RU2476922C1 - FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC) - Google Patents

FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC) Download PDF

Info

Publication number
RU2476922C1
RU2476922C1 RU2012104961/08A RU2012104961A RU2476922C1 RU 2476922 C1 RU2476922 C1 RU 2476922C1 RU 2012104961/08 A RU2012104961/08 A RU 2012104961/08A RU 2012104961 A RU2012104961 A RU 2012104961A RU 2476922 C1 RU2476922 C1 RU 2476922C1
Authority
RU
Russia
Prior art keywords
max
level
functional
additional
argument
Prior art date
Application number
RU2012104961/08A
Other languages
Russian (ru)
Inventor
Лев Петрович Петренко
Original Assignee
Лев Петрович Петренко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лев Петрович Петренко filed Critical Лев Петрович Петренко
Priority to RU2012104961/08A priority Critical patent/RU2476922C1/en
Application granted granted Critical
Publication of RU2476922C1 publication Critical patent/RU2476922C1/en

Links

Landscapes

  • Document Processing Apparatus (AREA)

Abstract

FIELD: information technology.
SUBSTANCE: one version, the functional design is realised using logic elements AND, OR.
EFFECT: faster operation.
2 cl

Description

Текст описания приведен в факсимильном виде.

Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000054
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
Figure 00000070
Figure 00000071
Figure 00000072
Figure 00000073
Figure 00000074
Figure 00000075
Figure 00000076
Figure 00000077
Figure 00000078
Figure 00000079
Figure 00000080
Figure 00000081
Figure 00000082
Figure 00000083
Figure 00000084
Figure 00000085
Figure 00000086
Figure 00000087
Figure 00000088
Figure 00000089
Figure 00000090
Figure 00000091
Figure 00000092
Figure 00000093
Figure 00000094
Figure 00000095
Figure 00000096
Figure 00000097
Figure 00000098
Figure 00000099
Figure 00000100
Figure 00000101
Figure 00000102
Figure 00000103
Figure 00000104
Figure 00000105
Figure 00000106
Figure 00000107
Figure 00000108
Figure 00000109
Figure 00000110
Figure 00000111
Figure 00000112
Figure 00000113
Figure 00000114
Figure 00000115
Figure 00000116
Figure 00000117
Figure 00000118
Figure 00000119
Figure 00000120
Figure 00000121
Figure 00000122
Figure 00000123
Figure 00000124
Figure 00000125
Figure 00000126
Figure 00000127
Figure 00000128
Figure 00000129
Figure 00000130
Figure 00000131
Figure 00000132
Figure 00000133
Figure 00000134
Figure 00000135
Figure 00000136
Figure 00000137
Figure 00000138
Figure 00000139
Figure 00000140
Figure 00000141
Figure 00000142
Figure 00000143
Figure 00000144
Figure 00000145
The text of the description is given in facsimile form.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000054
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
Figure 00000070
Figure 00000071
Figure 00000072
Figure 00000073
Figure 00000074
Figure 00000075
Figure 00000076
Figure 00000077
Figure 00000078
Figure 00000079
Figure 00000080
Figure 00000081
Figure 00000082
Figure 00000083
Figure 00000084
Figure 00000085
Figure 00000086
Figure 00000087
Figure 00000088
Figure 00000089
Figure 00000090
Figure 00000091
Figure 00000092
Figure 00000093
Figure 00000094
Figure 00000095
Figure 00000096
Figure 00000097
Figure 00000098
Figure 00000099
Figure 00000100
Figure 00000101
Figure 00000102
Figure 00000103
Figure 00000104
Figure 00000105
Figure 00000106
Figure 00000107
Figure 00000108
Figure 00000109
Figure 00000110
Figure 00000111
Figure 00000112
Figure 00000113
Figure 00000114
Figure 00000115
Figure 00000116
Figure 00000117
Figure 00000118
Figure 00000119
Figure 00000120
Figure 00000121
Figure 00000122
Figure 00000123
Figure 00000124
Figure 00000125
Figure 00000126
Figure 00000127
Figure 00000128
Figure 00000129
Figure 00000130
Figure 00000131
Figure 00000132
Figure 00000133
Figure 00000134
Figure 00000135
Figure 00000136
Figure 00000137
Figure 00000138
Figure 00000139
Figure 00000140
Figure 00000141
Figure 00000142
Figure 00000143
Figure 00000144
Figure 00000145

Claims (2)

1. Функциональная структура сумматора f3CD)max старших условно «k» разрядов параллельно-последовательного умножителя fΣCD), реализующая процедуру «дешифрирования» аргументов слагаемых [1,2Sgh1] и [1,2Sgh2] в «Дополнительном коде RU» посредством арифметических аксиом троичной системы счисления f(+1,0,-1) и логического дифференцирования d1/dn → f1(+←↓-)d/dn, выполненная в виде последовательных старшего разряда «kmin+4» с формированием результирующего аргумента (1Skh1)max+4 «Уровня 1», средних разрядов «kmin+2,3» с формированием результирующего аргумента ((1Skh1)max+2 и (1Skh1)max+3) → (1Skh1)max+2,3 «Уровня 1» и двух младших разрядов «kmin+1» и «kmin→1» с формированием результирующего аргумента (1Skh1)max+1 и (1Skh1)max→1 «Уровня 1» соответственно, которые включают логическую функцию f1(})-ИЛИ, f3(})-ИЛИ, f5(})-ИЛИ и f2(&)-И, f8(&)-И, f14(&)-И, и логическую функцию f1(&)-И и f9(&)-И, в которой функциональная входная связь является функциональной входной связью функциональной структуры для приема аргумента max(1Skh1) «Уровня 1» структуры аргументов слагаемых [1Sgh1] и логическую функцию f15(&)-И, в которой функциональная входная связь является функциональной входной связью функциональной структуры для приема аргумента max(2Skh1) «Уровня 1» структуры аргументов слагаемых [2Sgh1], отличающаяся тем, что функциональные структуры средних разрядов «kmin+2,3» выполнены с формированием дополнительного результирующего аргумента (2Skh1)max+2,3 «Уровня 2» и в них введены дополнительные логические функции f3(&)-И и f4(&)-И, при этом функциональные связи логических функций выполнены в соответствии с математической моделью вида
Figure 00000146

где 1(2Skh1)max+1↑, 1(1Skh1)max+1↑, 2(1Skh1)max+1↑ и 3(1Skh1)max+1↑ - преобразованные аргументы без изменения уровня аналогового сигнала, которые являются входными аргументами функциональной структуры второго младшего «kmin+1» разряда, которая также выполнена с формированием дополнительного результирующего аргумента (2Skh1)max+1 «Уровня 2» и в нее введены дополнительные логические функции f5(&)-И, f6(&)-И, f7(&)-И и f2(})-ИЛИ, при этом функциональные связи логических функций выполнены в соответствии с математической моделью
Figure 00000147

а функциональная структура первого младшего «kmin→1» разряда также выполнена с формированием дополнительного результирующего аргумента (2Skh1)max→1 «Уровня 2» и в нее введены дополнительные логические функции f10(&)-И, f11(&)-И, f12(&)-И, f13(&)-И и f4(})-ИЛИ, при этом функциональные связи логических функций выполнены в соответствии с математической моделью вида
Figure 00000148

Figure 00000149
- логическая функция f1(&)-И;
Figure 00000150
- логическая функция f1(})-ИЛИ.
1. The functional structure of the adder f 3CD ) max conditionally higher “k” bits of the parallel-serial multiplier f ΣCD ), implementing the procedure of “decoding” the arguments of the terms [ 1,2 S g h1 ] and [ 1,2 S g h2 ] in the “Additional Code RU” by means of arithmetic axioms of the ternary number system f (+ 1,0, -1) and logical differentiation d 1 / dn → f 1 ( + ← ↓ - ) d / dn , made in the form of consecutive higher category "k min + 4 " with the formation of the resulting argument ( 1 S k h1 ) max + 4 "Level 1", the average bits "k min + 2,3 " with the formation of the resulting ar gumenta (( 1 S k h1 ) max + 2 and ( 1 S k h1 ) max + 3 ) → ( 1 S k h1 ) max + 2,3 “Level 1” and the two least significant bits “k min + 1 ” and “ k min → 1 ”with the formation of the resulting argument ( 1 S k h1 ) max + 1 and ( 1 S k h1 ) max → 1 “ Level 1 ”, respectively, which include the logical function f 1 (}) - OR, f 3 (} ) -OR, f 5 (}) - OR and f 2 (&) - AND, f 8 (&) - AND, f 14 (&) - AND, and the logical function f 1 (&) - And and f 9 ( &) - And, in which the functional input link is the functional input link of the functional structure for receiving the argument max ( 1 S k h1 ) of "Level 1" of the structure of the arguments of the terms [ 1 S g h1 ] and the logical function f 15 (&) - And, in which function The input input link is the functional input link of the functional structure for receiving the max ( 2 S k h1 ) “Level 1” argument argument structure [ 2 S g h1 ], characterized in that the functional structures of the middle digits “k min + 2,3 ” are fulfilled with the formation of an additional resulting argument ( 2 S k h1 ) max + 2,3 "Level 2" and additional logical functions f 3 (&) - And and f 4 (&) - And are introduced into them, while the functional relationships of the logical functions are satisfied in accordance with the mathematical model of the form
Figure 00000146

where 1 ( 2 S k h1 ) max + 1 ↑, 1 ( 1 S k h1 ) max + 1 ↑, 2 ( 1 S k h1 ) max + 1 ↑ and 3 ( 1 S k h1 ) max + 1 ↑ - converted arguments without changing the level of the analog signal, which are input arguments of the functional structure of the second junior “k min + 1 ” bit, which is also performed with the formation of an additional resulting argument ( 2 S k h1 ) max + 1 “Level 2” and additional logical functions f 5 (&) - And, f 6 (&) - And, f 7 (&) - And and f 2 (}) - OR, while the functional relationships of logical functions are made in accordance with the mathematical model
Figure 00000147

and the functional structure of the first minor “k min → 1 ” bit is also performed with the formation of an additional resulting argument ( 2 S k h1 ) max → 1 of “Level 2” and additional logical functions f 10 (&) - И, f 11 ( &) - And, f 12 (&) - And, f 13 (&) - And and f 4 (}) - OR, while the functional relationships of logical functions are made in accordance with a mathematical model of the form
Figure 00000148

Figure 00000149
- logical function f 1 (&) - And;
Figure 00000150
- logical function f 1 (}) - OR.
2. Функциональная структура сумматора fΣCD)max старших условно «k» разрядов параллельно-последовательного умножителя fΣCD), реализующая процедуру «дешифрирования» аргументов слагаемых [1,2Sgh1] и [1,2Sgh2] в «Дополнительном коде RU» посредством арифметических аксиом троичной системы счисления f(+1,0,-1) и логического дифференцирования d1/dn → f1(+←↓-)d/dn, выполненная в виде последовательных разрядов старшего разряда «kmin+4» с формированием результирующего аргумента (1Skh1)max+4 «Уровня 1», функциональных структур средних разрядов «kmin+2,3» с формированием результирующего аргумента ((1Skh1)max+2 и (1Skh1)max+3) → (1Skh1)max+2,3 «Уровня 1» и двух младших разрядов «kmin+1» и «kmin→1» с формированием результирующего аргумента (1Skh1)max+1 и (1Skh1)max→1 «Уровня 1» и двух младших разрядов «kmin+1» и «kmin→1» с формированием результирующего аргумента (1Skh1)max+1 и (1Skh1)max→1 «Уровня 1» соответственно, отличающаяся тем, что функциональные структуры средних разрядов «kmin+2,3» выполнены с формированием дополнительного результирующего аргумента (2Skh1)max+2,3 «Уровня 2» и в них введены дополнительные логические функции f1(}&)-ИЛИ-НЕ, f1(&)-И-НЕ, f2(&)-И-НЕ, f3(&)-И-НЕ и f4(&)-И-НЕ, при этом функциональные связи логических функций выполнены в соответствии с математической моделью вида
Figure 00000151

где 1(1Skh1)max+1↑, 2(1Skh1)max+1↑ и 3(1Skh1)max+1↑ - преобразованные аргументы с измененным уровнем аналогового сигнала, которые являются входными аргументами функциональной структуры второго младшего «kmin+1» разряда, которая также выполнена с формированием дополнительного результирующего аргумента (2Skh1)max+1 «Уровня 2» и в нее введены дополнительные логические функции f5(&)-И-НЕ, f6(&)-И-НЕ, f7(&)-И-НЕ, f8(&)-И-НЕ, f9(&)-И-НЕ, f10(&)-И-НЕ, f11(&)-И-НЕ и f12(&)-И-НЕ, при этом функциональные связи логических функций выполнены в соответствии с математической моделью вида
Figure 00000152

а функциональная структура первого младшего «kmin→1» разряда также выполнена с формированием дополнительного результирующего аргумента (2Skh1)max→1 «Уровня 2» и в нее введены дополнительные логические функции f13(&)-И-НЕ, f14(&)-И-НЕ, f15(&)-И-НЕ, f16(&)-И-НЕ, f17(&)-И-НЕ, f18(&)-И-НЕ, f19(&)-И-НЕ и f20(&)-И-НЕ, при этом функциональные связи логических функций выполнены в соответствии с математической моделью вида
Figure 00000153

Figure 00000154
- логическая функция f1(}&)-ИЛИ-НЕ;
Figure 00000155
- логическая функция f1(&)-И-НЕ.
2. The functional structure of the adder f ΣCD ) max conditionally higher “k” bits of the parallel-serial multiplier f ΣCD ), implementing the procedure of “decoding” the arguments of the terms [ 1,2 S g h1 ] and [ 1,2 S g h2 ] in the “Additional Code RU” by means of arithmetic axioms of the ternary number system f (+ 1,0, -1) and logical differentiation d 1 / dn → f 1 ( + ← ↓ - ) d / dn , made in the form of consecutive digits MSB «k min + 4" to form the resulting argument (1 S k h1) max + 4 "Level 1", the functional structures of secondary discharges «k min + 2,3» forming the argument of the resulting ((1 S k h1) max + 2 and (1 S k h1) max + 3)(1 S k h1) max + 2,3 «Level 1" and the two LSBs «k min + 1" and “k min → 1 ” with the formation of the resulting argument ( 1 S k h1 ) max + 1 and ( 1 S k h1 ) max → 1 “Level 1” and the two least significant bits “k min + 1 ” and “k min → 1 "With the formation of the resulting argument ( 1 S k h1 ) max + 1 and ( 1 S k h1 ) max → 1 " Level 1 ", respectively, characterized in that the functional structures of the middle digits" k min + 2,3 "are made with the formation of additional resulting argument (2 S k h1) max + 2,3 «Level 2" and in them additional log administered cal functions f 1 (} &) -or-NO, f 1 (k) -and-NO, f 2 (k) -and-NO, f 3 (k) -and-NO and f 4 (k) -and -NOT, while the functional relationships of logical functions are made in accordance with a mathematical model of the form
Figure 00000151

where 1 ( 1 S k h1 ) max + 1 ↑, 2 ( 1 S k h1 ) max + 1 ↑ and 3 ( 1 S k h1 ) max + 1 ↑ are converted arguments with a changed level of the analog signal, which are input arguments of the functional structure of the second junior “k min + 1 ” bit, which is also performed with the formation of an additional resulting argument ( 2 S k h1 ) max + 1 “Level 2” and additional logical functions f 5 ( & ) -I-NOT, f are introduced into it 6 ( & ) -AND-NOT, f 7 ( & ) -AND-NOT, f 8 ( & ) -AND NOT, f 9 ( & ) -AND NOT, f 10 ( & ) -AND NOT, f 11 (k) -and-NO element 12 and f (k) -and-NO, wherein the functional linkages of logical functions performed in accordance with the mathematical eskoy model type
Figure 00000152

and the functional structure of the first minor “k min → 1 ” bit is also performed with the formation of an additional resulting argument ( 2 S k h1 ) max → 1 of “Level 2” and additional logical functions f 13 ( & ) -I-NOT, f are introduced into it 14 ( & ) -AND-NOT, f 15 ( & ) -AND-NOT, f 16 ( & ) -AND-NOT, f 17 ( & ) -AND-NOT, f 18 ( & ) -AND NOT, f 19 ( & ) -I-NOT and f 20 ( & ) -I-NOT, while the functional relationships of logical functions are made in accordance with a mathematical model of the form
Figure 00000153

Figure 00000154
- logical function f 1 (} &) - OR NOT;
Figure 00000155
- the logical function f 1 (&) - AND NOT.
RU2012104961/08A 2012-02-13 2012-02-13 FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC) RU2476922C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012104961/08A RU2476922C1 (en) 2012-02-13 2012-02-13 FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012104961/08A RU2476922C1 (en) 2012-02-13 2012-02-13 FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC)

Publications (1)

Publication Number Publication Date
RU2476922C1 true RU2476922C1 (en) 2013-02-27

Family

ID=49121609

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012104961/08A RU2476922C1 (en) 2012-02-13 2012-02-13 FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC)

Country Status (1)

Country Link
RU (1) RU2476922C1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014804A (en) * 2000-06-29 2002-01-18 New Japan Radio Co Ltd Ternary digital circuit
JP2005326914A (en) * 2004-05-12 2005-11-24 New Japan Radio Co Ltd Cmos adder
RU2386162C2 (en) * 2008-04-29 2010-04-10 Лев Петрович Петренко FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS)
RU2439658C1 (en) * 2010-11-03 2012-01-10 Лев Петрович Петренко FUNCTIONAL STRUCTURE OF PREVIOUS SUMMATOR fΣ([ni]&[ni,0]), CONDITIONALLY "i AND "i+1" DIGITS OF "k" GROUP OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) FOR POSITIONAL ARGUMENTS OF MULTIPLICAND [ni]f(2n) WITH APPLICATION OF ARITHMETICAL AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014804A (en) * 2000-06-29 2002-01-18 New Japan Radio Co Ltd Ternary digital circuit
JP2005326914A (en) * 2004-05-12 2005-11-24 New Japan Radio Co Ltd Cmos adder
RU2386162C2 (en) * 2008-04-29 2010-04-10 Лев Петрович Петренко FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS)
RU2439658C1 (en) * 2010-11-03 2012-01-10 Лев Петрович Петренко FUNCTIONAL STRUCTURE OF PREVIOUS SUMMATOR fΣ([ni]&[ni,0]), CONDITIONALLY "i AND "i+1" DIGITS OF "k" GROUP OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) FOR POSITIONAL ARGUMENTS OF MULTIPLICAND [ni]f(2n) WITH APPLICATION OF ARITHMETICAL AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
УЭЙКЕРЛИ Дж. Проектирование цифровых устройств. - М.: ПОСТМАРКЕТ, 2002, с.508. *

Similar Documents

Publication Publication Date Title
US9143159B2 (en) DPD/BCD to BID converters
RU2476922C1 (en) FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC)
RU2386162C2 (en) FUNCTIONAL STRUCTURE OF PARALLEL ADDER FOR MULTIPLICATION, WHEREIN ARGUMENTS OFTERMS OF PARTIAL PRODUCTS ARE ARGUMENTS OF TERNARY NUMBER SYSTEM f(+1,0,-1) IN POSITIONAL-SIGN FORMAT THEREOF f(+/-) (VERSIONS)
RU2480817C1 (en) FUNCTIONAL STRUCTURE OF ADDER f2(ΣCD) OF CONDITIONAL "k" BIT OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF INPUT STRUCTURES OF ARGUMENTS OF TERMS [1,2Sj h1]f(2n) AND [1,2Sj h2]f(2n) OF "COMPLEMENTARY CODE RU" POSITIONAL FORMAT BY APPLYING ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn OF ARGUMENTS IN COMBINED STRUCTURE THEREOF (VERSIONS OF RUSSIAN LOGIC)
Kohl et al. The integrals in Gradshteyn and Ryzhik. Part 20: hypergeometric functions
RU2422879C1 (en) FUNCTIONAL STRUCTURE FOR PRE-ADDER OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) WITH MULTIPLICAND ARGUMENTS [mj]f(2n) AND MULTIPLIER ARGUMENTS [ni]f(2n) IN POSITION FORMAT (VERSIONS)
RU2484518C1 (en) FUNCTIONAL STRUCTURE OF SECOND LEAST SIGNIFICANT BIT ACTIVATING RESULTANT ARGUMENT (2Smin+1)f(2n) "LEVEL 2" AND (1Smin+1)f(2n) "LEVEL 1" OF ADDDER fCD(Σ)RU FOR ARGUMENTS OF TERMS ±[1,2nj]f(2n) AND ±[1,2mj]f(2n) OF "COMPLEMENTARY CODE RU" FORMAT (VERSIONS OF RUSSIAN LOGIC)
Kim et al. New identities of symmetry for Carlitz’s-type q-Bernoulli polynomials under symmetric group of degree five
McKinnon The [Everyday] future by design: opportunities for the design exploration of everyday sustainability
Sharma et al. MacWilliams identities for weight enumerators with respect to the RT metric
RU2480814C1 (en) FUNCTIONAL OUTPUT STRUCTURE OF CONDITIONAL BIT "j" OF ADDER fCD(Σ)RU WITH MAXIMALLY MINIMISED PROCESS CYCLE ∆tΣ FOR ARGUMENTS OF TERMS OF INTERMEDIATE ARGUMENTS (2Sj)2 d1/dn "LEVEL 2" AND (1Sj)2 d1/dn "LEVEL 1" OF SECOND TERM AND INTERMEDIATE ARGUMENTS (2Sj)1 d1/dn "LEVEL 2" AND (1Sj)1 d1/dn "LEVEL 1" OF FIRST TERM OF "COMPLENTARY CODE RU" FORMAT WITH GENERATION OF RESULTANT ARGUMENTS OF SUM (2Sj)f(2n) "LEVEL 2" AND (1Sj)f(2n) "LEVEL 1" IN SAME FORMAT (VERSIONS OF RUSSIAN LOGIC)
RU2424549C1 (en) FUNCTIONAL STRUCTURE OF PRE-ADDER fΣ([mj]&[mj,0]) OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) WITH PROCEDURE FOR LOGIC DIFFERENTIATION d/dn OF FIRST INTERMEDIATE SUM [S1 Σ]f(})- OR STRUCTURE OF ACTIVE ARGUMENTS OF MULTIPLICAND [0,mj]f(2n) and [mj,0]f(2n) (VERSIONS)
RU2517245C9 (en) f3 ADDER FUNCTIONAL STRUCTURE (ΣCD) OF ARBITRARY "g" DIGIT IMPLEMENTING DECODING PROCEDURE FOR ARGUMENTS OF SUMMANDS [1,2Sg h1]f(2n) AND [1,2Sg h2]f(2n) OF POSITION FORMAT "EXTRA CODE RU" BY ARITHMETIC AXIOMS OF TERNARY NOTATION f(+1,0,-1) AND DOUBLE LOGICAL DIFFERENTIATION d1,2/dn → f1,2(+←↓-)d/dn OF ACTIVE ARGUMENTS OF "LEVEL 2" AND REMOVAL OF ACTIVE LOGICAL ZEROES "+1""-1"→"0" IN "LEVEL 1" (VERSIONS OF RUSSIAN LOGIC)
RU2480816C1 (en) FUNCTIONAL SECOND INPUT STRUCTURE OF CONDITIONAL "j" BIT OF ADDER fCD(Σ)RU WITH MAXIMALLY MINIMISED PROCESS CYCLE ∆tΣ FOR ARGUMENTS OF TERMS ±[1,2nj]f(2n) И ±[1,2mj]f(2n) OF "COMPLEMENTARY CODE RU" FORMAT WITH GENERATION OF INTERMEDIATE SUM ±[1,2Sj]1 d1/dn OF SECOND TERM IN SAME FORMAT (VERSIONS OF RUSSIAN LOGIC)
RU2422881C1 (en) FUNCTIONAL OUTPUT STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) (VERSIONS)
RU2586565C2 (en) FUNCTIONAL STRUCTURE OF PRE-ADDER f1(ΣCD) OF CONDITIONAL "j" BIT OF PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF PARTIAL PRODUCTS WITH STRUCTURES OF ARGUMENTS OF MULTIPLICAND [mj]f(2n) AND MULTIPLIER [ni]f(2n) IN POSITION FORMAT OF "ADDITIONAL CODE" AND FORMATION OF INTERMEDIATE SUM [1,2Sjh1]f(2n) IN POSITION FORMAT OF "ADDITIONAL CODE RU" (RUSSIAN LOGIC VERSIONS)
RU2439658C1 (en) FUNCTIONAL STRUCTURE OF PREVIOUS SUMMATOR fΣ([ni]&[ni,0]), CONDITIONALLY "i AND "i+1" DIGITS OF "k" GROUP OF PARALLEL-SERIES MULTIPLIER fΣ(Σ) FOR POSITIONAL ARGUMENTS OF MULTIPLICAND [ni]f(2n) WITH APPLICATION OF ARITHMETICAL AXIOMS OF TERNARY NUMBER SYSTEM f(+1,0,-1) (VERSIONS OF RUSSIAN LOGIC)
RU2363978C2 (en) Device for parallel boolean summation of analogue signals of terms equivalent to binary number system
RU2480815C1 (en) FUNCTIONAL FIRST INPUT STRUCTURE OF CONDITIONAL "j" BIT OF ADDER fCD(Σ)RU WITH MAXIMALLY MINIMISED PROCESS CYCLE ∆tΣ FOR ARGUMENTS OF TERMS ±[1,2nj]f(2n) AND ±[1,2mj]f(2n) OF "COMPLEMENTARY CODE RU" FORMAT WITH GENERATION OF INTERMEDIATE SUM (2Sj)1 d1/dn "LEVEL 2" AND (1Sj)1 d1/dn "LEVEL 1" OF FIRST TERM IN SAME FORMAT (VERSIONS OF RUSSIAN LOGIC)
RU2361269C9 (en) Method of logical differentiation of analogue signals equivalent to binary code and device to this end
RU2011151806A (en) FUNCTIONAL STRUCTURE OF THE SUMMATOR f3 (ΣCD) CONDITIONALLY "g" DISCHARGE REALIZING THE PROCEDURE FOR "DECIPTING" THE ARGUMENTS OF THE TERMS [1,2Sg h1] f (2N) AND [1,2Sg h2] f (2N) POSITIVE-POSITIVE AXIOM OF THE TRINITION CALCULATION SYSTEM f (+ 1,0, -1) AND DOUBLE LOGIC DIFFERENTIATION d1,2 / dn → f1,2 (+ ← ↓ -) d / dn ACTIVE ARGUMENTS "LEVEL 2" AND REMOVAL OF ACTIVE "LOGICHI" "" -1 "→" 0 "AT" LEVEL 1 "(OPTIONS OF RUSSIAN LOGIC)
GB2569710A (en) Hierarchical temporal memory system
RU2422880C1 (en) FUNCTIONAL STRUCTURE FOR PARALLEL-SERIAL MULTIPLIER fΣ(Σ) IN POSITION FORMAT OF MULTIPLICANT [mj]f(2n) AND MULTIPLIER [ni]f(2n) WITH MINIMISED PROCEDURE OF FORMING FIRST LEVEL INTERMEDIATE SUMS f1..k[Sj+2] OF PARTIAL PRODUCTS, WHERE k IS NUMBER OF FIRST LEVEL INTERMEDIAT SUMS (VERSIONS)
RU2455760C2 (en) METHOD FOR CONVERSION OF POSITION-SYMBOLIC STRUCTURES OF +[ni]f(2n) AND -[ni]f(2n) ANALOG SIGNAL ARGUMENTS INTO ±[ni]f(2n) ANALOG SIGNAL ARGUMENTS STRUCTURE OF "ADDITIONAL CODE" USING ARITHMETIC AXIOMS OF TERNARY NOTATION f(+1, 0,-1) (VERSIONS OF RUSSIAN LOGIC)
Neuburger et al. IHS Book Talk: Hungry for Revolution: The Politics of Food and the Making of Modern Chile