RU2477855C2 - Камера термической дегидратации спирта, аппарат и способ определения изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах - Google Patents

Камера термической дегидратации спирта, аппарат и способ определения изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах Download PDF

Info

Publication number
RU2477855C2
RU2477855C2 RU2011112299/15A RU2011112299A RU2477855C2 RU 2477855 C2 RU2477855 C2 RU 2477855C2 RU 2011112299/15 A RU2011112299/15 A RU 2011112299/15A RU 2011112299 A RU2011112299 A RU 2011112299A RU 2477855 C2 RU2477855 C2 RU 2477855C2
Authority
RU
Russia
Prior art keywords
alcohol
gas
hydrogen
alkene
dehydration chamber
Prior art date
Application number
RU2011112299/15A
Other languages
English (en)
Other versions
RU2011112299A (ru
Inventor
Иван СМАДЖЛОВИК
Original Assignee
Иван СМАДЖЛОВИК
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Иван СМАДЖЛОВИК filed Critical Иван СМАДЖЛОВИК
Publication of RU2011112299A publication Critical patent/RU2011112299A/ru
Application granted granted Critical
Publication of RU2477855C2 publication Critical patent/RU2477855C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/14Beverages
    • G01N33/146Beverages containing alcohol
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8868Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample elemental analysis, e.g. isotope dilution analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • G01N30/7213Mass spectrometers interfaced to gas chromatograph splitting of the gaseous effluent

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

Изобретение относится к инструментальной аналитической химии, в частности к определению стабильных изотопов в пищевых продуктах. Описываются камера термической дегидратации спирта, аппарат для определения в режиме реального времени изотопного состава необменных атомов водорода и дейтерия в образцах этанола, который содержит: А) камеру термической дегидратации спирта, В) индикаторное устройство, которое содержит пиролизный реактор (26) и изотопный спектрометр в непрерывном потоке, и оно соединено с камерой термической дегидратации посредством С) системы клапанов, соединителей и капиллярных трубок, которые применяются для перемещения анализируемого образца и для очистки камеры термической дегидратации; процедура для определения в режиме реального времени изотопного состава необменных атомов водорода и дейтерия в образцах этанола и процедура для приготовления в автономном режиме этенового (этиленового) газа посредством камеры термической дегидратации спирта для определения подлинности и географического источника вин, алкогольных напитков, фруктовых соков, меда и пр. 2 н. и 7 з.п. ф-лы, 3 ил.

Description

Область техники
Настоящее изобретение относится к камере термической дегидратации спирта, аппарату и способу определения в режиме реального времени изотопного состава необменных атомов водорода и дейтерия в этанольном образце и способу приготовления в автономном режиме этенового (этиленового) газа посредством камеры термической дегидратации для определения подлинности и географического источника вин и виноградных сусел, пива, спирта, фруктовых соков, медов и всех остальных продуктов, которые содержат спирт (этанол) и/или ферментируемые сахара.
Предпосылки изобретения
Изотопные способы показали, что они могут быть очень мощным аналитическим средством для определения подлинности и географических источников вин и спиртных напитков. Измеряя содержание стабильных изотопов в этих продуктах, можно обеспечить пригодную информацию для обнаружения множества подделок в производстве вина и спиртных напитков. Инструментальные техники, которые пригодны для изотопных измерений, основываются на измерении соответствующих соотношений стабильных изотопов посредством масс-спектрометрии изотопных соотношений.
Системы, содержащие пиролизную камеру и изотопный спектрометр в непрерывном потоке CF-TC/EA-IRMS (мгновенное высокотемпературное в непрерывном потоке - температурное преобразование/элементный анализатор - масс-спектрометрия изотопных соотношений от Thermo Electron Corporation), коммерчески доступны для анализа стабильного водорода твердых и жидких образцов.
При анализе этанольных образцов посредством CF-TC/EA-IRMS (непрерывный поток - термическое преобразование/элементный анализатор - масс-спектрометрия изотопных соотношений), из-за гидроксильной группы этанола, которая содержит легко обмениваемый водород, полученные значения δD для этанола одинакового ботанического и географического происхождения могут варьировать, и по этой причине невозможно выполнить качественную и количественную идентификацию происхождения этанольного образца.
Одна из проблем, которые могут возникнуть, например, в производстве спиртных напитков, заключается в завершающих этапах производства. Дистиллят разбавляют водой для определения крепости спирта, которая необходима, чтобы алкогольный напиток можно было использовать. При добавлении воды, которая имеет другое изотопное содержание, динамическое изотопное равновесие нарушается, и водород или дейтерий, который связан с атомом кислорода гидроксильной группы, обменивается. Это одна из причин для определения ошибочных значений δD и ошибочной информации о происхождении этанола.
Из-за проблем, которые указаны выше, инструментальная техника CF-TC/EA-IRMS не может быть очень успешной в обнаружении подделок в производстве вина и алкогольных напитков и тем более для обнаружения этанола, который образуется из свекольного сахара, ячменя, пшеницы и пр. в вине и алкогольных напитках.
Согласно первому аспекту данного изобретения камера термической дегидратации спирта, аппарат и способ определения изотопной композиции в режиме реального времени необменных атомов водорода и дейтерия в этанольных образцах и также способ приготовления в автономном режиме этеновых (этиленовых) образцов посредством камеры термической дегидратации спирта, дает возможность дегидрировать этанол и удалять обменный атом водорода (или дейтерия) гидроксильной группы без потерь или изотопного фракционирования. Таким образом достигаются стабилизация и постоянные значения δD, и это происходит из-за других атомов водорода и дейтерия, которые сильно связаны с атомами углерода в этененовом (этиленовом) газе, который готовят из этанольного образца конкретного ботанического происхождения.
Раскрытие данного изобретения
Измерения относительных соотношений дейтерия и водорода для цели определения подлинности и происхождения вин и алкогольных напитков, пива, фруктовых соков и меда в настоящее время выполняют посредством SNIF-NMR (специфическое природное изотопное фракционирование - ядерный магнитный резонанс), которые основаны на межмолекулярном сканировании измеренного этанольного образца и определении изотопной композиции атомов водорода и дейтерия, расположенных на первом и на втором атоме углерода в этанольной молекуле. Результаты, полученные способом SNIF-NMR, дают информацию о присутствии этанола, который происходит из свекольного сахара или других промышленных растений, и которые относятся к группе С3-растений.
Эта инструментальная техника очень точная, но имеет некоторые недостатки.
Некоторые из этих недостатков:
- во-первых, SNIF-NMR очень дорогостоящий прибор и способ и требует больших финансовых капиталов (большой расход гелия и жидкого азота, а также электрической энергии),
- время, требуемое для анализа, достаточно долгое (небольшие количества образцов можно анализировать),
- занимает большую часть рабочего места из-за его размера и из-за очень сильного магнитного поля, которое он создает (требуется защитная зона),
- стандарты, которые применяют в анализе, дорогие.
Раскрытие данного изобретения
Главная цель данного изобретения состоит в преодолении барьеров и недостатков известных в настоящее время аппаратов и способов определения изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах.
Вышеупомянутые и дополнительные цели достигаются с помощью камеры термической дегидратации спирта по п.1, аппарата для определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах по п.2, камеры термической дегидратации спирта согласно п.1 и варианту 1 для приготовления в автономном режиме этеновых (этиленовых) образцов по п.3, процедуры определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах по п.4, процедуры приготовления в автономном режиме этеновых (этиленовых) образцов, применяя камеру термической дегидратации спирта, по п.5 и процедуры и принципа определения подлинности и географического происхождения вина, алкогольных напитков, фруктовых соков и меда по п.6.
Согласно первому аспекту данного изобретения камера термической дегидратации спирта содержит: реакционную емкость, которая содержит верхнее отверстие с пробкой и перегородками, которое применяют для введения этанольного образца шприцем, и боковое левое отверстие с клапаном, назначением которого является очистка камеры инертным газом гелием. Одна часть реакционной емкости имеет вид термокожуха, который содержит два электрических нагревателя. Также, в качестве альтернативы термокожуху можно применять открытое пламя для нагревания реакционной емкости. Вторая часть реакционной емкости, эта часть имеет трубчатую форму, повернутую направо, содержит катализатор дегидратации, и для этой цели можно применять оксид алюминия (Al2O3), силикагель, цеолит или смесь этих веществ или похожих материалов. Правый конец реакционной емкости соединен с трубкой с газонепроницаемой пробкой. Внутрь этой трубки с газонепроницаемой пробкой можно поместить небольшое количество силикагеля или подобного инертного гидроскопичного материала. Правый конец этой трубки с газонепроницаемой пробкой содержит два клапана, которые применяют для очистки камеры термической дегидратации спирта гелиевым газом. Камера термической дегидратации спирта располагается на подставке.
Камеру термической дегидратации спирта можно применять в качестве части аппарата для определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах и в качестве альтернативного решения для приготовления в автономном режиме этеновых (этиленовых) образцов. Если ее применяют в качестве альтернативного решения для приготовления в автономном режиме этеновых (этиленовых) образцов, камеру термической дегидратации спирта присоединяют к предварительно вакуумированному сосуду, в который собирают этеновый газ. Приготовленный этеновый газ затем вводят газонепроницаемым шприцем в существующие инструментальные техники CF-TC/EA-IRMS или GC/TC-IRMS (газовая хроматография/термическое преобразование - масс-спектрометр изотопных соотношений).
Согласно дополнительному аспекту данного изобретения аппарат для определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах содержит: А) камеру термической дегидратации спирта, В) индикаторное устройство, которое содержит пиролизный реактор и изотопный спектрометр в непрерывном потоке, и оно присоединено к камере термической дегидратации спирта посредством С) системы клапанов, соединителей и капиллярных трубок, которые применяются для перемещения анализируемого образца для очистки камеры термической дегидратации спирта.
Будет понятно, что аппарат будет в целом содержать дополнительные признаки, известные в данном уровне техники, например модули контроля и процессора, взаимодействующие с функциональными компонентами аппарата (автоматическое управление). Может быть предусмотрено внедрение или соответствующая модификация доступного лабораторного оборудования для контроля и взаимодействия с аппаратом данного изобретения.
Согласно дополнительному аспекту данного изобретения процедура и принцип определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах представляет собой предварительную очистку камеры термической дегидратации спирта в потоке инертного газа гелия, введение этанольного образца в реакционную емкость (введение можно производить вручную или посредством автодозатора), нагревание спирта и производство перегретых паров спирта, и прохождение этих этанольных паров над катализатором дегидратации (оксид алюминия - Al2O3, силикагель, цеолит или смесь этих веществ или подобные материалы) в потоке газа-носителя гелия к пиролизному реактору. Элементарные газы, полученные пиролизом приготовленного этена (Н2 и СО), проходят через колонну газовой хроматографии, где отделяются, и посредством интерфейса с открытым делителем потока поступают в IRMS, где обнаруживаются.
Согласно дополнительному аспекту данного изобретения процедура и принцип приготовления в автономном режиме этеновых образцов с применением камеры термической дегидратации спирта представляет собой предварительную очистку камеры термической дегидратации спирта в потоке инертного газа гелия через левое боковое отверстие открытием клапана для гелиевого газа. Перед тем, как начинается очистка, требуется открыть клапаны с правой стороны камеры. После окончания очистки требуется закрытие правосторонних клапанов и затем клапана для гелиевого газа. После очистки металлическую иглу с правой стороны присоединяют к предварительно вакуумированному сосуду и затем открывают клапан с правой стороны камеры. Дополнительно, при нагревании реакционной емкости посредством термокожуха или альтернативно открытым пламенем и введении этанольного образца в реакционную емкость имеет место реакция дегидратации, и сформированный газ этен собирается в сосуде. После этого сосуд вынимают из камеры и этен затем вручную вводят газонепроницаемым шприцем в существующие инструментальные техники CF-TC/EA-IRMS или GC/TC-IRMS.
Краткое описание графических материалов
Вышеуказанные и другие признаки и цели данного изобретения и порядок их достижения станут более очевидными, и само данное изобретение будет лучше понято со ссылкой на следующее описание различных вариантов осуществления данного изобретения в сочетании с сопровождающими графическими материалами.
Фиг.1 - вид камеры термической дегидратации спирта.
Фиг.2 - вид аппарата определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах.
Фиг.3 - вид варианта 1 камеры термической дегидратации спирта для приготовления в автономном режиме этеновых образцов и для существующих инструментальных техник CF-ТС/ЕА-IRMS или GC/TC-IRMS.
Лучшие варианты выполнения данного изобретения
В соответствии с идеей данного изобретения фигуры 1, 2 и 3 представляют собой иллюстрирующие изображения камеры термической дегидратации спирта, аппарата определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах и альтернативный вариант камеры термической дегидратации спирта для приготовления в автономном режиме для этеновых (этиленовых) образцов для существующих инструментальных техник CF-TC/EA-IRMS или GC/TC-IRMS.
Согласно идее данного изобретения фиг.1 показывает камеру термической дегидратации спирта. Фиг.1 показывает все важные части камеры термической дегидратации спирта. Камера термической дегидратации спирта содержит: реакционную емкость (1), которая содержит верхнее отверстие с пробкой и перегородками (2), которое применяют для введения этанольного образца (6) шприцем, и боковое левое отверстие (3) с клапаном (4), целью которого является очистка камеры инертным газом гелием. Одна часть реакционной емкости представляет собой термокожух (5), который содержит два электрических нагревателя. Также в качестве альтернативы термокожуху (5) можно применять открытое пламя для нагревания реакционной емкости. Вторая часть реакционной емкости, эта часть имеет трубчатую форму, повернутую вправо, на фиг.1, содержит катализатор дегидратации (7), и для этой цели можно применять оксид алюминия (Al2O3), силикагель, цеолит или смесь этих веществ или подобных материалов. С правой стороны реакционная емкость соединена с трубкой с газонепроницаемой пробкой (8). Внутрь этой трубки с газонепроницаемой пробкой (8) небольшое количество силикагеля или подобного инертного гидроскопического материала можно поместить (9). Правый конец этой трубки с газонепроницаемой пробкой (8) содержит два клапана (10) и (11), которые применяют для очистки камеры термической дегидратации спирта гелиевым газом. Камера термической дегидратации спирта находится на подставке (15).
В соответствии с идеей данного изобретения камера термической дегидратации спирта дает возможность дегидрировать этанол и удалять обменный атом водорода (или дейтерия) гидроксильной группы без потерь или изотопного фракционирования. Таким образом стабилизация и постоянные значения δD достигаются, и это зависит от других атомов водорода и дейтерия, которые сильно связаны с атомами углерода в этеновом (этиленовом) газе, который готовят из этанольного образца конкретного ботанического происхождения.
В соответствии с идеей данного изобретения фиг.2 показывает подробно аппарат для определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах. Фиг.2 показывает все важные части аппарата для определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах, которые он содержит.
В соответствии с идеей данного изобретения аппарат для определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах содержит: А) камеру термической дегидратации спирта, В) индикаторное устройство, которое содержит пиролизный реактор и изотопный спектрометр в непрерывном потоке, и оно соединено с камерой термической дегидратации спирта посредством С) системы клапанов, соединителей и капиллярных трубок, которые применяются для перемещения анализируемого образца для очистки камеры термической дегидратации спирта. Камера термической дегидратации спирта, которая является частью аппарата для определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах, содержит: реакционную емкость (1), которая содержит верхнее отверстие с пробкой и перегородками (2), которое применяют для введения этанольного образца (6) шприцем, и левое боковое отверстие (3) с "переключательным" клапаном для "исходного" и "носителя" газа гелия (4). Одна часть реакционной емкости представляет собой термокожух (5), который содержит два электрических нагревателя. Вторая часть реакционной емкости, эта часть имеет трубчатую форму, повернутую вправо, на фиг.2, содержит катализатор дегидратации (7), и для этой цели можно применять оксид алюминия (Al2O3), силикагель, цеолит или смесь этих веществ или подобных материалов. С правого конца реакционная емкость соединена с трубкой с газонепроницаемой пробкой (8). Внутрь этой трубки с газонепроницаемой пробкой (8) некоторое количество силикагеля или подобного инертного гидроскопичного материала можно расположить (9). Правый конец этой трубки с газонепроницаемой пробкой (8) содержит два клапана (10) и (11). Трубка с газонепроницаемой пробкой (8) на конце соединяется посредством соединителя введения (12) непосредственно к пиролизному реактору (26), который соединен посредством колонки для газовой хроматографии (22) и интерфейса с открытым делителем потока (23), который имеет капилляры для гелиевого разбавления (24), с изотопным масс-спектрометром IRMS (25). Камера термической дегидратации спирта находится на подставке (17), которая закреплена на корпусе внешнего оборудования (16), которое содержит пиролизный реактор (26), болтами (18). Капиллярная трубка (21) с одного конца соединена с выходом гелиевого "исходного" газа (15), который применяют для очистки камеры, и с его другого конца соединена с "переключательным" клапаном (4). Капиллярная трубка (20) посредством "Т" соединителя (13) с одного конца соединена с выходом основного потока гелиевого газа-носителя" (14), и с его другого конца соединена с "переключательным" клапаном (4). Выход основного потока гелиевого газа-"носителя" (14) соединен посредством "Т" соединителя (13) и капиллярных трубок с защитным клапаном (19) и соединителем введения (12) на пиролизном реакторе (26).
В соответствии с идеей данного изобретения процедура и принцип работы с аппаратом для определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах содержит следующие этапы.
Первая фаза относится к очистке камеры термической дегидратации спирта, которая представляет собой часть аппарата для определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах инертным газом гелием. Перед тем, как начинается очистка необходимо закрыть клапан (11) и открыть клапан (10), и затем, через боковое отверстие (3) и перемещением "переключательного" клапана (4) в положение для "исходного" газа гелия (21), начинать очистку камеры термической дегидратации спирта. Поток "исходного" газа гелия должен быть в диапазоне от 20 мл/минуту до 200 мл/минуту. После того, как очистка осуществлена, она должна длиться максимум 15 минут, закрывают клапан (10) и затем открывают клапан (11) и перемещают "переключательный" клапан (4) в положение для основного потока газа-"носителя" гелия (20). Поток газа-носителя" гелия должен быть в диапазоне от 70 мл/минуту до 170 мл/минуту. После того, как очистка камеры термической дегидратации спирта выполнена, нагревание реакционной емкости (1) посредством термокожуха (5) может начинаться до тех пор, пока температура не достигнет диапазона от 250°C до 500°C. После того как это выполнено, вводят максимум 1 мл предварительно дистиллированного и выделенного спиртового (этанольного) образца из анализируемого вина, пива или алкогольных напитков или подобного. При вхождении в реакционную емкость образец моментально испаряется в перегретый пар спирта, который в потоке гелия проходит над катализатором дегидратации (7). При дегидратации и отделении воды и абсорбции катализатором в избытке, приготовленный этеновый (этиленовый) газ через капиллярную трубку с газонепроницаемой пробкой (8) и открытый клапан (11) входит в пиролизный реактор (26) и затем через колонку для газовой хроматографии (22) и интерфейса с открытым делителем потока (23) обнаруживается на изотопном масс-спектрометре IRMS (25). Сформированный газ этен (этилен), приготовленный посредством термической дегидратации спирта, разлагается пиролизом до элементарных газов (Н2 и СО), которые затем проходят через колонку для газовой хроматографии, где отделяются, и затем через интерфейс с открытым делителем потока входят в IRMS, где окончательно обнаруживаются.
В соответствии с идеей данного изобретения фиг.3 показывает альтернативный вариант для камеры термической дегидратации спирта для приготовления в автономном режиме этеновых (этиленовых) образцов для существующих инструментальных техник CF-TC/EA-IRMS или GC/TC-IRMS. Фиг.3 показывает все важные части альтернативного варианта для камеры термической дегидратации спирта для приготовления в автономном режиме этеновых (этиленовых) образцов для существующих инструментальных техник CF-TC/EA-IRMS или GC/TC-IRMS. Альтернативный вариант для камеры термической дегидратации спирта содержит: реакционную емкость (1), которая содержит верхнее отверстие с пробкой и перегородками (2), которое применяется для введения этанольного образца (6) шприцем и боковое левое отверстие (3) с клапаном (4), целью которого является очистка камеры инертным газом гелием. Одна часть реакционной емкости представляет собой термокожух (5), который содержит два электрических нагревателя. Также в качестве альтернативы термокожуху (5) можно применять открытое пламя для нагревания реакционной емкости. Вторая часть реакционной емкости, эта часть имеет трубчатую форму, повернутую вправо, на фиг.1, содержит катализатор дегидратации (7), и для этой цели можно применять оксид алюминия (Al2O3), силикагель, цеолит или смесь этих веществ или подобных материалов. С правого конца реакционная емкость соединена с трубкой с газонепроницаемой пробкой (8). Внутрь этой трубки с газонепроницаемой пробкой (8) небольшое количество силикагеля или подобного инертного гидроскопичного материала можно поместить (9). Правый конец этой трубки с газонепроницаемой пробкой (8) содержит два клапана (10) и (11), которые применяют для очистки камеры термической дегидратации спирта гелиевым газом. С правого конца трубка с газонепроницаемой пробкой (8) соединена с металлической иглой (12) и посредством пробки (13) с сосудом (14). Камера термической дегидратации спирта находится на подставке (15).
В соответствии с идеей данного изобретения процедура для приготовления в автономном режиме этеновых (этиленовых) образцов посредством камеры термической дегидратации спирта следующая.
Первая фаза связана с очисткой камеры термической дегидратации спирта инертным газом гелием через боковое отверстие (3) открытием клапана для гелиевого газа (4). Перед высвобождением потока гелия необходимо открыть клапаны (10) и (11). После очистки камеры дегидратации клапаны (10) и (11) необходимо закрыть, и затем клапан для газа гелия (4) тоже закрывают. После того как это выполнено, предварительно вакуумированный сосуд (14) надевают на металлическую иглу (13) и затем клапан (11) открывают. После того, как очистку камеры термической дегидратации спирта выполнили, нагревание реакционной емкости (1) посредством термокожуха (5) можно начинать пока температура не достигнет диапазона от 250°С до 500°С. Альтернативно для нагревания реакционной емкости можно применять открытое пламя. После того как это выполнено, предварительно дистиллированный и выделенный спиртовой (этанольный) образец из анализируемого вина, пива или алкогольных напитков или подобного вводят, и после времени реакции максимум 5 минут клапан (11) закрывают и сосуд (14) отсоединяют от камеры дегидратации. Приготовленный газ этен (этилен), уловленный в сосуде (14), применяют для ручного введения посредством газонепроницаемого шприца введения в инструментальную систему CF-TC/EA-IRMS или GC/TC-IRMS.
В соответствии с идеей данного изобретения, аппарата для термической дегидратации спирта и процедуры определения относительной изотопной композиции всех необменных атомов водорода и дейтерия в этанольных образцах, и для цели определения подлинности и географического происхождения вина и виноградных сусел, пива, алкогольных напитков, фруктовых соков, меда и всех других пищевых продуктов, которые содержат спирт и/или ферментируемые сахара, способ имеет преимущества:
- во-первых, дает очень хорошую точность и воспроизводимость результатов для значений δD анализируемых этанольных образцов, независимо от того, был ли этанольный образец разбавлен водой перед дистилляцией, и дает заметное постоянное различие и зависимость между этанольными образцами с ботаническим происхождением из С3 группы растений;
- время анализа весьма короче в сравнении с SNIF-NMR;
- не требуется больших финансовых капиталов и особенных условий для поддержания, как в случае инструментальной техники SNIF-NMR,
- не требуется защитная зона,
- дает возможность обнаруживать присутствие этанола, который происходит из свекольного сахара, пшеницы, ячменя и других промышленных растений, которые относятся к С3 группе растений, в этанольных образцах, которые выделены из анализируемых вин и алкогольных напитков или ферментированных соков и ферментированного меда.
Следует отметить, что модификации вариантов осуществления, описанных выше, конечно возможны. Следовательно, настоящее новшество не ограничивается вариантами осуществления, описанными выше.
Промышленная применимость
Камера термической дегидратации спирта, аппарат и процедура для определения в режиме реального времени изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах и процедура для приготовления в автономном режиме этеновых (этиленовых) образцов посредством камеры термической дегидратации спирта пригодны в инструментальной аналитической химии и применяются для определения подлинности и географического происхождения вин и виноградных сусел, алкогольных напитков, пива, фруктовых соков, меда и других пищевых продуктов, которые содержат этанол и/или ферментируемые сахара.

Claims (9)

1. Способ измерения относительного соотношения изотопов в спиртосодержащей композиции материала, содержащий этапы, на которых:
очищают емкость для термической дегидратации спирта при помощи инертного газа гелия;
нагревают емкость для дегидратации;
вводят предварительно дистиллированный и выделенный спиртовой образец;
выпаривают образец до состояния перегретого спиртового пара, который проходит через катализатор дегидратации, при этом подготовленный алкеновый газ поступает в пиролизный реактор, а затем через колонку для газовой хроматографии и интерфейс с открытым делителем потока обнаруживается на изотопном масс-спектрометре IRMS, после чего измеряют относительное соотношение водорода и дейтерия в алкеновых молекулах.
2. Способ по п.1, дополнительно содержащий этап, на котором сравнивают измеренное относительное соотношение водорода и дейтерия с относительным соотношением водорода и дейтерия в алкеновых молекулах, полученных из спиртосодержащей композиции материала известного происхождения.
3. Способ по п.1, где спиртосодержащую композицию материала выбирают из следующей группы, содержащей: вино, алкогольные напитки, ферментированные фруктовые соки, разбавленный и ферментированный мед, пищевые продукты, содержащие этанол, пищевые продукты, содержащие ферментируемые сахара и любую их комбинацию.
4. Способ по п.1, при котором дополнительно выделяют водородный газ отделением атомов водорода от алкеновых молекул.
5. Способ по п.4, при котором отделение атомов водорода от алкеновых молекул включает пиролиз алкеновых молекул в газовую смесь и отделение водородного газа от газовой смеси.
6. Аппарат для определения происхождения спиртосодержащей композиции материала, содержащий:
емкость для дегидратации спирта, содержащую катализатор дегидратации для получения спиртового образца из спиртосодержащего пищевого продукта и превращения спиртового образца в алкеновый газ;
нагреватель для нагревания емкости для дегидратации спирта;
пиролизный реактор для понижения алкенового газа до газообразной смеси, содержащей газы водорода и моноксида углерода;
колонку для газовой хроматографии для отделения газообразного водорода из газообразной смеси;
интерфейс с открытым делителем потока; и изотопный масс-спектрометр IRMS для измерения изотопной композиции, т.е. изотопного относительного соотношения водорода и дейтерия в алкеновом газе, и вычисления значения дельтаD для измеренной изотопной композиции и сравнения вычисленного значения дельтаD со значением дельтаD, относящимся к спиртосодержащей композиции материала известного происхождения.
7. Аппарат по п.6, где спиртосодержащую композицию материала выбирают из следующей группы, содержащей: вино, спиртные напитки, ферментированные фруктовые соки, разбавленный и ферментированный мед, пищевые продукты, содержащие этанол, пищевые продукты, содержащие ферментируемые сахара и любую их комбинацию.
8. Аппарат по п.6, дополнительно содержащий гигроскопический материал для удаления молекул воды, образованных преобразованием спиртового образца в алкеновый газ в емкости для дегидратации спирта.
9. Аппарат по п.6, где катализатор дегидратации получает часть термической энергии, сгенерированной нагревателем.
RU2011112299/15A 2008-05-15 2008-06-19 Камера термической дегидратации спирта, аппарат и способ определения изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах RU2477855C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RS20080208A RS52615B (en) 2008-05-15 2008-05-15 APPARATUS FOR THE IDENTIFICATION OF THE ISOTOPIC COMPOSITION OF NON-CHANGING HYDROGEN ATOMS AND DEUTERIUM IN ETHANOL SAMPLES
RSP-2008/0208 2008-05-15
PCT/RS2008/000022 WO2009139656A1 (en) 2008-05-15 2008-06-19 The alcohol thermal dehydratation chamber, apparatus and method for determination of isotopic composition of non-exchangeable hydrogen and deuterium atoms in ethanol samples

Publications (2)

Publication Number Publication Date
RU2011112299A RU2011112299A (ru) 2012-10-10
RU2477855C2 true RU2477855C2 (ru) 2013-03-20

Family

ID=40263526

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011112299/15A RU2477855C2 (ru) 2008-05-15 2008-06-19 Камера термической дегидратации спирта, аппарат и способ определения изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах

Country Status (15)

Country Link
US (1) US20110046896A1 (ru)
EP (1) EP2277042B1 (ru)
AU (1) AU2008356269A1 (ru)
DK (1) DK2277042T3 (ru)
ES (1) ES2669293T3 (ru)
HR (1) HRP20180733T1 (ru)
HU (1) HUE038290T2 (ru)
LT (1) LT2277042T (ru)
NO (1) NO2277042T3 (ru)
PL (1) PL2277042T3 (ru)
PT (1) PT2277042T (ru)
RS (1) RS52615B (ru)
RU (1) RU2477855C2 (ru)
SI (1) SI2277042T1 (ru)
WO (1) WO2009139656A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809285C1 (ru) * 2022-12-28 2023-12-11 Федеральное государственное бюджетное научное учреждение "Федеральный научный центр пищевых систем им. В.М. Горбатова" РАН Способ идентификации меда на основе изотопной масс-спектрометрии

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8681336B2 (en) 2012-03-12 2014-03-25 St. Francis Xavier University System and method for determining flux of isotopologues
WO2014143026A1 (en) * 2013-03-15 2014-09-18 The Regents Of The University Of California System and method for non- invasively and non- destructively authenticating bottled beverages
CN109596782A (zh) * 2013-04-15 2019-04-09 塞莫费雪科学(不来梅)有限公司 用于同位素比分析仪的进气系统和确定同位素比的方法
JP6176708B2 (ja) * 2013-05-15 2017-08-09 独立行政法人酒類総合研究所 酒類におけるアルコール添加の有無を判別する方法
DE102014203815B4 (de) * 2014-03-03 2015-10-01 Bruker Biospin Gmbh Verfahren zur Weinanalyse und zugehörige Vorrichtung
JP6617880B2 (ja) * 2016-01-27 2019-12-11 独立行政法人酒類総合研究所 アルコール飲料におけるクエン酸添加の有無を判定する方法
CN106680407A (zh) * 2017-01-06 2017-05-17 中国工程物理研究院核物理与化学研究所 一种用于分析氢同位素混合气体的毛细管色谱柱
CN106770856B (zh) * 2017-01-22 2018-05-22 中国工程物理研究院核物理与化学研究所 一种用于分析氢同位素混合气体的填充色谱柱
CN108931585A (zh) * 2017-05-25 2018-12-04 中国石油化工股份有限公司 一种液化烃原料中碳杂质在线监测方法
CN108845047A (zh) * 2018-05-03 2018-11-20 贵州省产品质量监督检验院 一种董香型白酒中有机酸稳定碳同位素的测定方法
US20210396730A1 (en) * 2018-11-08 2021-12-23 University Of Massachusetts Method and System for Chromogenic Array-Based Food Testing
CN111307923A (zh) * 2020-02-06 2020-06-19 中国食品发酵工业研究院有限公司 一种测定丙酸不可交换氢位点上稳定氢同位素比值的方法
CN111912893A (zh) * 2020-08-03 2020-11-10 西北大学 一种基于离子组学鉴别中蜂蜂蜜地理源的方法
RS20220459A1 (sr) 2022-05-16 2023-11-30 Sg Isotech Doo POSTUPAK PRIPREME ETANOLA U VODI ISPITIVANOG PROIZVODA I UTVRĐIVANJE RELATIVNOG ODNOSA NEIZMENLJIVIH STABILNIH IZOTOPA VODONIKA U TAKO PRIPREMLJENOM ETANOLU (δDnII VREDNOST ETANOLA IZ VODE PROIZVODA), A U CILJU DETEKCIJE DODATE VODE U PREHRAMBENIM PROIZVODIMA

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283027A (en) * 1962-12-20 1966-11-01 Continental Oil Co Preparation of alpha-olefins by dehydration of 2-alcohols
RU2150699C1 (ru) * 1999-07-08 2000-06-10 Научно-исследовательский физико-химический институт им. Л.Я. Карпова Способ идентификации подлинности спиртосодержащих жидкостей
WO2007055361A1 (ja) * 2005-11-14 2007-05-18 Mitsui Chemicals, Inc. バイオマス由来の炭素を含むプロピレンの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424539A (en) * 1992-12-18 1995-06-13 Finnegan Mat Gmbh Process for the analysis of gaseous components by mass spectrometry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283027A (en) * 1962-12-20 1966-11-01 Continental Oil Co Preparation of alpha-olefins by dehydration of 2-alcohols
RU2150699C1 (ru) * 1999-07-08 2000-06-10 Научно-исследовательский физико-химический институт им. Л.Я. Карпова Способ идентификации подлинности спиртосодержащих жидкостей
WO2007055361A1 (ja) * 2005-11-14 2007-05-18 Mitsui Chemicals, Inc. バイオマス由来の炭素を含むプロピレンの製造方法
EP1953129A1 (en) * 2005-11-14 2008-08-06 Mitsui Chemicals, Inc. Method of producing propylene containing biomass-origin carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809285C1 (ru) * 2022-12-28 2023-12-11 Федеральное государственное бюджетное научное учреждение "Федеральный научный центр пищевых систем им. В.М. Горбатова" РАН Способ идентификации меда на основе изотопной масс-спектрометрии

Also Published As

Publication number Publication date
RS20080208A (en) 2010-05-07
ES2669293T3 (es) 2018-05-24
HRP20180733T1 (hr) 2018-06-29
SI2277042T1 (en) 2018-07-31
LT2277042T (lt) 2018-06-11
AU2008356269A1 (en) 2009-11-19
DK2277042T3 (en) 2018-05-28
PT2277042T (pt) 2018-05-18
PL2277042T3 (pl) 2018-07-31
HUE038290T2 (hu) 2018-10-29
US20110046896A1 (en) 2011-02-24
NO2277042T3 (ru) 2018-07-14
WO2009139656A1 (en) 2009-11-19
RS52615B (en) 2013-04-30
RU2011112299A (ru) 2012-10-10
EP2277042B1 (en) 2018-02-14
EP2277042A1 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
RU2477855C2 (ru) Камера термической дегидратации спирта, аппарат и способ определения изотопной композиции необменных атомов водорода и дейтерия в этанольных образцах
US9005979B2 (en) Method for determining origin of alcohol or sugar containing products
EP2334409B1 (en) Method for determination of delta-d values of non- exchangeable hydrogen stable isotopes on ethanol' s methyl group by means of irms instrumental technique
CN102967661B (zh) 一种饮料酒中乙醇的氧稳定同位素的快速测定方法
Guyon et al. Intrinsic ratios of glucose, fructose, glycerol and ethanol 13C/12C isotopic ratio determined by HPLC-co-IRMS: toward determining constants for wine authentication
JP2011043329A (ja) 低濃度エタノール試料の同位体比分析方法
CN104849390A (zh) 一种应用全二维气相色谱-飞行时间质谱联用定性白酒中组分的方法
Cabañero et al. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization
McClennen et al. Thermogravimetry/gas chromatography/mass spectrometry and thermogravimetry/gas chromatography/Fourier transform infrared spectroscopy: novel hyphenated methods in thermal analysis
Thomas et al. 2H NMR and 13C-IRMS analyses of acetic acid from vinegar, 18O-IRMS analysis of water in vinegar: International collaborative study report
Spitzke et al. Determination of the 13 C/12 C ratios of ethanol and higher alcohols in wine by GC-C-IRMS analysis
Martin et al. Stable isotope analysis of food and beverages by nuclear magnetic resonance
Williams et al. Apparatus and procedure for reproducible, high‐resolution gas chromatographic analysis of alcoholic beverage headspace volatiles
EP0627075B1 (en) Method and apparatus for analysing liquids
Briš et al. Direct Analysis of Complex Reaction Mixtures: Formose Reaction
CN111257449B (zh) 醋类饮品中乙酸甲基位点的稳定氢同位素比值的测定方法
KR101535531B1 (ko) 탄소수 6 이하의 알코올류 다성분 동시분석법
Hattori et al. An improved method for the measurement of the isotope ratio of ethanol in various samples, including alcoholic and non‐alcoholic beverages
Kolesnov et al. EA-IRMS/SIRA Mass Spectrometry of Stable Carbon Isotopes 13 C/12 C in Dissolved Carbon Dioxide of Sparkling and Sparkling Pearl Wines
CN116359389A (zh) 测定醋中乙酸不可交换氢稳定同位素比值的预处理方法
CN115436519B (zh) 一种茶渣与茶提取物中挥发性物质成分分析方法
Guillou et al. Isotope methods for the control of food products and beverages
Krikunova et al. Development of identification criteria for fruit vodkas (Part 1. Sample preparation ways)
CN106324148A (zh) 一种同时检测红葡萄酒中4‑乙基苯酚与4‑乙基愈创木酚含量的方法
RO128662B1 (ro) Procedeu de amprentare izotopică a compuşilor de aromă din probe lichide, în special vin

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20200313