии со следующими принципами.
Синтез исходных обратномицеллярных растворов с металлическими наноструктурными частицами серебра на основе использования обратных мицелл в качестве микрореакторов для восстановления ионов серебра под воздействием ионизирующего излучения и формирования наноструктурных частиц серебра. Последующая адсорбция полученных обратных мицелл с наноструктурными частицами серебра на поверхность носителя Al2O3. Отмывка от растворителя и поверхностно-активного вещества.
Приготовление обратномицеллярного раствора включает в себя следующие стадии:
1. приготовление в стеклянном или металлическом реакторе обратномицеллярной дисперсии на основе поверхностно-активного вещества в неполярном растворителе (бис(2-этилгексил)сульфосукцинат натрия (АОТ) в изооктане в диапазоне концентраций 0,02÷0,5 М)
2. введение водного или водно-спиртового раствора соли (0,003-2,0 М водного либо водно-спиртового раствора AgNO3),
3. проведение перед началом процесса восстановления перемешивания или ультра - звуковой обработки,
4. деаэрирование,
5. герметизация,
6. проведение восстановления ионов серебра сольватированными электронами и радикалами, генерируемыми под воздействием ионизирующего излучения (в интервале поглощенных доз 5÷30 кГр). В качестве источника излучения использован источник гамма лучей 60Co.
В результате процесса радиационно-химического восстановления в обратномицеллярных растворах получены наночастицы различных размеров от 1 до 40 нм, определенных методом атомно-силовой микроскопии.
Пример №1
Готовилась обратномицеллярная дисперсия на основе поверхностно-активного вещества в неполярном растворителе. Для этого использовался 0,02 М раствор бис(2-этилгексил)сульфосукцинат натрия (АОТ) в изооктане, в который вводился 0,003 М водный раствор нитрата серебра. Взвешен 1 г носителя Al2O3 и помещен в 5 мл обратномицеллярного раствора, предварительно подвергнутого излучению 60Co при комнатной температуре при мощности дозы 0,15 Гр/с до достижения дозы 5 кГр.
По убыли интенсивности пиков, соответствующих наночастицам серебра в растворе с погруженным в него носителем Al2O3, судили о факте адсорбции наночастиц серебра. Факт образования наноструктурированных частиц серебра фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами серебра извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами серебра подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ag/Al2O3 по отношению к реакции изотопного обмена протия-дейтерия составила 2,0·1014 молекул/(см2·с), что сопоставимо с активностью катализатора Ptмиц/Al2O3, выбранного в качестве прототипа, и более чем на 3 порядка превышает активность массивного серебра, выбранного в качестве аналога. Значения удельной каталитической активности для массивного серебра представлены в таблице 1 и на фиг.1 (линия 3). Данные по активности образца катализатора Ag/Al2O3, приготовленного по примеру 1, в интервале температур 77-243 К представлены в таблице 2 и на фиг.1 (линия 1). Фиг.1 представляет собой графическое отображение температурной зависимости логарифма каталитической активности катализаторов от обратной температуры. По оси ординат отложены значения десятичного логарифма удельной каталитической активности, выраженной в размерности молекул/(см2·с), по оси абсцисс - значения обратной температуры, помноженной на тысячу: 103/Т. Температура выражена в кельвинах.
Пример №2
Готовилась обратномицеллярная дисперсия на основе поверхностно-активного вещества в неполярном растворителе. Для этого использовался 0,5 М раствор бис(2-этилгексил)сульфосукцинат натрия (АОТ) в изооктане, в который вводился 2,0 М водный раствор нитрата серебра. Взвешен 1 г носителя Al2O3 и помещен в 5 мл обратномицеллярного раствора, предварительно подвергнутого излучению 60Co при комнатной температуре при мощности дозы 0,15 Гр/с до достижения дозы 30 кГр.
По убыли интенсивности пиков, соответствующих наночастицам серебра в растворе с погруженным в него носителем Al2O3, судили о факте адсорбции наночастиц серебра. Факт образования наноструктурированных частиц серебра фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами серебра извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами серебра подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ag/Al2O3 по отношению к реакции изотопного обмена протия-дейтерия составила 1,4·1014 молекул/(см2·с), что сопоставимо с активностью катализатора Ptмиц/Al2O3, выбранного в качестве прототипа, и более чем на 3 порядка превышает активность массивного серебра, выбранного в качестве аналога. Значения удельной каталитической активности для массивного серебра представлены в таблице 1 и на фиг.1 (линия 3).
Данные по активности образца катализатора Ag/Al2O3, приготовленного по примеру 2, в интервале температур 77-293 К представлены в таблице 3 и на фиг.1 (линия 2). Фиг.1 представляет собой графическое отображение температурной зависимости логарифма каталитической активности катализаторов от обратной температуры. По оси ординат отложены значения десятичного логарифма удельной каталитической активности, выраженной в размерности молекул/(см2·с), по оси абсцисс - значения обратной температуры, помноженной на тысячу: 103/T. Температура выражена в кельвинах.
Пример №3
Готовилась обратномицеллярная дисперсия на основе поверхностно-активного вещества в неполярном растворителе. Для этого использовался 0,02 М раствор бис(2-этилгексил)сульфосукцинат натрия (АОТ) в изооктане, в который вводился 0,003 М водный раствор нитрата серебра. Взвешен 1 г носителя Al2O3 и помещен в 5 мл обратномицеллярного раствора, предварительно подвергнутого излучению 60Co при комнатной температуре при мощности дозы 0,15 Гр/с до достижения дозы 5 кГр.
По убыли интенсивности пиков, соответствующих наночастицам серебра в растворе с погруженным в него носителем Al2O3, судили о факте адсорбции наночастиц серебра. Факт образования наноструктурированных частиц серебра фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами серебра извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами серебра подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ag/Al2O3 по отношению к реакции орто-пара конверсии протия составила 3,2·1014 молекул/см·с), что сопоставимо с активностью катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.
Данные по активности данного образца катализатора Ag/Al2O3, приготовленного по примеру 3, в интервале температур 77-110 К представлены в таблице 4.
Пример №4
Готовилась обратномицеллярная дисперсия на основе поверхностно-активного вещества в неполярном растворителе. Для этого использовался 0,5 М раствор бис(2-этилгексил)сульфосукцинат натрия (АОТ) в изооктане, в который вводился 2,0 М водный раствор нитрата серебра. Взвешен 1 г носителя Al2O3 и помещен в 5 мл обратномицеллярного раствора, предварительно подвергнутого излучению 60Co при комнатной температуре при мощности дозы 0,15 Гр/с до достижения дозы 30 кГр.
По убыли интенсивности пиков, соответствующих наночастицам серебра в растворе с погруженным в него носителем Al2O3, судили о факте адсорбции наночастиц серебра. Факт образования наноструктурированных частиц серебра фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами серебра извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами серебра подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ag/Al2O3 по отношению к реакции орто-пара конверсии протия составила 2,3·1014 молекул/(см2·с), что сопоставимо с активностью катализатора Ptмиц/Al2O3.
Данные по активности данного образца катализатора Ag/Al2O3, приготовленного по примеру 4, в интервале температур 77-110 К представлены в таблице 5.
Таблица 1
Значения удельной каталитической активности массивного серебра в отношении реакции изотопного обмена протия-дейтерия в молекулярном водороде
Куд·10-11 молекул/(см2·с) при Т, К
77 293 393 453 530
2,7 11 13 21 30
Таблица 2
Значения удельной каталитической активности Ag/Al2O3, приготовление которого рассмотрено в примере 1, в отношении реакции изотопного дейтероводородного обмена в молекулярном водороде
Куд·10-14 молекул/(см2·с) при Т, К
77 110 163 173 183 193 213 223 293
2,0 2,1 2,0 6,3 6,0 10,4 23,4 36,1 297,5
Таблица 3
Значения удельной каталитической активности Ag/Al2O3, приготовление которого рассмотрено в примере 2, в отношении реакции изотопного обмена протия-дейтерия в молекулярном водороде
Куд·10-14 молекул/(см2·с) при Т, К
77 110 138 153 158 193 223 293
1,4 1,0 2,0 1,3 0,9 5,4 7,1 28,5
Таблица 4
Значения удельной каталитической активности Ag/Al2O3, приготовление которого рассмотрено в примере 3, в отношении реакции орто-пара конверсии протия
Куд·10-14 молекул/(см2·с) при Т, К
77 110
3,2 3,5
Таблица 5
Значения удельной каталитической активности Ag/Al2O3, приготовление которого рассмотрено в примере 4, в отношении реакции орто-пара конверсии протия
Куд·10-14 молекул/(см2·с) при Т, К
77 110
2,3 2,0
Каталитическая активность катализатора в отношении реакций изотопного обмена протия-дейтерия и орто-пара конверсии протия, приготовленного по примерам 1-4, имеет тот же порядок величин, что и у катализатора Ptмиц/Al2O3, выбранного в качестве прототипа. Как видно из таблицы 1 значение активности массивного серебра, взятого в качестве аналога, очень мало и составляет при Т=77 К всего ~1011 молекул/с·см2, что на три порядка уступает активности катализатора, приготовленного по примерам 1 и 2. Данные об активности катализатора приготовленного по примеру 1-4, указаны в таблицах 2-5 соответственно.
Представленные данные показывают отсутствие значимых различий в величинах каталитической активности при концентрациях реагентов, лежащих в заданных интервалах: С(ПАВ)=0,02÷0,5 М,
Figure 00000001
поглощенная доза = 5÷30 кГр.

Claims (1)

  1. Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия, включающий получение наночастиц металла при радиационно-химическом восстановлении ионов металла из обратномицеллярного раствора с последующим нанесением на носитель Al2O3, отличающийся тем, что наночастицы серебра получают путем приготовления обратномицеллярного раствора серебра из 0,02-0,5 М раствора бис(2-этилгексил)сульфосукцината натрия в неполярном растворителе и 0,003-2,0 М водного раствора AgNO3, полученный раствор обрабатывают ультразвуком до получения обратномицеллярной дисперсии с последующей ее деаэрацией, после чего суспензию подвергают воздействию γ-излучения 60Co с дозой от 5 до 30 кГр.
RU2011104394/05A 2011-02-08 2011-02-08 Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия RU2477174C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011104394/05A RU2477174C2 (ru) 2011-02-08 2011-02-08 Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011104394/05A RU2477174C2 (ru) 2011-02-08 2011-02-08 Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия

Publications (2)

Publication Number Publication Date
RU2011104394A RU2011104394A (ru) 2012-08-20
RU2477174C2 true RU2477174C2 (ru) 2013-03-10

Family

ID=46936090

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011104394/05A RU2477174C2 (ru) 2011-02-08 2011-02-08 Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия

Country Status (1)

Country Link
RU (1) RU2477174C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486457A1 (en) * 2003-06-06 2004-12-15 Atomic Energy of Canada Limited Water repellent catalysts for hydrogen isotope exchange
RU2322327C2 (ru) * 2006-01-19 2008-04-20 Александра Анатольевна Ревина Препарат наноструктурных частиц металлов и способ его получения
RU2340607C2 (ru) * 2003-08-22 2008-12-10 Дау Текнолоджи Инвестментс Ллс Модифицированные носители из оксида алюминия и катализаторы на основе серебра для получения алкиленоксидов
RU2374172C1 (ru) * 2008-10-27 2009-11-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Способ регулирования дисперсности углеродметаллических катализаторов (варианты)
RU2394668C1 (ru) * 2008-12-19 2010-07-20 Валерий Павлович Герасименя Способ получения наноструктурных металлических частиц

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486457A1 (en) * 2003-06-06 2004-12-15 Atomic Energy of Canada Limited Water repellent catalysts for hydrogen isotope exchange
RU2340607C2 (ru) * 2003-08-22 2008-12-10 Дау Текнолоджи Инвестментс Ллс Модифицированные носители из оксида алюминия и катализаторы на основе серебра для получения алкиленоксидов
RU2322327C2 (ru) * 2006-01-19 2008-04-20 Александра Анатольевна Ревина Препарат наноструктурных частиц металлов и способ его получения
RU2374172C1 (ru) * 2008-10-27 2009-11-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Способ регулирования дисперсности углеродметаллических катализаторов (варианты)
RU2394668C1 (ru) * 2008-12-19 2010-07-20 Валерий Павлович Герасименя Способ получения наноструктурных металлических частиц

Also Published As

Publication number Publication date
RU2011104394A (ru) 2012-08-20

Similar Documents

Publication Publication Date Title
Lee et al. ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation
Xu et al. Photocatalytic oxidation of 2-propanol on TiO2 powder and TiO2 monolayer catalysts studied by solid-state NMR
Laoufi et al. Size and catalytic activity of supported gold nanoparticles: an in operando study during CO oxidation
Clifford et al. Supported transition metal nanomaterials: Nanocomposites synthesized by ionizing radiation
JP6521317B2 (ja) 脱臭用金属複合化窒化炭素とその製造方法
JP7060523B2 (ja) 封入された二元金属クラスターを有するゼオライト材料
CN101820999B (zh) 催化剂载体及其制备方法
Campostrini et al. Pyrolysis study of sol-gel derived TiO 2 powders: part I. TiO 2-anatase prepared by reacting titanium (IV) isopropoxide with formic acid
Yamamoto et al. In-situ FT-IR study on the mechanism of CO2 reduction with water over metal (Ag or Au) loaded Ga2O3 photocatalysts
Nemygina et al. Au Core–Pd shell bimetallic nanoparticles immobilized within hyper-cross-linked polystyrene for mechanistic study of Suzuki cross-coupling: homogeneous or heterogeneous catalysis?
Yang et al. Understanding preparation variables in the synthesis of Au/Al2O3 using EXAFS and electron microscopy
JP2017531555A (ja) 金属粒子と、2種の半導体とを含み、2種の半導体は、酸化インジウムからなる一方のものを含む光触媒組成物
Mdlovu et al. Formulation and characterization of W-doped titania nanotubes for adsorption/photodegradation of methylene blue and basic violet 3 dyes
Doll et al. Development of easy and reproducible immobilization techniques using TiO2 for photocatalytic degradation of aquatic pollutants
RU2477174C2 (ru) Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия
RU2461413C1 (ru) СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРA Ag/SiO2 ДЛЯ ГЕТЕРОГЕННОГО КАТАЛИЗА МОЛЕКУЛЯРНОГО ВОДОРОДА В РЕАКЦИЯХ ИЗОТОПНОГО ОБМЕНА ПРОТИЯ-ДЕЙТЕРИЯ И ОРТО-ПАРА КОНВЕРСИИ ПРОТИЯ
RU2482914C2 (ru) Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия
Chang et al. Size-dependent redispersion or agglomeration of Ag clusters on CeO2
RU2461412C1 (ru) СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА Ag/SiO2 ДЛЯ ГЕТЕРОГЕННОГО КАТАЛИЗА МОЛЕКУЛЯРНОГО ВОДОРОДА В РЕАКЦИЯХ ИЗОТОПНОГО ОБМЕНА ПРОТИЯ-ДЕЙТЕРИЯ И ОРТО-ПАРА КОНВЕРСИИ ПРОТИЯ
RU2452570C1 (ru) Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия
Pomogailo et al. Polymer-immobilized rhodium complexes forming in situ: preparation and catalytic properties
Caudillo-Flores et al. Role of alkali-cyano group interaction in g-C3N4 based catalysts for hydrogen photo-production
RU2452569C1 (ru) Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия
RU2243033C1 (ru) Способ приготовления катализатора на основе диоксида титана (варианты)
Okhlopkova et al. Internal Surface Coating of a Capillary Microreactor for the Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol Using a PdZn/TiO 2 Catalyst. The Effect of the Catalyst’s Activation Conditions on Its Catalytic Properties

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130209