RU2476922C1 - FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC) - Google Patents
FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC) Download PDFInfo
- Publication number
- RU2476922C1 RU2476922C1 RU2012104961/08A RU2012104961A RU2476922C1 RU 2476922 C1 RU2476922 C1 RU 2476922C1 RU 2012104961/08 A RU2012104961/08 A RU 2012104961/08A RU 2012104961 A RU2012104961 A RU 2012104961A RU 2476922 C1 RU2476922 C1 RU 2476922C1
- Authority
- RU
- Russia
- Prior art keywords
- max
- level
- functional
- additional
- argument
- Prior art date
Links
Landscapes
- Document Processing Apparatus (AREA)
Abstract
FIELD: information technology.
SUBSTANCE: one version, the functional design is realised using logic elements AND, OR.
EFFECT: faster operation.
2 cl
Description
Claims (2)
где 1(2Sk h1)max+1↑, 1(1Sk h1)max+1↑, 2(1Sk h1)max+1↑ и 3(1Sk h1)max+1↑ - преобразованные аргументы без изменения уровня аналогового сигнала, которые являются входными аргументами функциональной структуры второго младшего «kmin+1» разряда, которая также выполнена с формированием дополнительного результирующего аргумента (2Sk h1)max+1 «Уровня 2» и в нее введены дополнительные логические функции f5(&)-И, f6(&)-И, f7(&)-И и f2(})-ИЛИ, при этом функциональные связи логических функций выполнены в соответствии с математической моделью
а функциональная структура первого младшего «kmin→1» разряда также выполнена с формированием дополнительного результирующего аргумента (2Sk h1)max→1 «Уровня 2» и в нее введены дополнительные логические функции f10(&)-И, f11(&)-И, f12(&)-И, f13(&)-И и f4(})-ИЛИ, при этом функциональные связи логических функций выполнены в соответствии с математической моделью вида
- логическая функция f1(&)-И; - логическая функция f1(})-ИЛИ.1. The functional structure of the adder f 3 (Σ CD ) max conditionally higher “k” bits of the parallel-serial multiplier f Σ (Σ CD ), implementing the procedure of “decoding” the arguments of the terms [ 1,2 S g h1 ] and [ 1,2 S g h2 ] in the “Additional Code RU” by means of arithmetic axioms of the ternary number system f (+ 1,0, -1) and logical differentiation d 1 / dn → f 1 ( + ← ↓ - ) d / dn , made in the form of consecutive higher category "k min + 4 " with the formation of the resulting argument ( 1 S k h1 ) max + 4 "Level 1", the average bits "k min + 2,3 " with the formation of the resulting ar gumenta (( 1 S k h1 ) max + 2 and ( 1 S k h1 ) max + 3 ) → ( 1 S k h1 ) max + 2,3 “Level 1” and the two least significant bits “k min + 1 ” and “ k min → 1 ”with the formation of the resulting argument ( 1 S k h1 ) max + 1 and ( 1 S k h1 ) max → 1 “ Level 1 ”, respectively, which include the logical function f 1 (}) - OR, f 3 (} ) -OR, f 5 (}) - OR and f 2 (&) - AND, f 8 (&) - AND, f 14 (&) - AND, and the logical function f 1 (&) - And and f 9 ( &) - And, in which the functional input link is the functional input link of the functional structure for receiving the argument max ( 1 S k h1 ) of "Level 1" of the structure of the arguments of the terms [ 1 S g h1 ] and the logical function f 15 (&) - And, in which function The input input link is the functional input link of the functional structure for receiving the max ( 2 S k h1 ) “Level 1” argument argument structure [ 2 S g h1 ], characterized in that the functional structures of the middle digits “k min + 2,3 ” are fulfilled with the formation of an additional resulting argument ( 2 S k h1 ) max + 2,3 "Level 2" and additional logical functions f 3 (&) - And and f 4 (&) - And are introduced into them, while the functional relationships of the logical functions are satisfied in accordance with the mathematical model of the form
where 1 ( 2 S k h1 ) max + 1 ↑, 1 ( 1 S k h1 ) max + 1 ↑, 2 ( 1 S k h1 ) max + 1 ↑ and 3 ( 1 S k h1 ) max + 1 ↑ - converted arguments without changing the level of the analog signal, which are input arguments of the functional structure of the second junior “k min + 1 ” bit, which is also performed with the formation of an additional resulting argument ( 2 S k h1 ) max + 1 “Level 2” and additional logical functions f 5 (&) - And, f 6 (&) - And, f 7 (&) - And and f 2 (}) - OR, while the functional relationships of logical functions are made in accordance with the mathematical model
and the functional structure of the first minor “k min → 1 ” bit is also performed with the formation of an additional resulting argument ( 2 S k h1 ) max → 1 of “Level 2” and additional logical functions f 10 (&) - И, f 11 ( &) - And, f 12 (&) - And, f 13 (&) - And and f 4 (}) - OR, while the functional relationships of logical functions are made in accordance with a mathematical model of the form
- logical function f 1 (&) - And; - logical function f 1 (}) - OR.
где 1(1Sk h1)max+1↑, 2(1Sk h1)max+1↑ и 3(1Sk h1)max+1↑ - преобразованные аргументы с измененным уровнем аналогового сигнала, которые являются входными аргументами функциональной структуры второго младшего «kmin+1» разряда, которая также выполнена с формированием дополнительного результирующего аргумента (2Sk h1)max+1 «Уровня 2» и в нее введены дополнительные логические функции f5(&)-И-НЕ, f6(&)-И-НЕ, f7(&)-И-НЕ, f8(&)-И-НЕ, f9(&)-И-НЕ, f10(&)-И-НЕ, f11(&)-И-НЕ и f12(&)-И-НЕ, при этом функциональные связи логических функций выполнены в соответствии с математической моделью вида
а функциональная структура первого младшего «kmin→1» разряда также выполнена с формированием дополнительного результирующего аргумента (2Sk h1)max→1 «Уровня 2» и в нее введены дополнительные логические функции f13(&)-И-НЕ, f14(&)-И-НЕ, f15(&)-И-НЕ, f16(&)-И-НЕ, f17(&)-И-НЕ, f18(&)-И-НЕ, f19(&)-И-НЕ и f20(&)-И-НЕ, при этом функциональные связи логических функций выполнены в соответствии с математической моделью вида
- логическая функция f1(}&)-ИЛИ-НЕ; - логическая функция f1(&)-И-НЕ. 2. The functional structure of the adder f Σ (Σ CD ) max conditionally higher “k” bits of the parallel-serial multiplier f Σ (Σ CD ), implementing the procedure of “decoding” the arguments of the terms [ 1,2 S g h1 ] and [ 1,2 S g h2 ] in the “Additional Code RU” by means of arithmetic axioms of the ternary number system f (+ 1,0, -1) and logical differentiation d 1 / dn → f 1 ( + ← ↓ - ) d / dn , made in the form of consecutive digits MSB «k min + 4" to form the resulting argument (1 S k h1) max + 4 "Level 1", the functional structures of secondary discharges «k min + 2,3» forming the argument of the resulting ((1 S k h1) max + 2 and (1 S k h1) max + 3) → (1 S k h1) max + 2,3 «Level 1" and the two LSBs «k min + 1" and “k min → 1 ” with the formation of the resulting argument ( 1 S k h1 ) max + 1 and ( 1 S k h1 ) max → 1 “Level 1” and the two least significant bits “k min + 1 ” and “k min → 1 "With the formation of the resulting argument ( 1 S k h1 ) max + 1 and ( 1 S k h1 ) max → 1 " Level 1 ", respectively, characterized in that the functional structures of the middle digits" k min + 2,3 "are made with the formation of additional resulting argument (2 S k h1) max + 2,3 «Level 2" and in them additional log administered cal functions f 1 (} &) -or-NO, f 1 (k) -and-NO, f 2 (k) -and-NO, f 3 (k) -and-NO and f 4 (k) -and -NOT, while the functional relationships of logical functions are made in accordance with a mathematical model of the form
where 1 ( 1 S k h1 ) max + 1 ↑, 2 ( 1 S k h1 ) max + 1 ↑ and 3 ( 1 S k h1 ) max + 1 ↑ are converted arguments with a changed level of the analog signal, which are input arguments of the functional structure of the second junior “k min + 1 ” bit, which is also performed with the formation of an additional resulting argument ( 2 S k h1 ) max + 1 “Level 2” and additional logical functions f 5 ( & ) -I-NOT, f are introduced into it 6 ( & ) -AND-NOT, f 7 ( & ) -AND-NOT, f 8 ( & ) -AND NOT, f 9 ( & ) -AND NOT, f 10 ( & ) -AND NOT, f 11 (k) -and-NO element 12 and f (k) -and-NO, wherein the functional linkages of logical functions performed in accordance with the mathematical eskoy model type
and the functional structure of the first minor “k min → 1 ” bit is also performed with the formation of an additional resulting argument ( 2 S k h1 ) max → 1 of “Level 2” and additional logical functions f 13 ( & ) -I-NOT, f are introduced into it 14 ( & ) -AND-NOT, f 15 ( & ) -AND-NOT, f 16 ( & ) -AND-NOT, f 17 ( & ) -AND-NOT, f 18 ( & ) -AND NOT, f 19 ( & ) -I-NOT and f 20 ( & ) -I-NOT, while the functional relationships of logical functions are made in accordance with a mathematical model of the form
- logical function f 1 (} &) - OR NOT; - the logical function f 1 (&) - AND NOT.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012104961/08A RU2476922C1 (en) | 2012-02-13 | 2012-02-13 | FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012104961/08A RU2476922C1 (en) | 2012-02-13 | 2012-02-13 | FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC) |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2476922C1 true RU2476922C1 (en) | 2013-02-27 |
Family
ID=49121609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012104961/08A RU2476922C1 (en) | 2012-02-13 | 2012-02-13 | FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2476922C1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002014804A (en) * | 2000-06-29 | 2002-01-18 | New Japan Radio Co Ltd | Ternary digital circuit |
JP2005326914A (en) * | 2004-05-12 | 2005-11-24 | New Japan Radio Co Ltd | Cmos adder |
RU2386162C2 (en) * | 2008-04-29 | 2010-04-10 | Лев Петрович Петренко | FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS) |
RU2439658C1 (en) * | 2010-11-03 | 2012-01-10 | Лев Петрович Петренко | FUNCTIONAL STRUCTURE OF PREVIOUS SUMMATOR fΣ([ni]&[ni,0]), CONDITIONALLY "i AND "i+1" DIGITS OF "k" GROUP OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) FOR POSITIONAL ARGUMENTS OF MULTIPLICAND [ni]f(2n) WITH APPLICATION OF ARITHMETICAL AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC) |
-
2012
- 2012-02-13 RU RU2012104961/08A patent/RU2476922C1/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002014804A (en) * | 2000-06-29 | 2002-01-18 | New Japan Radio Co Ltd | Ternary digital circuit |
JP2005326914A (en) * | 2004-05-12 | 2005-11-24 | New Japan Radio Co Ltd | Cmos adder |
RU2386162C2 (en) * | 2008-04-29 | 2010-04-10 | Лев Петрович Петренко | FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS) |
RU2439658C1 (en) * | 2010-11-03 | 2012-01-10 | Лев Петрович Петренко | FUNCTIONAL STRUCTURE OF PREVIOUS SUMMATOR fΣ([ni]&[ni,0]), CONDITIONALLY "i AND "i+1" DIGITS OF "k" GROUP OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) FOR POSITIONAL ARGUMENTS OF MULTIPLICAND [ni]f(2n) WITH APPLICATION OF ARITHMETICAL AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC) |
Non-Patent Citations (1)
Title |
---|
УЭЙКЕРЛИ Дж. Проектирование цифровых устройств. - М.: ПОСТМАРКЕТ, 2002, с.508. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9143159B2 (en) | DPD/BCD to BID converters | |
RU2476922C1 (en) | FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC) | |
RU2386162C2 (en) | FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS) | |
RU2480817C1 (en) | FUNCTIONAL STRUCTURE OF ADDER f2(ΣCD) OF CONDITIONAL "k" BIT OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF INPUT STRUCTURES OF ARGUMENTS OF TERMS [1,2Sj h1]f(2n) AND [1,2Sj h2]f(2n) OF "COMPLEMENTARY CODE RU" POSITIONAL FORMAT BY APPLYING ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn OF ARGUMENTS IN COMBINED STRUCTURE THEREOF (VERSIONS OF RUSSIAN LOGIC) | |
Kohl et al. | The integrals in Gradshteyn and Ryzhik. Part 20: hypergeometric functions | |
RU2422879C1 (en) | FUNCTIONAL STRUCTURE FOR PRE-ADDER OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) WITH MULTIPLICAND ARGUMENTS [mj]f(2n) AND MULTIPLIER ARGUMENTS [ni]f(2n) IN POSITION FORMAT (VERSIONS) | |
RU2484518C1 (en) | FUNCTIONAL STRUCTURE OF SECOND LEAST SIGNIFICANT BIT ACTIVATING RESULTANT ARGUMENT (2Smin+1)f(2n) "LEVEL 2" AND (1Smin+1)f(2n) "LEVEL 1" OF ADDDER fCD(Σ)RU FOR ARGUMENTS OF TERMS ±[1,2nj]f(2n) AND ±[1,2mj]f(2n) OF "COMPLEMENTARY CODE RU" FORMAT (VERSIONS OF RUSSIAN LOGIC) | |
Kim et al. | New identities of symmetry for Carlitz’s-type q-Bernoulli polynomials under symmetric group of degree five | |
McKinnon | The [Everyday] future by design: opportunities for the design exploration of everyday sustainability | |
Sharma et al. | MacWilliams identities for weight enumerators with respect to the RT metric | |
RU2480814C1 (en) | FUNCTIONAL OUTPUT STRUCTURE OF CONDITIONAL BIT "j" OF ADDER fCD(Σ)RU WITH MAXIMALLY MINIMISED PROCESS CYCLE ∆tΣ FOR ARGUMENTS OF TERMS OF INTERMEDIATE ARGUMENTS (2Sj)2 d1/dn "LEVEL 2" AND (1Sj)2 d1/dn "LEVEL 1" OF SECOND TERM AND INTERMEDIATE ARGUMENTS (2Sj)1 d1/dn "LEVEL 2" AND (1Sj)1 d1/dn "LEVEL 1" OF FIRST TERM OF "COMPLENTARY CODE RU" FORMAT WITH GENERATION OF RESULTANT ARGUMENTS OF SUM (2Sj)f(2n) "LEVEL 2" AND (1Sj)f(2n) "LEVEL 1" IN SAME FORMAT (VERSIONS OF RUSSIAN LOGIC) | |
RU2424549C1 (en) | FUNCTIONAL STRUCTURE OF PRE-ADDER fΣ([mj]&[mj,0]) OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) WITH PROCEDURE FOR LOGIC DIFFERENTIATION d/dn OF FIRST INTERMEDIATE SUM [S1 Σ]f(})- OR STRUCTURE OF ACTIVE ARGUMENTS OF MULTIPLICAND [0,mj]f(2n) and [mj,0]f(2n) (VERSIONS) | |
RU2517245C9 (en) | f3 ADDER FUNCTIONAL STRUCTURE (ΣCD) OF ARBITRARY "g" DIGIT IMPLEMENTING DECODING PROCEDURE FOR ARGUMENTS OF SUMMANDS [1,2Sg h1]f(2n) AND [1,2Sg h2]f(2n) OF POSITION FORMAT "EXTRA CODE RU" BY ARITHMETIC AXIOMS OF TERNARY NOTATION f(+1,0,-1) AND DOUBLE LOGICAL DIFFERENTIATION d1,2/dn → f1,2(+←↓-)d/dn OF ACTIVE ARGUMENTS OF "LEVEL 2" AND REMOVAL OF ACTIVE LOGICAL ZEROES "+1""-1"→"0" IN "LEVEL 1" (VERSIONS OF RUSSIAN LOGIC) | |
RU2480816C1 (en) | FUNCTIONAL SECOND INPUT STRUCTURE OF CONDITIONAL "j" BIT OF ADDER fCD(Σ)RU WITH MAXIMALLY MINIMISED PROCESS CYCLE ∆tΣ FOR ARGUMENTS OF TERMS ±[1,2nj]f(2n) И ±[1,2mj]f(2n) OF "COMPLEMENTARY CODE RU" FORMAT WITH GENERATION OF INTERMEDIATE SUM ±[1,2Sj]1 d1/dn OF SECOND TERM IN SAME FORMAT (VERSIONS OF RUSSIAN LOGIC) | |
RU2422881C1 (en) | FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS) | |
RU2586565C2 (en) | FUNCTIONAL STRUCTURE OF PRE-ADDER f1(ΣCD) OF CONDITIONAL "j" BIT OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF PARTIAL PRODUCTS WITH STRUCTURES OF ARGUMENTS OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) IN POSITION FORMAT OF "ADDITIONAL CODE" AND FORMATION OF INTERMEDIATE SUM [1,2Sjh1]f(2n) IN POSITION FORMAT OF "ADDITIONAL CODE RU" (RUSSIAN LOGIC VERSIONS) | |
RU2439658C1 (en) | FUNCTIONAL STRUCTURE OF PREVIOUS SUMMATOR fΣ([ni]&[ni,0]), CONDITIONALLY "i AND "i+1" DIGITS OF "k" GROUP OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) FOR POSITIONAL ARGUMENTS OF MULTIPLICAND [ni]f(2n) WITH APPLICATION OF ARITHMETICAL AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC) | |
RU2363978C2 (en) | Device for parallel boolean summation of analogue signals of terms equivalent to binary number system | |
RU2480815C1 (en) | FUNCTIONAL FIRST INPUT STRUCTURE OF CONDITIONAL "j" BIT OF ADDER fCD(Σ)RU WITH MAXIMALLY MINIMISED PROCESS CYCLE ∆tΣ FOR ARGUMENTS OF TERMS ±[1,2nj]f(2n) AND ±[1,2mj]f(2n) OF "COMPLEMENTARY CODE RU" FORMAT WITH GENERATION OF INTERMEDIATE SUM (2Sj)1 d1/dn "LEVEL 2" AND (1Sj)1 d1/dn "LEVEL 1" OF FIRST TERM IN SAME FORMAT (VERSIONS OF RUSSIAN LOGIC) | |
RU2361269C9 (en) | Method of logical differentiation of analogue signals equivalent to binary code and device to this end | |
RU2011151806A (en) | FUNCTIONAL STRUCTURE OF THE SUMMATOR f3 (ΣCD) CONDITIONALLY "g" DISCHARGE REALIZING THE PROCEDURE FOR "DECIPTING" THE ARGUMENTS OF THE TERMS [1,2Sg h1] f (2N) AND [1,2Sg h2] f (2N) POSITIVE-POSITIVE AXIOM OF THE TRINITION CALCULATION SYSTEM f (+ 1,0, -1) AND DOUBLE LOGIC DIFFERENTIATION d1,2 / dn → f1,2 (+ ← ↓ -) d / dn ACTIVE ARGUMENTS "LEVEL 2" AND REMOVAL OF ACTIVE "LOGICHI" "" -1 "→" 0 "AT" LEVEL 1 "(OPTIONS OF RUSSIAN LOGIC) | |
GB2569710A (en) | Hierarchical temporal memory system | |
RU2422880C1 (en) | FUNCTIONAL STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICANT [mj]f(2n) AND MULTIPLIER [ni]f(2n) WITH MINIMISED PROCEDURE OF FORMING FIRST LEVEL INTERMEDIATE SUMS f1..k[Sj+2] OF PARTIAL PRODUCTS, WHERE k IS NUMBER OF FIRST LEVEL INTERMEDIAT SUMS (VERSIONS) | |
RU2455760C2 (en) | METHOD FOR CONVERSION OF POSITION-SYMBOLIC STRUCTURES OF +[ni]f(2n) AND -[ni]f(2n) ANALOG SIGNAL ARGUMENTS INTO ±[ni]f(2n) ANALOG SIGNAL ARGUMENTS STRUCTURE OF "ADDITIONAL CODE" USING ARITHMETIC AXIOMS OF TERNARY NOTATION f(+1, 0,-1) (VERSIONS OF RUSSIAN LOGIC) | |
Neuburger et al. | IHS Book Talk: Hungry for Revolution: The Politics of Food and the Making of Modern Chile |