JP2005326914A - Cmos adder - Google Patents

Cmos adder Download PDF

Info

Publication number
JP2005326914A
JP2005326914A JP2004141853A JP2004141853A JP2005326914A JP 2005326914 A JP2005326914 A JP 2005326914A JP 2004141853 A JP2004141853 A JP 2004141853A JP 2004141853 A JP2004141853 A JP 2004141853A JP 2005326914 A JP2005326914 A JP 2005326914A
Authority
JP
Japan
Prior art keywords
signal
series circuit
terminal
input
vdd1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004141853A
Other languages
Japanese (ja)
Other versions
JP4240393B2 (en
Inventor
Hideki Fukuda
秀樹 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2004141853A priority Critical patent/JP4240393B2/en
Publication of JP2005326914A publication Critical patent/JP2005326914A/en
Application granted granted Critical
Publication of JP4240393B2 publication Critical patent/JP4240393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Logic Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CMOS adder corresponding to sign digit numbers whose manufacturing can be realized by an inexpensive and normal CMOS process, and whose low power consumption can be realized. <P>SOLUTION: This CMOS adder is provided with a first adder 1 which inputs two input signals A and B based on the ternary sign digit numbers of "+1", "0" and "-1", and outputs a first addition signal S1, a first carry section 2 which inputs the two input signals A and B, and outputs a first carry signal C1, a second adding section 3 which inputs the signal S1 and a third carry signal Ci-1 before one bit, and outputs a second addition signal SUMi, a second carry section 4 which inputs the signal S1 and a first carry signal C1i-1 before one bit, and outputs a second carry signal C2 and a third adding section 5 which inputs the signal C1 and the signal C2, and outputs a third carry signal Ci. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、3値のサインデジット数のデータを入力して加算を行い3値のサインデジット数の加算信号と桁上げ信号を出力するCMOS加算器に関するものである。   The present invention relates to a CMOS adder that inputs data of a ternary sign digit number and performs addition to output an addition signal and a carry signal of a ternary sign digit number.

多値のサインデジット数を用いたデジタル信号のCMOS加算器の要部回路の従来の構成例として、それぞれ2つ以上のしきい値電圧を有するNMOSトランジスタやPMOSトランジスタを用いて構成した例、あるいは電流モード回路の構成例が知られている(非特許文献1,2)。
松本外2名著、「MOSトランジスタとキャパシタ・メモリを使った4値論理回路の設計」、電子情報通信学会論文誌、第J70−D巻、第1号、50−59頁、1987年1月 亀山外2名著、「Signed-Digit数系に基づく双方向電流モード多値基本演算回路とその評価」、電子情報通信学会論文誌、第J71−D巻、第7号、1189−1198頁、1988年7月
An example of a conventional configuration of a main circuit of a digital signal CMOS adder using a multi-valued sign digit number is configured using an NMOS transistor or a PMOS transistor each having two or more threshold voltages, or A configuration example of a current mode circuit is known (Non-Patent Documents 1 and 2).
Two authors outside Matsumoto, “Design of four-valued logic circuit using MOS transistor and capacitor memory”, IEICE Transactions, Vol. J70-D, No. 1, pp. 50-59, January 1987 Two authors, Kameyama, 2nd, "Bidirectional current mode multi-value basic arithmetic circuit based on Signed-Digit number system and its evaluation", IEICE Transactions, Vol. 7, No. 71, 1189-1198, 1988 July

しかし、それぞれ2つ以上の多値しきい値電圧を有するNMOSトランジスタやPMOSトランジスタを用いたCMOS加算器は、通常のCMOSプロセスでは製造できないため、製品コストが高価となる問題点があった。また、電流モード回路の構成例では、スタティックな動作電流が発生し、LSIに多数搭載しようとすると低消費電力が阻害される問題点があった。   However, a CMOS adder using an NMOS transistor or a PMOS transistor each having two or more multi-value threshold voltages cannot be manufactured by a normal CMOS process, resulting in a problem that the product cost becomes high. Further, in the configuration example of the current mode circuit, a static operating current is generated, and there is a problem that low power consumption is hindered when a large number are mounted on an LSI.

本発明の目的は上記問題点を解消し廉価な通常のCMOSプロセスで製造でき且つ低消費電力性を実現可能としたサインデジット数に対応するCMOS加算器を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a CMOS adder corresponding to the number of sign digits that can solve the above-mentioned problems and can be manufactured by an inexpensive ordinary CMOS process and can realize low power consumption.

請求項1にかかる発明のCMOS加算器は、「+1」、「0」、「−1」の3値のサインデジット数による2つの入力信号AとBを入力して第1の加算信号S1を出力する第1の加算部と、前記2つの入力信号AとBを入力して第1の桁上げ信号C1を出力する第1の桁上げ部と、前記信号S1と1ビット前の第3の桁上げ信号Ci-1を入力して第2の加算信号SUMiを出力する第2の加算部と、前記信号S1と1ビット前の第1の桁上げ信号C1i-1を入力して第2の桁上げ信号C2を出力する第2の桁上げ部と、前記信号C1と前記信号C2を入力して第3の桁上げ信号Ciを出力する第3の加算部とを具備するCMOS加算器であって、前記第1の加算信号S1は、前記入力信号A,Bの一方が「+1」で他方が「0」のとき「−1」、前記入力信号A,Bの一方が「−1」で他方が「0」のとき「+1」、それ以外のとき「0」となり、前記第1の桁上げ信号C1は、前記入力信号A,Bがともに「+1」又は一方が「+1」で他方が「0」のとき「+1」、前記入力信号A,Bがともに「−1」又は一方が「−1」で他方が「0」のとき「−1」、それ以外のとき「0」となり、前記信号SUMiは、前記信号S1と前記信号Ci-1の一方が「+1」で他方が「0」のとき「+1」、前記信号S1と前記信号Ci-1の一方が「−1」で他方が「0」のとき「−1」、それ以外で「0」となり、前記信号C2は、前記信号S1と前記信号C1i-1がともに「+1」のとき「+1」、前記信号S1と前記信号C1i-1がともに「−1」のとき「−1」、それ以外で「0」となり、前記信号Ciは、前記信号C1と前記信号C2の一方が「+1」で他方が「0」のとき「+1」、前記信号C1と前記信号C2の一方が「−1」で他方が「0」のとき「−1」、それ以外で「0」となる、ようにしたことを特徴とする。   The CMOS adder according to the first aspect of the present invention inputs the two input signals A and B based on the ternary sign digit number of “+1”, “0”, and “−1” to obtain the first addition signal S1. A first adder for outputting, a first carry for inputting the two input signals A and B and outputting the first carry signal C1, and a third carry one bit before the signal S1 A second adder that inputs a carry signal Ci-1 and outputs a second addition signal SUMi; a second adder that inputs the signal S1 and the first carry signal C1i-1 one bit before; A CMOS adder including a second carry unit that outputs a carry signal C2 and a third adder that inputs the signal C1 and the signal C2 and outputs a third carry signal Ci. The first addition signal S1 is “−1” when one of the input signals A and B is “+1” and the other is “0”. When one of the input signals A and B is “−1” and the other is “0”, it becomes “+1”, otherwise it becomes “0”, and the first carry signal C1 is the input signal A, B Is "+1" or one is "+1" and the other is "0", "+1", and both the input signals A and B are "-1" or one is "-1" and the other is "0" “−1”, otherwise “0”, the signal SUMi is “+1” when one of the signal S1 and the signal Ci−1 is “+1” and the other is “0”, and the signal S1 When one of the signals Ci-1 is "-1" and the other is "0", the signal Ci-1 is "-1", and when the other is "0", the signal C2 has both the signal S1 and the signal C1i-1 " "+1" when the signal S1 is "+1", "-1" when both the signal S1 and the signal C1i-1 are "-1", and "0" otherwise. Ci is “+1” when one of the signal C1 and the signal C2 is “+1” and the other is “0”, and when one of the signal C1 and the signal C2 is “−1” and the other is “0” It is characterized in that “−1” and “0” otherwise.

請求項2にかかる発明は、請求項1に記載のCMOS加算器において、前記第1の加算部は、3値のサインデジット数「−1」、「0」、「+1」に対応する電圧VDD0,VDD1,VDD2(VDD0<VDD1<VDD2)のいずれかの2個の信号A,Bを入力して前記信号S1を出力する加算部であって、前記電圧VDD2の端子と前記信号S1の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第1の直列回路と、前記電圧VDD2の端子と前記信号S1の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第2の直列回路と、前記電圧VDD0の端子と前記信号S1の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第3の直列回路と、前記電圧VDD0の端子と前記信号S1の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第4の直列回路と、前記電圧VDD1の端子と前記信号S1の端子との間に接続された2個のPMOSトランジスタと2個のNMOSトランジスタの直列回路からなる第5の直列回路と、 前記電圧VDD1の端子と前記信号S1の端子との間に、一方の端子側がPMOSトランジスタとNMOSトランジスタの2個、他方の端子側もPMOSトランジスタとNMOSトランジスタの2個で合計4個直列接続された第6の直列回路と、前記電圧VDD1の端子と前記信号S1の端子との間に、一方の端子側がPMOSトランジスタとNMOSトランジスタの2個、他方の端子側もPMOSトランジスタとNMOSトランジスタの2個で合計4個直列接続され、かつ中央の接続点が前記第6の直列回路の中央の接続点と接続された第7の直列回路と、を具備し、前記第1の直列回路の各PMOSトランジスタのゲートには、前記信号Aを反転した信号ABを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVAB21、前記信号B、前記信号Bを反転した信号BBがそれぞれ入力し、前記第2の直列回路の各PMOSトランジスタのゲートには、前記信号BBを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVBB21、前記信号A、前記信号ABがそれぞれ入力し、前記第3の直列回路の各NMOSトランジスタのゲートには、前記信号ABを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVAB10、前記信号B、前記信号BBがそれぞれ入力し、前記第4の直列回路の各NMOSトランジスタのゲートには、前記信号BBを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVBB10、前記信号A、前記信号ABがそれぞれ入力し、前記第5の直列回路の2個のPMOSトランジスタのゲートにはそれぞれ前記信号INVAB10,INVBB10が、2個のNMOSトランジスタのゲートにはそれぞれ前記信号INVAB21,INVBB21が入力し、前記第6の直列回路の前記VDD1の端子側のPMOSトランジスタのゲートには前記信号A、NMOSトランジスタのゲートには前記信号ABがそれぞれ入力し、前記信号S1の端子側のPMOSトランジスタのゲートには前記信号B、NMOSトランジスタのゲートには前記信号BBがそれぞれ入力し、前記第7の直列回路の前記VDD1の端子側のPMOSトランジスタのゲートには前記信号AB、NMOSトランジスタのゲートには前記信号Aがそれぞれ入力し、前記信号S1の端子側のPMOSトランジスタのゲートには前記信号BB、NMOSトランジスタのゲートには前記信号Bがそれぞれ入力する、ようにしたことを特徴とする。   According to a second aspect of the present invention, in the CMOS adder according to the first aspect, the first adder includes a voltage VDD0 corresponding to ternary sign digit numbers “−1”, “0”, “+1”. , VDD1, VDD2 (VDD0 <VDD1 <VDD2), and an input unit that inputs the two signals A and B and outputs the signal S1, and includes a terminal for the voltage VDD2 and a terminal for the signal S1. And a first series circuit composed of a series circuit of three PMOS transistors, and a first circuit composed of a series circuit of three PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal S1. 2 series circuit, a third series circuit composed of a series circuit of three NMOS transistors connected between the terminal of the voltage VDD0 and the terminal of the signal S1, and a terminal of the voltage VDD0 A fourth series circuit composed of a series circuit of three NMOS transistors connected between the terminal of the signal S1 and two PMOSs connected between the terminal of the voltage VDD1 and the terminal of the signal S1. A fifth series circuit composed of a series circuit of a transistor and two NMOS transistors; between the terminal of the voltage VDD1 and the terminal of the signal S1, one terminal side is two PMOS transistors and NMOS transistors, and the other is Also on the terminal side, there are two PMOS transistors and NMOS transistors, a total of four connected in series, and between the terminal of the voltage VDD1 and the terminal of the signal S1, one terminal side is the PMOS transistor and NMOS. Two transistors are connected in series, and the other terminal is connected in series with two PMOS transistors and NMOS transistors. And a seventh series circuit having a central connection point connected to a central connection point of the sixth series circuit, and the gate of each PMOS transistor of the first series circuit includes the signal A signal INVAB21 obtained by inverting the signal AB obtained by inverting the signal A by a CMOS inverter using VDD2 and VDD1 as a power source, the signal B, and the signal BB obtained by inverting the signal B are input to each PMOS transistor of the second series circuit. The signal INVBB21, the signal A, and the signal AB, which are obtained by inverting the signal BB with a CMOS inverter using VDD2 and VDD1 as power sources, are input to the gate of each of the NMOS transistors in the third series circuit. Is a signal INVAB10 obtained by inverting the signal AB with a CMOS inverter using VDD1 and VDD0 as power sources, The signal B and the signal BB are respectively input, and the signal INVBB10 obtained by inverting the signal BB with a CMOS inverter using the VDD1 and VDD0 as power supplies, and the signal A, the gate of each NMOS transistor of the fourth series circuit The signal AB is input, the signals INVAB10 and INVBB10 are respectively input to the gates of the two PMOS transistors of the fifth series circuit, and the signals INVAB21 and INVBB21 are respectively input to the gates of the two NMOS transistors. The signal A is input to the gate of the PMOS transistor on the terminal side of VDD1 of the sixth series circuit, the signal AB is input to the gate of the NMOS transistor, and the gate of the PMOS transistor on the terminal side of the signal S1. Is the signal B, NMOS transistor The signal BB is input to the gate of each of the transistors, the signal AB is input to the gate of the PMOS transistor on the VDD1 terminal side of the seventh series circuit, and the signal A is input to the gate of the NMOS transistor. The signal BB is input to the gate of the PMOS transistor on the terminal side of the signal S1, and the signal B is input to the gate of the NMOS transistor.

請求項3にかかる発明は、請求項1に記載のCMOS加算器において、前記第1の桁上げ部は、3値のサインデジット数「−1」、「0」、「+1」に対応する電圧VDD0,VDD1,VDD2(VDD0<VDD1<VDD2)のいずれかの2個の信号A,Bを入力して前記信号C1を出力する桁上げ部であって、前記電圧VDD2の端子と前記信号C1の端子との間に接続され2個のPMOSトランジスタの直列回路からなる第8の直列回路と、前記電圧VDD2の端子と前記信号C1の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第9の直列回路と、前記電圧VDD2の端子と前記信号C1の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第10の直列回路と、前記電圧VDD0の端子と前記信号C1の端子との間に接続され2個のNMOSトランジスタの直列回路からなる第11の直列回路と、前記電圧VDD0の端子と前記信号C1の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第12の直列回路と、前記電圧VDD0の端子と前記信号C1の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第13の直列回路と、前記電圧VDD1の端子と前記信号C1の端子との間に接続され2個のPMOSトランジスタと2個のNMOSトランジスタの直列回路からなる第14の直列回路と、前記電圧VDD1の端子と前記信号C1の端子との間に接続され2個のPMOSトランジスタと2個のNMOSトランジスタの直列回路からなる第15の直列回路と、前記電圧VDD1の端子と前記信号C1の端子との間に接続され2個のPMOSトランジスタと2個のNMOSトランジスタの直列回路からなる第16の直列回路と、を具備し、前記第8の直列回路の各PMOSトランジスタのゲートには、前記信号Aを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVA21、前記信号Bを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVB21がそれぞれ入力し、前記第9の直列回路の各PMOSトランジスタのゲートには、前記信号INVA21、前記信号B、前記信号Bを反転した信号BBがそれぞれ入力し、前記第10の直列回路の各PMOSトランジスタのゲートには、前記信号INVB21、前記信号A、前記信号Aを反転した信号ABがそれぞれ入力し、前記第11の直列回路の各NMOSトランジスタのゲートには、前記信号Aを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVA10、前記信号Bを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVB10がそれぞれ入力し、前記第12の直列回路の各NMOSトランジスタのゲートには、前記信号INVA10、前記信号B、前記信号BBがそれぞれ入力し、前記第13の直列回路の各NMOSトランジスタのゲートには、前記信号INVB10、前記信号A、前記信号ABがそれぞれ入力し、前記第14の直列回路の2個のPMOSトランジスタのゲートには前記信号INVA10,INVB10がそれぞれ入力し、2個のNMOSトランジスタのゲートには前記信号INVA21,INVB21がそれぞれ入力し、前記第15の直列回路の2個のPMOSトランジスタのゲートには前記信号A,BBがそれぞれ入力し、2個のNMOSトランジスタのゲートには前記信号B,ABがそれぞれ入力し、前記第16の直列回路の2個のPMOSトランジスタのゲートには前記信号B,ABがそれぞれ入力し、2個のNMOSトランジスタのゲートには前記信号A,BBがそれぞれ入力する、ようにしたことを特徴とする。   According to a third aspect of the present invention, in the CMOS adder according to the first aspect, the first carry section is a voltage corresponding to a ternary sign digit number “−1”, “0”, “+1”. A carry unit that inputs two signals A and B of VDD0, VDD1, and VDD2 (VDD0 <VDD1 <VDD2) and outputs the signal C1, and includes the terminal of the voltage VDD2 and the signal C1. An eighth series circuit including a series circuit of two PMOS transistors connected between the terminals and a series circuit of three PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal C1. A tenth series circuit consisting of a series circuit of three PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal C1, and the voltage VDD0 An eleventh series circuit composed of a series circuit of two NMOS transistors connected between the signal and the terminal of the signal C1, and three terminals connected between the terminal of the voltage VDD0 and the terminal of the signal C1. A twelfth series circuit comprising a series circuit of NMOS transistors, a thirteenth series circuit comprising a series circuit of three NMOS transistors connected between the terminal of the voltage VDD0 and the terminal of the signal C1, and the voltage A fourteenth series circuit composed of a series circuit of two PMOS transistors and two NMOS transistors connected between the terminal of VDD1 and the terminal of signal C1, the terminal of voltage VDD1 and the terminal of signal C1; A fifteenth series circuit composed of a series circuit of two PMOS transistors and two NMOS transistors, and the voltage VDD1 Each of the PMOS transistors of the eighth series circuit, and a sixteenth series circuit comprising a series circuit of two PMOS transistors and two NMOS transistors connected between the terminal and the terminal of the signal C1 The signal INVA21 obtained by inverting the signal A by a CMOS inverter using VDD2 and VDD1 as a power source and the signal INVB21 obtained by inverting the signal B by a CMOS inverter using VDD2 and VDD1 as power sources are respectively input to the gates of The signal INVA21, the signal B, and the signal BB obtained by inverting the signal B are input to the gates of the PMOS transistors of the ninth series circuit, respectively, and the gates of the PMOS transistors of the tenth series circuit are The signal INVB21, the signal A, and the signal AB obtained by inverting the signal A are input. Then, the gate of each NMOS transistor of the eleventh series circuit has a signal INVA10 obtained by inverting the signal A by a CMOS inverter using VDD1 and VDD0 as power supplies, and a CMOS using the signal B as power supplies from VDD1 and VDD0. The signal INVB10 inverted by the inverter is input, and the signal INVA10, the signal B, and the signal BB are input to the gates of the NMOS transistors of the twelfth series circuit, respectively. The signal INVB10, the signal A, and the signal AB are respectively input to the gates of the NMOS transistors, and the signals INVA10 and INVB10 are respectively input to the gates of the two PMOS transistors of the fourteenth series circuit. The signal I is connected to the gates of the NMOS transistors. VA21 and INVB21 are respectively input, the signals A and BB are respectively input to the gates of the two PMOS transistors of the fifteenth series circuit, and the signals B and AB are respectively input to the gates of the two NMOS transistors. The signals B and AB are respectively input to the gates of the two PMOS transistors of the sixteenth series circuit, and the signals A and BB are respectively input to the gates of the two NMOS transistors. It is characterized by that.

請求項4にかかる発明は、請求項1に記載のCMOS加算器において、前記第2又は第3の加算部は、3値のサインデジット数「−1」、「0」、「+1」に対応する電圧VDD0,VDD1,VDD2(VDD0<VDD1<VDD2)のいずれかの2個の信号A,B(但し、Aは前記信号S1、Bは前記信号Ci-1、又はAは前記信号C1、Bは前記信号C2)を入力して信号S2(前記信号SUMi又は前記信号Ci)を出力する加算部であって、前記電圧VDD2の端子と前記信号S2の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第17の直列回路と、前記電圧VDD2の端子と前記信号S2の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第18の直列回路と、前記電圧VDD0の端子と前記信号S2の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第19の直列回路と、前記電圧VDD0の端子と前記信号S2の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第20の直列回路と、前記電圧VDD1の端子と前記信号S2の端子との間に接続された2個のPMOSトランジスタと2個のNMOSトランジスタの直列回路からなる第21の直列回路と、前記電圧VDD1の端子と前記信号S2の端子との間に、一方の端子側がPMOSトランジスタとNMOSトランジスタの2個、他方の端子側もPMOSトランジスタとNMOSトランジスタの2個で合計4個直列接続された第22の直列回路と、前記電圧VDD1の端子と前記信号S2の端子との間に、一方の端子側がPMOSトランジスタとNMOSトランジスタの2個、他方の端子側もPMOSトランジスタとNMOSトランジスタの2個で合計4個直列接続され、かつ中央の接続点が前記第22の直列回路の中央の接続点と接続された第23の直列回路と、を具備し、前記第17の直列回路の各PMOSトランジスタのゲートには、前記信号Aを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVA21、前記信号B、前記信号Bを反転した信号BBがそれぞれ入力し、前記第18の直列回路の各PMOSトランジスタのゲートには、前記信号Bを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVB21、前記信号A、前記信号Aを反転した信号ABがそれぞれ入力し、前記第19の直列回路の各NMOSトランジスタのゲートには、前記信号Aを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVA10、前記信号B、前記信号BBがそれぞれ入力し、前記第20の直列回路の各NMOSトランジスタのゲートには、前記信号Bを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVB10、前記信号A、前記信号ABがそれぞれ入力し、前記第21の直列回路の2個のPMOSトランジスタのゲートには、それぞれ前記信号INVA10,INVB10が、2個のNMOSトランジスタのゲートには、それぞれ前記信号INVA21,INVB21が入力し、前記第22の直列回路の前記VDD1の端子側のPMOSトランジスタのゲートには前記信号A、NMOSトランジスタのゲートには前記信号ABがそれぞれ入力し、前記信号S2の端子側のPMOSトランジスタのゲートには前記信号B、NMOSトランジスタのゲートには前記信号BBがそれぞれ入力し、前記第23の直列回路の前記VDD1の端子側のPMOSトランジスタのゲートには前記信号AB、NMOSトランジスタのゲートには前記信号Aがそれぞれ入力し、前記信号S2の端子側のPMOSトランジスタのゲートには前記信号BB、NMOSトランジスタのゲートには前記信号Bがそれぞれ入力する、ようにしたことを特徴とする。   According to a fourth aspect of the present invention, in the CMOS adder according to the first aspect, the second or third adder corresponds to the number of ternary sign digits “−1”, “0”, “+1”. Two signals A and B of the voltages VDD0, VDD1 and VDD2 (VDD0 <VDD1 <VDD2) (where A is the signal S1, B is the signal Ci-1, or A is the signal C1, B) Is an adder that inputs the signal C2) and outputs the signal S2 (the signal SUMi or the signal Ci), and is connected between the terminal of the voltage VDD2 and the terminal of the signal S2, and three PMOSs A seventeenth series circuit comprising a series circuit of transistors, an eighteenth series circuit comprising a series circuit of three PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal S2, and the voltage VDD0 A nineteenth series circuit composed of a series circuit of three NMOS transistors connected between the terminal of the signal S2 and the terminal of the signal S2, and three terminals connected between the terminal of the voltage VDD0 and the terminal of the signal S2. A twentieth series circuit composed of a series circuit of NMOS transistors, and a twenty-first circuit composed of a series circuit of two PMOS transistors and two NMOS transistors connected between the terminal of the voltage VDD1 and the terminal of the signal S2. Between the terminal of the voltage VDD1 and the terminal of the signal S2, one terminal side is two PMOS transistors and NMOS transistors, and the other terminal side is two PMOS transistors and NMOS transistors. One terminal side between the 22nd series circuit connected in series and the terminal of the voltage VDD1 and the terminal of the signal S2 Two PMOS transistors and NMOS transistors, and the other terminal side is also connected in series with a total of four PMOS transistors and NMOS transistors, and the central connection point is connected to the central connection point of the twenty-second series circuit. A signal INVA21 obtained by inverting the signal A with a CMOS inverter using VDD2 and VDD1 as power sources, and the signal B at the gate of each PMOS transistor of the seventeenth series circuit. The signal BB obtained by inverting the signal B is input, and the signal INVB21 obtained by inverting the signal B with a CMOS inverter using the VDD2 and VDD1 as power sources is input to the gates of the PMOS transistors of the eighteenth series circuit. The 19th series circuit receives the signal A and the signal AB obtained by inverting the signal A, respectively. The signal INVA10, the signal B, and the signal BB obtained by inverting the signal A with a CMOS inverter using VDD1 and VDD0 as power sources are input to the gates of the NMOS transistors, respectively. A signal INVB10, the signal A, and the signal AB obtained by inverting the signal B with a CMOS inverter using VDD1 and VDD0 as power sources are input to the gates of the transistors, respectively, and the two PMOS transistors of the twenty-first series circuit The gates of the two transistors are the signals INVA10 and INVB10, respectively, and the gates of the two NMOS transistors are the signals INVA21 and INVB21, respectively. The gate of the PMOS transistor on the VDD1 terminal side of the twenty-second series circuit The signal A, NMOS transistor The signal AB is input to the gate of the star, the signal B is input to the gate of the PMOS transistor on the terminal side of the signal S2, and the signal BB is input to the gate of the NMOS transistor, respectively. The signal AB is input to the gate of the PMOS transistor on the terminal side of the VDD1 and the signal A is input to the gate of the NMOS transistor, and the signal BB and NMOS transistor are input to the gate of the PMOS transistor on the terminal side of the signal S2. It is characterized in that the signal B is inputted to each of the gates.

請求項5にかかる発明は、請求項1に記載のCMOS加算器において、前記第2の桁上げ部は、3値のサインデジット数「−1」、「0」、「+1」に対応する電圧VDD0,VDD1,VDD2(VDD0<VDD1<VDD2)のいずれかの2個の信号A,B(但し、Aは前記信号S1、Bは前記信号C1i-1)を入力して前記信号C2を出力する桁上げ部であって、前記電圧VDD2の端子と前記信号C2の端子との間に接続され2個のPMOSトランジスタの直列回路からなる第24の直列回路と、前記電圧VDD0の端子と前記信号C2の端子との間に接続され2個のNMOSトランジスタの直列回路からなる第25の直列回路と、前記電圧VDD1の端子と前記信号C2の端子との間に接続された、2個のPMOSトランジスタの並列回路と2個のNMOSトランジスタの並列回路を直列接続した第26の直列回路と、を具備し、前記第24の直列回路の各PMOSトランジスタのゲートには、前記信号Aを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVA21、前記信号Bを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVB21がそれぞれ入力し、前記第25の直列回路の各NMOSトランジスタのゲートには、前記信号Aを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVA10、前記信号Bを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVB10がそれぞれ入力し、前記第26の直列回路の2個のPMOSトランジスタのゲートには前記信号INVA10,INVB10がそれぞれ入力し、2個のNMOSトランジスタのゲートには前記信号INVA21,INVB21がそれぞれ入力する、ようにしたことを特徴とする。   According to a fifth aspect of the present invention, in the CMOS adder according to the first aspect, the second carry section is a voltage corresponding to a ternary sign digit number “−1”, “0”, “+1”. Input two signals A and B (VDD0 <VDD1 <VDD2) of VDD0, VDD1, and VDD2 (where A is the signal S1 and B is the signal C1i-1) and outputs the signal C2. 24th series circuit comprising a series circuit of two PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal C2, and the terminal of the voltage VDD0 and the signal C2 Of the two PMOS transistors connected between the terminal of the voltage VDD1 and the terminal of the signal C2. A column circuit and a 26th series circuit in which a parallel circuit of two NMOS transistors is connected in series. The signal A is supplied to the gates of the PMOS transistors of the 24th series circuit with the VDD2 and VDD1. A signal INVA21 inverted by a CMOS inverter used as a power source and a signal INVB21 inverted by a CMOS inverter using VDD2 and VDD1 as a power source are input to the signal B, and the gates of the NMOS transistors of the 25th series circuit are respectively A signal INVA10 obtained by inverting the signal A by a CMOS inverter using VDD1 and VDD0 as a power source, and a signal INVB10 obtained by inverting the signal B by a CMOS inverter using VDD1 and VDD0 as power sources are input. The gates of the two PMOS transistors Serial signal INVA10, INVB10 inputs respectively, to the gates of the two NMOS transistors, wherein said signal INVA21, INVB21 has to enter respectively, as.

本発明のCMOS加算器は、3個の加算部と2個の桁上げ部を具備し、3値のサインデジット数「+1」、「0」、「−1」による入力信号A,Bに対応して3値のサインデジット数「+1」、「0」、「−1」による加算信号や桁上げ信号を出力し、これを実現する回路構成は各トランジスタが1つのしきい値をもつMOSトランジスタですむので、廉価な通常のプロセスで製造できる。またスタティックな動作電流を少なくできるので消費電力が少なくて済み、しかも構成するMOSトランジスタ数が少ないので、LSIに多数搭載する場合にそのLSIのチップ面積、消費電力を増加させることがない。   The CMOS adder of the present invention includes three adders and two carry units, and supports input signals A and B with ternary sign digit numbers “+1”, “0”, and “−1”. Then, an addition signal or a carry signal with ternary sign digit numbers “+1”, “0”, “−1” is output, and a circuit configuration for realizing this is a MOS transistor in which each transistor has one threshold value. Therefore, it can be manufactured by a cheap and normal process. Further, since the static operating current can be reduced, the power consumption can be reduced, and the number of MOS transistors to be configured is small. Therefore, when many LSIs are mounted, the chip area and power consumption of the LSI are not increased.

本発明のCMOS加算器では、1つのしきい値を持つMOSトランジスタを使用して、サインデジット数「+1」、「0」、「−1」に対応する電圧VDD2、VDD1、VDD0(VDD2>VDD1>VDD0)のいずれかの2個の信号A,Bを入力して演算し、その加算信号と桁上げ信号を出力する。VDD1=(VDD2+VDD0)/2である。以下、詳しく説明する。なお、以下では、「MP」はPMOSトランジスタを表し、「MN」はNMOSトランジスタを表すものとする。   In the CMOS adder of the present invention, a MOS transistor having one threshold value is used, and voltages VDD2, VDD1, VDD0 (VDD2> VDD1) corresponding to the number of sign digits “+1”, “0”, “−1”. > VDD0) is input and operated, and the addition signal and carry signal are output. VDD1 = (VDD2 + VDD0) / 2. This will be described in detail below. In the following, “MP” represents a PMOS transistor, and “MN” represents an NMOS transistor.

図1(a)は実施例1の1ビット全加算器の構成を示すブロック図である。本実施例では3値のサインデジット数「+1」、「0」、「−1」からなる2個の信号A,Bを入力信号とする。Ai,Biはiビット目の3値のサインデジット数の入力信号、Ci-1は1ビット前の桁上げ入力信号、Ciはiビット目の桁上げ信号、SUMiはiビット目の加算信号である。S1は中間加算信号、C1(C1i)は中間桁上げ信号、C1i-1は1ビット前の中間桁上げ信号である。   FIG. 1A is a block diagram illustrating a configuration of a 1-bit full adder according to the first embodiment. In this embodiment, two signals A and B composed of ternary sign digit numbers “+1”, “0”, and “−1” are input signals. Ai and Bi are input signals of the ternary sign digit number of the i-th bit, Ci-1 is a carry input signal of 1 bit before, Ci is a carry signal of the i-th bit, and SUMi is an add signal of the i-th bit. is there. S1 is an intermediate addition signal, C1 (C1i) is an intermediate carry signal, and C1i-1 is an intermediate carry signal one bit before.

また、1は信号AiとBiを入力して中間加算信号S1を出力する第1の加算部(SUM1)、2は信号AiとBiを入力して中間桁上げ信号C1を出力する第1の桁上げ部(CA1)、3は信号S1と信号Ci-1を入力して加算信号SUMiを出力する第2の加算部(SUM2)、4は信号S1と1ビット前の中間桁上げ信号C1i-1を入力して桁上げ信号C2を出力する第2の桁上げ部(CA2)、5は信号C1とC2(C1i)を入力して桁上げ信号Ciを出力する第3の加算部(SUM2)である。   Also, 1 is a first adder (SUM1) that inputs signals Ai and Bi and outputs an intermediate addition signal S1, and 2 is a first digit that inputs signals Ai and Bi and outputs an intermediate carry signal C1. A raising unit (CA1) 3 is a second adding unit (SUM2) that receives the signal S1 and the signal Ci-1 and outputs an addition signal SUMi, and 4 is an intermediate carry signal C1i-1 that is one bit before the signal S1. Is a second carry unit (CA2) that outputs a carry signal C2 and 5 is a third adder unit (SUM2) that receives signals C1 and C2 (C1i) and outputs a carry signal Ci. is there.

図1(b)は図1(a)の1ビット全加算器の真理値を示す図である。この図1(b)から明らかなように、中間加算信号S1は、入力信号A,Bの一方が「+1」で他方が「0」のとき「−1」、入力信号A,Bの一方が「−1」で他方が「0」のとき「+1」となり、それ以外のとき「0」となる。中間桁上げ信号C1は、入力信号A,Bがともに「+1」又は一方が「+1」で他方が「0」のとき「+1」、入力信号A,Bがともに「−1」又は一方が「−1」で他方が「0」のとき「−1」となり、それ以外のとき「0」となる。   FIG. 1B is a diagram showing a truth value of the 1-bit full adder of FIG. As is clear from FIG. 1B, the intermediate addition signal S1 is “−1” when one of the input signals A and B is “+1” and the other is “0”, and one of the input signals A and B is It is “+1” when “−1” and the other is “0”, and “0” otherwise. The intermediate carry signal C1 is “+1” when both the input signals A and B are “+1” or one is “+1” and the other is “0”, and both the input signals A and B are “−1” or one is “ "-1" and "0" when the other is "0", otherwise "0".

加算信号SUMiは、中間加算信号S1と桁上げ信号Ci-1の一方が「+1」で他方が「0」のとき「+1」、中間加算信号S1と桁上げ信号Ci-1の一方が「−1」で他方が「0」のとき「−1」となり、それ以外で「0」となる。桁上げ信号C2は、中間加算信号S1と1ビット前の中間桁上げ信号C1i-1がともに「+1」のとき「+1」、中間加算信号S1と中間桁上げ信号C1i-1がともに「−1」のとき「−1」となり、それ以外で「0」となる。桁上げ信号Ciは、中間桁上げ信号C1と桁上げ信号C2の一方が「+1」で他方が「0」のとき「+1」、中間桁上げ信号C1と桁上げ信号C2の一方が「−1」で他方が「0」のとき「−1」となり、それ以外で「0」となる。   The addition signal SUMi is “+1” when one of the intermediate addition signal S1 and the carry signal Ci−1 is “+1” and the other is “0”, and one of the intermediate addition signal S1 and the carry signal Ci-1 is “−”. It is “−1” when the other is “0” and “0”, and “0” otherwise. The carry signal C2 is “+1” when the intermediate addition signal S1 and the intermediate carry signal C1i-1 one bit before are both “+1”, and both the intermediate addition signal S1 and the intermediate carry signal C1i-1 are “−1”. "-1" when "", and "0" otherwise. The carry signal Ci is “+1” when one of the intermediate carry signal C1 and the carry signal C2 is “+1” and the other is “0”, and one of the intermediate carry signal C1 and the carry signal C2 is “−1”. ”And“ 0 ”when the other is“ 0 ”, and“ 0 ”otherwise.

このように、第2,第3の加算部3,5は第1の加算部1と異なる動作を行う。また、第2の桁上げ部4は第1の桁上げ部と異なる動作を行う。そして、図1(b)の第2の桁上げ部4の桁上げ信号C2に着目すると、上位桁へ伝搬する桁上げ信号Ciは中間桁上げ信号C1で決まり、下位からの桁上げ信号Ci-1を伝搬させない。このため、図1(a)のように構成される全加算器を多段に接続して構成した場合、上位桁への桁上げ信号の伝搬を抑え、演算速度の高速化を実現できる。   In this way, the second and third adders 3 and 5 perform operations different from those of the first adder 1. Further, the second carry unit 4 performs an operation different from that of the first carry unit. When paying attention to the carry signal C2 of the second carry unit 4 in FIG. 1B, the carry signal Ci propagated to the upper digit is determined by the intermediate carry signal C1, and the carry signal Ci- Do not propagate 1 For this reason, when the full adders configured as shown in FIG. 1A are connected in multiple stages, propagation of the carry signal to the upper digit can be suppressed, and the calculation speed can be increased.

図2(a)は図1(a)における第1の加算部(SUM1)1の構成を示す回路図である。3値のサインデジット数「+1」、「0」、「−1」に対応する電源電圧VDD2、VDD1、VDD0は、例えばVDD2=1.8V、VDD1=0.9V、VDD0=0Vである。   FIG. 2A is a circuit diagram showing a configuration of the first addition unit (SUM1) 1 in FIG. The power supply voltages VDD2, VDD1, and VDD0 corresponding to the ternary sign digit numbers “+1”, “0”, and “−1” are, for example, VDD2 = 1.8V, VDD1 = 0.9V, and VDD0 = 0V.

中間加算信号S1の出力端子とVDD2の電源端子との間には、トランジスタMP1〜MP3の直列回路、トランジスタMP4〜MP6の直列回路が、それぞれ接続されている。また、中間加算信号S1の出力端子とVDD0の電源端子との間には、トランジスタMN1〜MN3の直列回路、トランジスタMN4〜MN6の直列回路が、それぞれ接続されている。さらに、中間加算信号S1の出力端子とVDD1の電源端子との間には、トランジスタMP7、MP8、MN7、MN8の直列回路が接続され、さらにトランジスタMP9、MN9、MP10,MN10の直列回路が接続され、さらにトランジスタMP11、MN11、MP12,MN12の直列回路が接続され、トランジスタMN9、MP10の共通接続点がトランジスタMN11,MP12の共通接続点に接続されている。   A series circuit of transistors MP1 to MP3 and a series circuit of transistors MP4 to MP6 are connected between the output terminal of the intermediate addition signal S1 and the power supply terminal of VDD2. A series circuit of transistors MN1 to MN3 and a series circuit of transistors MN4 to MN6 are connected between the output terminal of the intermediate addition signal S1 and the power supply terminal of VDD0, respectively. Further, a series circuit of transistors MP7, MP8, MN7, MN8 is connected between the output terminal of the intermediate addition signal S1 and the power supply terminal of VDD1, and further, a series circuit of transistors MP9, MN9, MP10, MN10 is connected. Further, a series circuit of transistors MP11, MN11, MP12, and MN12 is connected, and a common connection point of the transistors MN9 and MP10 is connected to a common connection point of the transistors MN11 and MP12.

それぞれのトランジスタのゲートに印加される信号として、Aは前記した信号、ABは信号Aの反転信号、Bは前記した信号、BBは信号Bの反転信号である。また、INVAB21は、VDD2とVDD1を電源電圧とする図6(a)に示す構成のトランジスタMP101とMN101からなるCMOSインバータにより、信号ABを反転した信号である。INVBB21も同様に信号BBを反転した信号である。また、INVAB10は、VDD1とVDD0を電源電圧とする図6(b)に示す構成のトランジスタMP102とMN102からなるCMOSインバータにより、信号ABを反転した信号である。INVBB10も同様に信号BBを反転した信号である。   As signals applied to the gates of the respective transistors, A is the above-described signal, AB is the inverted signal of the signal A, B is the above-described signal, and BB is the inverted signal of the signal B. Further, INVAB21 is a signal obtained by inverting signal AB by a CMOS inverter composed of transistors MP101 and MN101 having the configuration shown in FIG. 6A using VDD2 and VDD1 as power supply voltages. Similarly, INVBB21 is a signal obtained by inverting the signal BB. Further, INVAB10 is a signal obtained by inverting the signal AB by a CMOS inverter composed of the transistors MP102 and MN102 having the configuration shown in FIG. 6B using VDD1 and VDD0 as power supply voltages. Similarly, INVBB10 is a signal obtained by inverting the signal BB.

図2(b)は(a)の第1の加算部(SUM1)1の動作の真理値を示す説明図である。入力信号Aが「−1」でBが「0」のときは、トランジスタMP1〜MP3がいずれもオンとなり中間加算信号S1は「+1」になる。また、入力信号Aが「0」でBが「−1」のときも、トランジスタMP4〜MP6がいずれもオンとなり中間加算信号S1は「+1」になる。   FIG. 2B is an explanatory diagram showing the truth value of the operation of the first addition unit (SUM1) 1 in FIG. When the input signal A is “−1” and B is “0”, the transistors MP1 to MP3 are all on and the intermediate addition signal S1 is “+1”. When the input signal A is “0” and B is “−1”, the transistors MP4 to MP6 are all turned on and the intermediate addition signal S1 becomes “+1”.

入力信号Aが「+1」でBが「0」のときは、トランジスタMN1〜MN3がいずれもオンとなり中間加算信号S1は「−1」になる。また、入力信号Aが「0」でBが「+1」のときも、トランジスタMN4〜MN6がいずれもオンとなり中間加算信号S1は「−1」になる。   When the input signal A is “+1” and B is “0”, the transistors MN1 to MN3 are all on and the intermediate addition signal S1 is “−1”. When the input signal A is “0” and B is “+1”, the transistors MN4 to MN6 are all turned on and the intermediate addition signal S1 is “−1”.

入力信号AとBの組み合わせがその他の場合は、トランジスタMP1〜MP6,MN1〜MN6が全部オフになる。そして、入力信号Aが「0」でBが「0」のときは、トランジスタMP7,MP8,MN7,MN8がいずれもオンして中間加算信号S1は「0」になる。入力信号Aが「−1」でBが「−1」のときは、トランジスタMP9,MN9,MP10,MN10がいずれもオンして中間加算信号S1は「0」になる。入力信号Aが「+1」でBが「+1」のときは、トランジスタMP11,MN11,MP12,MN12がいずれもオンして中間加算信号S1は「0」になる。入力信号Aが「−1」でBが「+1」のときは、トランジスタMP9,MN9,MP12,MN12がいずれもオンして中間加算信号S1は「0」になる。入力信号Aが「+1」でBが「−1」のときは、トランジスタMP11,MN11,MP10,MN10がいずれもオンして中間加算信号S1は「0」になる。   When the combination of the input signals A and B is other than that, the transistors MP1 to MP6 and MN1 to MN6 are all turned off. When the input signal A is “0” and B is “0”, the transistors MP7, MP8, MN7, MN8 are all turned on and the intermediate addition signal S1 becomes “0”. When the input signal A is “−1” and B is “−1”, the transistors MP9, MN9, MP10, and MN10 are all turned on and the intermediate addition signal S1 becomes “0”. When the input signal A is “+1” and B is “+1”, the transistors MP11, MN11, MP12, and MN12 are all turned on and the intermediate addition signal S1 becomes “0”. When the input signal A is “−1” and B is “+1”, the transistors MP9, MN9, MP12, and MN12 are all turned on and the intermediate addition signal S1 becomes “0”. When the input signal A is “+1” and B is “−1”, the transistors MP11, MN11, MP10, and MN10 are all turned on and the intermediate addition signal S1 becomes “0”.

図3(a)は図1(a)における第1の桁上げ部(CA1)2の構成を示す回路図である。中間桁上げ信号C1の出力端子とVDD2の電源端子との間には、トランジスタMP13,MP14の直列回路、トランジスタMP15〜MP17の直列回路、トランジスタMP18〜MP20の直列回路が、それぞれ接続されている。また、中間桁上げ信号C1の出力端子とVDD0の電源端子との間には、トランジスタMN13,MN14の直列回路、トランジスタMN15〜MN17の直列回路、トランジスタMN18〜MN20の直列回路が、それぞれ接続されている。さらに、中間桁上げ信号C1の出力端子とVDD1の電源端子との間には、トランジスタMP21、MP22、MN21、MN22の直列回路、トランジスタMP23、MN23、MP24、MN24の直列回路、トランジスタMP25、MN25、MP26、MN26の直列回路が、それぞれ接続されている。   FIG. 3A is a circuit diagram showing a configuration of the first carry part (CA1) 2 in FIG. A series circuit of transistors MP13 and MP14, a series circuit of transistors MP15 to MP17, and a series circuit of transistors MP18 to MP20 are connected between the output terminal of the intermediate carry signal C1 and the power supply terminal of VDD2. Further, a series circuit of transistors MN13 and MN14, a series circuit of transistors MN15 to MN17, and a series circuit of transistors MN18 to MN20 are connected between the output terminal of the intermediate carry signal C1 and the power supply terminal of VDD0, respectively. Yes. Further, between the output terminal of the intermediate carry signal C1 and the power supply terminal of VDD1, a series circuit of transistors MP21, MP22, MN21, MN22, a series circuit of transistors MP23, MN23, MP24, MN24, transistors MP25, MN25, A series circuit of MP26 and MN26 is connected to each other.

それぞれのトランジスタのゲートに印加される信号として、A,AB,B,BBは前記した信号である。また、INVA21は、VDD2とVDD1を電源電圧とする図6(c)に示す構成のトランジスタMP103とMN103からなるCMOSインバータにより、信号Aを反転した信号である。INVB21も同様に信号Bを反転した信号である。また、INVA10は、VDD1とVDD0を電源電圧とする図6(d)に示す構成のトランジスタMP104とMN104からなるCMOSインバータにより、信号Aを反転した信号である。INVB10も同様に信号Bを反転した信号である。   As signals applied to the gates of the respective transistors, A, AB, B, and BB are the signals described above. Further, INVA21 is a signal obtained by inverting the signal A by a CMOS inverter composed of the transistors MP103 and MN103 having the configuration shown in FIG. 6C using VDD2 and VDD1 as power supply voltages. Similarly, INVB21 is a signal obtained by inverting the signal B. Further, INVA10 is a signal obtained by inverting the signal A by a CMOS inverter composed of the transistors MP104 and MN104 having the configuration shown in FIG. 6D using VDD1 and VDD0 as power supply voltages. Similarly, INVB10 is a signal obtained by inverting the signal B.

図3(b)は(a)の第1の桁上げ部(CA1)2の動作の真理値を示す説明図である。入力信号AとBが「+1」のときは、トランジスタMP13とトランジスタMP14がいずれもオンとなり中間桁上げ信号C1は「+1」になる。また、入力信号Aが「+1」でBが「0」のときも、トランジスタMP15〜MP17がいずれもオンとなり中間桁上げ信号C1は「+1」になる。また、入力信号Aが「0」でBが「+1」のときも、トランジスタMP18〜MP20がいずれもオンとなり中間桁上げ信号C1は「+1」になる。   FIG. 3B is an explanatory diagram showing the truth value of the operation of the first carry section (CA1) 2 of FIG. When the input signals A and B are “+1”, both the transistor MP13 and the transistor MP14 are turned on, and the intermediate carry signal C1 is “+1”. Also, when the input signal A is “+1” and B is “0”, the transistors MP15 to MP17 are all turned on and the intermediate carry signal C1 becomes “+1”. Also, when the input signal A is “0” and B is “+1”, the transistors MP18 to MP20 are all turned on and the intermediate carry signal C1 becomes “+1”.

入力信号Aが「−1」でBが「−1」のときは、トランジスタMN13とトランジスタMN14がいずれもオンとなり中間桁上げ信号C1は「−1」になる。また、入力信号Aが「−1」でBが「0」のときも、トランジスタMN15〜MN17がいずれもオンとなり中間桁上げ信号C1は「−1」になる。また、入力信号Aが「0」でBが「−1」のときも、トランジスタMN18〜MN20がいずれもオンとなり中間桁上げ信号C1は「−1」になる。   When the input signal A is “−1” and B is “−1”, both the transistor MN13 and the transistor MN14 are turned on, and the intermediate carry signal C1 becomes “−1”. When the input signal A is “−1” and B is “0”, the transistors MN15 to MN17 are all turned on and the intermediate carry signal C1 becomes “−1”. When the input signal A is “0” and B is “−1”, the transistors MN18 to MN20 are all turned on and the intermediate carry signal C1 is “−1”.

入力信号AとBの組み合わせがともに「0」、又は「+1」と「−1」の組み合わせの場合は、トランジスタMP13〜MP20,MN13〜MN20が全部オフになる。そして、入力信号Aが「0」でBが「0」のときはトランジスタMP21,MP22,MN21,MN22がいずれもオンとなり中間桁上げ信号C1は「0」になる。入力信号Aが「−1」でBが「+1」のときはトランジスタMP23,MN23,MP24,MN24がいずれもオンとなり中間桁上げ信号C1は「0」となる。入力信号Aが「+1」でBが「−1」のときはトランジスタMP25,MN25,MP26,MN26がいずれもオンとなり中間桁上げ信号C1は「0」となる。   When both the combinations of the input signals A and B are “0” or “+1” and “−1”, the transistors MP13 to MP20 and MN13 to MN20 are all turned off. When the input signal A is “0” and B is “0”, the transistors MP21, MP22, MN21, and MN22 are all turned on and the intermediate carry signal C1 is “0”. When the input signal A is “−1” and B is “+1”, the transistors MP23, MN23, MP24, and MN24 are all on and the intermediate carry signal C1 is “0”. When the input signal A is “+1” and B is “−1”, the transistors MP25, MN25, MP26, and MN26 are all on and the intermediate carry signal C1 is “0”.

図4(a)は図1(a)における第2,第3の加算部(SUM2)3,5の構成を示す回路図である。加算信号S2の出力端子とVDD2の電源端子との間には、トランジスタMP27〜MP29の直列回路、トランジスタMP30〜MP32の直列回路が、それぞれ接続されている。また、加算信号S2の出力端子とVDD0の電源端子との間には、トランジスタMN27〜MN29の直列回路、トランジスタMN30〜MN32の直列回路が、それぞれ接続されている。さらに、加算信号S2の出力端子とVDD1の電源端子との間には、トランジスタMP33,MP34,MN33,MN34の直列回路が接続され、さらにトランジスタMP35、MN35、MP36,MN36の直列回路が接続され、さらにトランジスタMP37、MN37、MP38,MN38の直列回路が接続され、トランジスタMN35、MP36の共通接続点がトランジスタMN37,MP38の共通接続点に接続されている。   FIG. 4A is a circuit diagram showing the configuration of the second and third addition units (SUM2) 3 and 5 in FIG. A series circuit of transistors MP27 to MP29 and a series circuit of transistors MP30 to MP32 are connected between the output terminal of the addition signal S2 and the power supply terminal of VDD2. A series circuit of transistors MN27 to MN29 and a series circuit of transistors MN30 to MN32 are connected between the output terminal of the addition signal S2 and the power supply terminal of VDD0. Further, a series circuit of transistors MP33, MP34, MN33, MN34 is connected between the output terminal of the addition signal S2 and the power supply terminal of VDD1, and further, a series circuit of transistors MP35, MN35, MP36, MN36 is connected. Further, a series circuit of transistors MP37, MN37, MP38, and MN38 is connected, and a common connection point of the transistors MN35 and MP36 is connected to a common connection point of the transistors MN37 and MP38.

それぞれのトランジスタのゲートに印加される信号として、A、AB,B,BB,INVA21,INVB21,INVA10、INVB10は図3で説明した場合と同じである。ただし、ここにおける信号AとBは、第2の加算部3の場合は図1(a)における信号S1と信号Ci-1に相当し、第3の加算部5の場合は信号C1と信号C2に相当する。   As signals applied to the gates of the respective transistors, A, AB, B, BB, INVA21, INVB21, INVA10, and INVB10 are the same as those described with reference to FIG. However, the signals A and B here correspond to the signal S1 and the signal Ci-1 in FIG. 1A in the case of the second adder 3, and the signals C1 and C2 in the case of the third adder 5. It corresponds to.

図4(b)は(a)の第2,第3の加算部(SUM2)3,5の動作の真理値を示す説明図である。入力信号Aが「+1」でBが「0」のときは、トランジスタMP27〜MP29がいずれもオンとなり加算信号S2は「+1」になる。また、入力信号Aが「0」でBが「+1」のときも、トランジスタMP30〜MP32がいずれもオンとなり加算信号S2は「+1」になる。   FIG. 4B is an explanatory diagram showing the truth values of the operations of the second and third addition units (SUM2) 3 and 5 in FIG. When the input signal A is “+1” and B is “0”, the transistors MP27 to MP29 are all turned on and the addition signal S2 becomes “+1”. When the input signal A is “0” and B is “+1”, the transistors MP30 to MP32 are all turned on and the addition signal S2 becomes “+1”.

入力信号Aが「−1」でBが「0」のときは、トランジスタMN27〜MN29がいずれもオンとなり加算信号S2は「−1」になる。また、入力信号Aが「0」でBが「−1」のときも、トランジスタMN30〜MN32がいずれもオンとなり加算信号S2は「−1」になる。   When the input signal A is “−1” and B is “0”, the transistors MN27 to MN29 are all turned on and the addition signal S2 becomes “−1”. Also, when the input signal A is “0” and B is “−1”, the transistors MN30 to MN32 are all turned on and the addition signal S2 becomes “−1”.

入力信号AとBの組み合わせがその他の場合は、トランジスタMP27〜MP32,MN27〜MN32が全部オフになる。そして、入力信号Aが「0」でBが「0」のときは、トランジスタMP33,MP34,MN33,MN34がいずれもオンして加算信号S2は「0」になる。また、入力信号Aが「−1」でBが「−1」のときは、トランジスタMP35,MN35,MP36,MN36がいずれもオンして加算信号S2は「0」になる。また、入力信号Aが「+1」でBが「+1」のときは、トランジスタMP37,MN37,MP38,MN38がいずれもオンして加算信号S2は「0」になる。また、入力信号Aが「−1」でBが「+1」のときは、トランジスタMP35,MN35,MP38,MN38がいずれもオンして加算信号S2は「0」になる。さらに、入力信号Aが「+1」でBが「−1」のときは、トランジスタMP37,MN37,MP36,MN36がいずれもオンして加算信号S2は「0」になる。   When the combination of the input signals A and B is other than that, the transistors MP27 to MP32 and MN27 to MN32 are all turned off. When the input signal A is “0” and B is “0”, the transistors MP33, MP34, MN33, and MN34 are all turned on and the addition signal S2 becomes “0”. When the input signal A is “−1” and B is “−1”, the transistors MP35, MN35, MP36, and MN36 are all turned on and the addition signal S2 becomes “0”. When the input signal A is “+1” and B is “+1”, the transistors MP37, MN37, MP38, and MN38 are all turned on and the addition signal S2 becomes “0”. When the input signal A is “−1” and B is “+1”, the transistors MP35, MN35, MP38, and MN38 are all turned on and the addition signal S2 becomes “0”. Further, when the input signal A is “+1” and B is “−1”, the transistors MP37, MN37, MP36, and MN36 are all turned on and the addition signal S2 becomes “0”.

図5(a)は図1(a)における桁上げ部(CA2)4の構成を示す回路図である。桁上げ信号C2の出力端子とVDD2の電源端子との間には、トランジスタMP39とMP40の直列回路が接続されている。また、桁上げ信号C2の出力端子とVDD0の電源端子との問には、トランジスタMN39とトランジスタMN40の直列回路が接続されている。さらに、桁上げ信号C2の出力端子とVDD1の電源端子との間には、トランジスタMN41とMN42の並列回路とトランジスタMP41とMP42の並列回路を直列接続した直列回路が接続されている。   FIG. 5A is a circuit diagram showing a configuration of the carry section (CA2) 4 in FIG. A series circuit of transistors MP39 and MP40 is connected between the output terminal of the carry signal C2 and the power supply terminal of VDD2. A series circuit of a transistor MN39 and a transistor MN40 is connected to the output terminal of the carry signal C2 and the power supply terminal of VDD0. Further, a series circuit in which a parallel circuit of transistors MN41 and MN42 and a parallel circuit of transistors MP41 and MP42 are connected in series is connected between the output terminal of the carry signal C2 and the power supply terminal of VDD1.

それぞれのトランジスタのゲートに印加される信号として、INVA21,INVB21,INVA10、INVB10は図2で説明した場合と同じである。ただし、ここにおける信号AとBは、図1(a)における信号S1と信号C1i-1に相当する。   As signals applied to the gates of the respective transistors, INVA21, INVB21, INVA10, and INVB10 are the same as those described with reference to FIG. However, the signals A and B here correspond to the signal S1 and the signal C1i-1 in FIG.

図5(b)は(a)の第2の桁上げ部(CA2)4の動作の真理値を示す説明図である。入力信号AとBが「+1」のときは、トランジスタMP39とMP40がいずれもオンとなり桁上げ信号C2は「+1」になる。また、入力信号AとBが「−1」のときは、トランジスタMN39とMN40がいずれもオンとなり桁上げ信号C2は「−1」になる。   FIG. 5B is an explanatory diagram showing the truth value of the operation of the second carry section (CA2) 4 in FIG. When the input signals A and B are “+1”, both the transistors MP39 and MP40 are turned on, and the carry signal C2 becomes “+1”. When the input signals A and B are “−1”, the transistors MN39 and MN40 are both turned on and the carry signal C2 becomes “−1”.

入力信号AとBの組み合わせがそれ以外のときは、トランジスタMP39,MP40,MN39,MN40が全部オフになる。そして、入力信号Aが「+1」でBが「0」のときは、トランジスタMN41とMP42がいずれもオンして桁上げ信号C2は「0」になる。入力信号Aが「0」でBが「+1」のときは、トランジスタMN41とMP41がいずれもオンして桁上げ信号C2は「0」になる。入力信号Aが「0」でBが「0」のときは、トランジスタMN41とMP41とMN42とMP42がいずれもオンして桁上げ信号C2は「0」になる。入力信号Aが「0」でBが「−1」のときは、トランジスタMN41とMP41がいずれもオンして桁上げ信号C2は「0」になる。入力信号Aが「−1」でBが「0」のときは、トランジスタMN42とMP42がいずれもオンして桁上げ信号C2は「0」になる。入力信号Aが「−1」でBが「+1」のときは、トランジスタMN41とMP42がいずれもオンして桁上げ信号C2は「0」になる。入力信号Aが「+1」でBが「−1」のときは、トランジスタMN42とMP41がいずれもオンして桁上げ信号C2は「0」になる。   When the combination of the input signals A and B is other than that, the transistors MP39, MP40, MN39, and MN40 are all turned off. When the input signal A is “+1” and B is “0”, both the transistors MN41 and MP42 are turned on and the carry signal C2 becomes “0”. When the input signal A is “0” and B is “+1”, both the transistors MN41 and MP41 are turned on and the carry signal C2 becomes “0”. When the input signal A is “0” and B is “0”, the transistors MN41, MP41, MN42, and MP42 are all turned on and the carry signal C2 becomes “0”. When the input signal A is “0” and B is “−1”, both the transistors MN41 and MP41 are turned on, and the carry signal C2 becomes “0”. When the input signal A is “−1” and B is “0”, both the transistors MN42 and MP42 are turned on and the carry signal C2 becomes “0”. When the input signal A is “−1” and B is “+1”, both the transistors MN41 and MP42 are turned on, and the carry signal C2 becomes “0”. When the input signal A is “+1” and B is “−1”, both the transistors MN42 and MP41 are turned on and the carry signal C2 becomes “0”.

(a)は実施例1のCMOS加算器のブロック図、(b)はその動作時の真理値を示す説明図である。(a) is a block diagram of the CMOS adder according to the first embodiment, and (b) is an explanatory diagram showing a truth value during the operation. (a)は実施例2の第1の加算部(SUM1)1のブロック図、(b)はその動作時の真理値を示す説明図である。(a) is a block diagram of the first addition unit (SUM1) 1 of the second embodiment, and (b) is an explanatory diagram showing a truth value during the operation. (a)は実施例3の第1の桁上げ部(CA1)2のブロック図、(b)はその動作時の真理値を示す説明図である。(a) is a block diagram of the first carry part (CA1) 2 of the third embodiment, and (b) is an explanatory diagram showing a truth value during the operation. (a)は実施例4の第2,第3の加算部(SUM2)3,5のブロック図、(b)はその動作時の真理値を示す説明図である。(a) is a block diagram of the second and third addition units (SUM2) 3 and 5 of the fourth embodiment, and (b) is an explanatory diagram showing a truth value during the operation. (a)は実施例5の第2の桁上げ部(CA2)4のブロック図、(b)はその動作時の真理値を示す説明図である。(a) is a block diagram of the second carry part (CA2) 4 of the fifth embodiment, and (b) is an explanatory diagram showing a truth value during the operation. (a)〜(d)はCMOSインバータの回路図である。(a)-(d) is a circuit diagram of a CMOS inverter.

符号の説明Explanation of symbols

1:第1の加算部(SUM1)
2:第1の桁上げ部(CA1)
3:第2の加算部(SUM2)
4:第2の桁上げ部(CA2)
5:第3の加算部(SUM2)
1: 1st addition part (SUM1)
2: First carry part (CA1)
3: Second addition unit (SUM2)
4: Second carry part (CA2)
5: Third adder (SUM2)

Claims (5)

「+1」、「0」、「−1」の3値のサインデジット数による2つの入力信号AとBを入力して第1の加算信号S1を出力する第1の加算部と、
前記2つの入力信号AとBを入力して第1の桁上げ信号C1を出力する第1の桁上げ部と、
前記信号S1と1ビット前の第3の桁上げ信号Ci-1を入力して第2の加算信号SUMiを出力する第2の加算部と、
前記信号S1と1ビット前の第1の桁上げ信号C1i-1を入力して第2の桁上げ信号C2を出力する第2の桁上げ部と、
前記信号C1と前記信号C2を入力して第3の桁上げ信号Ciを出力する第3の加算部とを具備するCMOS加算器であって、
前記第1の加算信号S1は、前記入力信号A,Bの一方が「+1」で他方が「0」のとき「−1」、前記入力信号A,Bの一方が「−1」で他方が「0」のとき「+1」、それ以外のとき「0」となり、
前記第1の桁上げ信号C1は、前記入力信号A,Bがともに「+1」又は一方が「+1」で他方が「0」のとき「+1」、前記入力信号A,Bがともに「−1」又は一方が「−1」で他方が「0」のとき「−1」、それ以外のとき「0」となり、
前記信号SUMiは、前記信号S1と前記信号Ci-1の一方が「+1」で他方が「0」のとき「+1」、前記信号S1と前記信号Ci-1の一方が「−1」で他方が「0」のとき「−1」、それ以外で「0」となり、
前記信号C2は、前記信号S1と前記信号C1i-1がともに「+1」のとき「+1」、前記信号S1と前記信号C1i-1がともに「−1」のとき「−1」、それ以外で「0」となり、
前記信号Ciは、前記信号C1と前記信号C2の一方が「+1」で他方が「0」のとき「+1」、前記信号C1と前記信号C2の一方が「−1」で他方が「0」のとき「−1」、それ以外で「0」となる、
ようにしたことを特徴とするCMOS加算器。
A first adder that inputs two input signals A and B based on a ternary sign digit number of “+1”, “0”, and “−1” and outputs a first addition signal S1;
A first carry unit that inputs the two input signals A and B and outputs a first carry signal C1;
A second adder that inputs the signal S1 and a third carry signal Ci-1 one bit before and outputs a second addition signal SUMi;
A second carry unit that inputs the signal S1 and the first carry signal C1i-1 one bit before and outputs a second carry signal C2;
A CMOS adder comprising a third adder that inputs the signal C1 and the signal C2 and outputs a third carry signal Ci;
The first addition signal S1 is “−1” when one of the input signals A and B is “+1” and the other is “0”, and one of the input signals A and B is “−1” and the other is “1”. “+1” when “0”, “0” otherwise,
The first carry signal C1 is “+1” when both the input signals A and B are “+1” or one is “+1” and the other is “0”, and both the input signals A and B are “−1”. "Or" -1 "when one is" 0 "and the other is" 0 ", otherwise" 0 "
The signal SUMi is "+1" when one of the signal S1 and the signal Ci-1 is "+1" and the other is "0", and one of the signal S1 and the signal Ci-1 is "-1" and the other "-1" when is "0", "0" otherwise,
The signal C2 is “+1” when both the signal S1 and the signal C1i−1 are “+1”, “−1” when both the signal S1 and the signal C1i-1 are “−1”, and otherwise. “0”,
The signal Ci is “+1” when one of the signal C1 and the signal C2 is “+1” and the other is “0”, one of the signal C1 and the signal C2 is “−1”, and the other is “0”. "-1" for, "0" otherwise
A CMOS adder characterized by being configured as described above.
請求項1に記載のCMOS加算器において、前記第1の加算部は、
3値のサインデジット数「−1」、「0」、「+1」に対応する電圧VDD0,VDD1,VDD2(VDD0<VDD1<VDD2)のいずれかの2個の信号A,Bを入力して前記信号S1を出力する加算部であって、
前記電圧VDD2の端子と前記信号S1の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第1の直列回路と、
前記電圧VDD2の端子と前記信号S1の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第2の直列回路と、
前記電圧VDD0の端子と前記信号S1の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第3の直列回路と、
前記電圧VDD0の端子と前記信号S1の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第4の直列回路と、
前記電圧VDD1の端子と前記信号S1の端子との間に接続された2個のPMOSトランジスタと2個のNMOSトランジスタの直列回路からなる第5の直列回路と、
前記電圧VDD1の端子と前記信号S1の端子との間に、一方の端子側がPMOSトランジスタとNMOSトランジスタの2個、他方の端子側もPMOSトランジスタとNMOSトランジスタの2個で合計4個直列接続された第6の直列回路と、
前記電圧VDD1の端子と前記信号S1の端子との間に、一方の端子側がPMOSトランジスタとNMOSトランジスタの2個、他方の端子側もPMOSトランジスタとNMOSトランジスタの2個で合計4個直列接続され、かつ中央の接続点が前記第6の直列回路の中央の接続点と接続された第7の直列回路と、を具備し、
前記第1の直列回路の各PMOSトランジスタのゲートには、前記信号Aを反転した信号ABを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVAB21、前記信号B、前記信号Bを反転した信号BBがそれぞれ入力し、
前記第2の直列回路の各PMOSトランジスタのゲートには、前記信号BBを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVBB21、前記信号A、前記信号ABがそれぞれ入力し、
前記第3の直列回路の各NMOSトランジスタのゲートには、前記信号ABを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVAB10、前記信号B、前記信号BBがそれぞれ入力し、
前記第4の直列回路の各NMOSトランジスタのゲートには、前記信号BBを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVBB10、前記信号A、前記信号ABがそれぞれ入力し、
前記第5の直列回路の2個のPMOSトランジスタのゲートにはそれぞれ前記信号INVAB10,INVBB10が、2個のNMOSトランジスタのゲートにはそれぞれ前記信号INVAB21,INVBB21が入力し、
前記第6の直列回路の前記VDD1の端子側のPMOSトランジスタのゲートには前記信号A、NMOSトランジスタのゲートには前記信号ABがそれぞれ入力し、前記信号S1の端子側のPMOSトランジスタのゲートには前記信号B、NMOSトランジスタのゲートには前記信号BBがそれぞれ入力し、
前記第7の直列回路の前記VDD1の端子側のPMOSトランジスタのゲートには前記信号AB、NMOSトランジスタのゲートには前記信号Aがそれぞれ入力し、前記信号S1の端子側のPMOSトランジスタのゲートには前記信号BB、NMOSトランジスタのゲートには前記信号Bがそれぞれ入力する、
ようにしたことを特徴とするCMOS加算器。
The CMOS adder according to claim 1, wherein the first adder is
Two signals A and B of voltages VDD0, VDD1 and VDD2 (VDD0 <VDD1 <VDD2) corresponding to ternary sign digit numbers “−1”, “0” and “+1” are input and An adder for outputting a signal S1,
A first series circuit comprising a series circuit of three PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal S1;
A second series circuit comprising a series circuit of three PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal S1;
A third series circuit comprising a series circuit of three NMOS transistors connected between the terminal of the voltage VDD0 and the terminal of the signal S1;
A fourth series circuit comprising a series circuit of three NMOS transistors connected between the terminal of the voltage VDD0 and the terminal of the signal S1;
A fifth series circuit composed of a series circuit of two PMOS transistors and two NMOS transistors connected between the terminal of the voltage VDD1 and the terminal of the signal S1,
Between the terminal of the voltage VDD1 and the terminal of the signal S1, one terminal side is connected in series with two PMOS transistors and NMOS transistors, and the other terminal side is connected in series with two PMOS transistors and NMOS transistors. A sixth series circuit;
Between the terminal of the voltage VDD1 and the terminal of the signal S1, one terminal is connected in series with two PMOS transistors and NMOS transistors, and the other terminal is connected in series with two PMOS transistors and NMOS transistors. And a seventh series circuit having a central connection point connected to a central connection point of the sixth series circuit,
At the gate of each PMOS transistor of the first series circuit, signal INVAB21 obtained by inverting signal AB obtained by inverting signal A by a CMOS inverter using VDD2 and VDD1 as power sources, signal B, and signal B are inverted. Each signal BB is input,
The signal INVBB21, the signal A, and the signal AB obtained by inverting the signal BB with a CMOS inverter using VDD2 and VDD1 as power sources are input to the gates of the PMOS transistors of the second series circuit,
The signal INVAB10, the signal B, and the signal BB obtained by inverting the signal AB with a CMOS inverter that uses the VDD1 and VDD0 as power sources are input to the gates of the NMOS transistors of the third series circuit, respectively.
The signal INVBB10, the signal A, and the signal AB obtained by inverting the signal BB with a CMOS inverter using VDD1 and VDD0 as power sources are input to the gates of the NMOS transistors of the fourth series circuit,
The signals INVAB10 and INVBB10 are input to the gates of the two PMOS transistors of the fifth series circuit, respectively, and the signals INVAB21 and INVBB21 are input to the gates of the two NMOS transistors, respectively.
The signal A is input to the gate of the PMOS transistor on the VDD1 terminal side of the sixth series circuit, the signal AB is input to the gate of the NMOS transistor, and the gate of the PMOS transistor on the terminal side of the signal S1. The signal B and the signal BB are input to the gates of the NMOS transistor,
The signal AB is input to the gate of the PMOS transistor on the terminal side of the VDD1 in the seventh series circuit, the signal A is input to the gate of the NMOS transistor, and the gate of the PMOS transistor on the terminal side of the signal S1. The signal B is input to the signal BB and the gate of the NMOS transistor, respectively.
A CMOS adder characterized by being configured as described above.
請求項1に記載のCMOS加算器において、前記第1の桁上げ部は、
3値のサインデジット数「−1」、「0」、「+1」に対応する電圧VDD0,VDD1,VDD2(VDD0<VDD1<VDD2)のいずれかの2個の信号A,Bを入力して前記信号C1を出力する桁上げ部であって、
前記電圧VDD2の端子と前記信号C1の端子との間に接続され2個のPMOSトランジスタの直列回路からなる第8の直列回路と、
前記電圧VDD2の端子と前記信号C1の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第9の直列回路と、
前記電圧VDD2の端子と前記信号C1の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第10の直列回路と、
前記電圧VDD0の端子と前記信号C1の端子との間に接続され2個のNMOSトランジスタの直列回路からなる第11の直列回路と、
前記電圧VDD0の端子と前記信号C1の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第12の直列回路と、
前記電圧VDD0の端子と前記信号C1の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第13の直列回路と、
前記電圧VDD1の端子と前記信号C1の端子との間に接続され2個のPMOSトランジスタと2個のNMOSトランジスタの直列回路からなる第14の直列回路と、
前記電圧VDD1の端子と前記信号C1の端子との間に接続され2個のPMOSトランジスタと2個のNMOSトランジスタの直列回路からなる第15の直列回路と、
前記電圧VDD1の端子と前記信号C1の端子との間に接続され2個のPMOSトランジスタと2個のNMOSトランジスタの直列回路からなる第16の直列回路と、を具備し、
前記第8の直列回路の各PMOSトランジスタのゲートには、前記信号Aを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVA21、前記信号Bを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVB21がそれぞれ入力し、
前記第9の直列回路の各PMOSトランジスタのゲートには、前記信号INVA21、前記信号B、前記信号Bを反転した信号BBがそれぞれ入力し、
前記第10の直列回路の各PMOSトランジスタのゲートには、前記信号INVB21、前記信号A、前記信号Aを反転した信号ABがそれぞれ入力し、
前記第11の直列回路の各NMOSトランジスタのゲートには、前記信号Aを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVA10、前記信号Bを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVB10がそれぞれ入力し、
前記第12の直列回路の各NMOSトランジスタのゲートには、前記信号INVA10、前記信号B、前記信号BBがそれぞれ入力し、
前記第13の直列回路の各NMOSトランジスタのゲートには、前記信号INVB10、前記信号A、前記信号ABがそれぞれ入力し、
前記第14の直列回路の2個のPMOSトランジスタのゲートには前記信号INVA10,INVB10がそれぞれ入力し、2個のNMOSトランジスタのゲートには前記信号INVA21,INVB21がそれぞれ入力し、
前記第15の直列回路の2個のPMOSトランジスタのゲートには前記信号A,BBがそれぞれ入力し、2個のNMOSトランジスタのゲートには前記信号B,ABがそれぞれ入力し、
前記第16の直列回路の2個のPMOSトランジスタのゲートには前記信号B,ABがそれぞれ入力し、2個のNMOSトランジスタのゲートには前記信号A,BBがそれぞれ入力する、
ようにしたことを特徴とするCMOS加算器。
The CMOS adder according to claim 1, wherein the first carry section is
Two signals A and B of voltages VDD0, VDD1 and VDD2 (VDD0 <VDD1 <VDD2) corresponding to ternary sign digit numbers “−1”, “0” and “+1” are input and A carry unit for outputting a signal C1,
An eighth series circuit comprising a series circuit of two PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal C1;
A ninth series circuit comprising a series circuit of three PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal C1;
A tenth series circuit comprising a series circuit of three PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal C1;
An eleventh series circuit comprising a series circuit of two NMOS transistors connected between the terminal of the voltage VDD0 and the terminal of the signal C1;
A twelfth series circuit comprising a series circuit of three NMOS transistors connected between the terminal of the voltage VDD0 and the terminal of the signal C1;
A thirteenth series circuit comprising a series circuit of three NMOS transistors connected between the terminal of the voltage VDD0 and the terminal of the signal C1;
A fourteenth series circuit comprising a series circuit of two PMOS transistors and two NMOS transistors connected between the terminal of the voltage VDD1 and the terminal of the signal C1;
A fifteenth series circuit comprising a series circuit of two PMOS transistors and two NMOS transistors connected between the terminal of the voltage VDD1 and the terminal of the signal C1;
A sixteenth series circuit comprising a series circuit of two PMOS transistors and two NMOS transistors connected between the terminal of the voltage VDD1 and the terminal of the signal C1;
The gate of each PMOS transistor of the eighth series circuit is a signal INVA21 obtained by inverting the signal A with a CMOS inverter using VDD2 and VDD1 as power sources, and the signal B is a CMOS inverter using VDD2 and VDD1 as power sources. Each inverted signal INVB21 is input,
The signal INVA21, the signal B, and the signal BB obtained by inverting the signal B are input to the gates of the PMOS transistors of the ninth series circuit,
The signal INVB21, the signal A, and the signal AB obtained by inverting the signal A are input to the gates of the PMOS transistors of the tenth series circuit,
The gate of each NMOS transistor of the eleventh series circuit is a signal INVA10 obtained by inverting the signal A with a CMOS inverter using VDD1 and VDD0 as power sources, and the signal B is a CMOS inverter using VDD1 and VDD0 as power sources. Each inverted signal INVB10 is input,
The signal INVA10, the signal B, and the signal BB are input to the gates of the NMOS transistors of the twelfth series circuit,
The signal INVB10, the signal A, and the signal AB are respectively input to the gates of the NMOS transistors of the thirteenth series circuit,
The signals INVA10 and INVB10 are respectively input to the gates of the two PMOS transistors of the fourteenth series circuit, and the signals INVA21 and INVB21 are respectively input to the gates of the two NMOS transistors.
The signals A and BB are respectively input to the gates of the two PMOS transistors of the fifteenth series circuit, and the signals B and AB are respectively input to the gates of the two NMOS transistors.
The signals B and AB are respectively input to the gates of the two PMOS transistors of the sixteenth series circuit, and the signals A and BB are respectively input to the gates of the two NMOS transistors.
A CMOS adder characterized by being configured as described above.
請求項1に記載のCMOS加算器において、前記第2又は第3の加算部は、
3値のサインデジット数「−1」、「0」、「+1」に対応する電圧VDD0,VDD1,VDD2(VDD0<VDD1<VDD2)のいずれかの2個の信号A,B(但し、Aは前記信号S1、Bは前記信号Ci-1、又はAは前記信号C1、Bは前記信号C2)を入力して信号S2(前記信号SUMi又は前記信号Ci)を出力する加算部であって、
前記電圧VDD2の端子と前記信号S2の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第17の直列回路と、
前記電圧VDD2の端子と前記信号S2の端子との間に接続され3個のPMOSトランジスタの直列回路からなる第18の直列回路と、
前記電圧VDD0の端子と前記信号S2の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第19の直列回路と、
前記電圧VDD0の端子と前記信号S2の端子との間に接続され3個のNMOSトランジスタの直列回路からなる第20の直列回路と、
前記電圧VDD1の端子と前記信号S2の端子との間に接続された2個のPMOSトランジスタと2個のNMOSトランジスタの直列回路からなる第21の直列回路と、
前記電圧VDD1の端子と前記信号S2の端子との間に、一方の端子側がPMOSトランジスタとNMOSトランジスタの2個、他方の端子側もPMOSトランジスタとNMOSトランジスタの2個で合計4個直列接続された第22の直列回路と、
前記電圧VDD1の端子と前記信号S2の端子との間に、一方の端子側がPMOSトランジスタとNMOSトランジスタの2個、他方の端子側もPMOSトランジスタとNMOSトランジスタの2個で合計4個直列接続され、かつ中央の接続点が前記第22の直列回路の中央の接続点と接続された第23の直列回路と、を具備し、
前記第17の直列回路の各PMOSトランジスタのゲートには、前記信号Aを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVA21、前記信号B、前記信号Bを反転した信号BBがそれぞれ入力し、
前記第18の直列回路の各PMOSトランジスタのゲートには、前記信号Bを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVB21、前記信号A、前記信号Aを反転した信号ABがそれぞれ入力し、
前記第19の直列回路の各NMOSトランジスタのゲートには、前記信号Aを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVA10、前記信号B、前記信号BBがそれぞれ入力し、
前記第20の直列回路の各NMOSトランジスタのゲートには、前記信号Bを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVB10、前記信号A、前記信号ABがそれぞれ入力し、
前記第21の直列回路の2個のPMOSトランジスタのゲートには、それぞれ前記信号INVA10,INVB10が、2個のNMOSトランジスタのゲートには、それぞれ前記信号INVA21,INVB21が入力し、
前記第22の直列回路の前記VDD1の端子側のPMOSトランジスタのゲートには前記信号A、NMOSトランジスタのゲートには前記信号ABがそれぞれ入力し、前記信号S2の端子側のPMOSトランジスタのゲートには前記信号B、NMOSトランジスタのゲートには前記信号BBがそれぞれ入力し、
前記第23の直列回路の前記VDD1の端子側のPMOSトランジスタのゲートには前記信号AB、NMOSトランジスタのゲートには前記信号Aがそれぞれ入力し、前記信号S2の端子側のPMOSトランジスタのゲートには前記信号BB、NMOSトランジスタのゲートには前記信号Bがそれぞれ入力する、
ようにしたことを特徴とするCMOS加算器。
2. The CMOS adder according to claim 1, wherein the second or third adder is:
Two signals A and B of voltages VDD0, VDD1 and VDD2 (VDD0 <VDD1 <VDD2) corresponding to ternary sign digit numbers “−1”, “0” and “+1” (where A is The signals S1 and B are signals Ci-1, or A is the signal C1 and B is the signal C2), and the signal S2 (the signal SUMi or the signal Ci) is output.
A seventeenth series circuit comprising a series circuit of three PMOS transistors connected between the voltage VDD2 terminal and the signal S2 terminal;
An eighteenth series circuit comprising a series circuit of three PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal S2.
A nineteenth series circuit comprising a series circuit of three NMOS transistors connected between the terminal of the voltage VDD0 and the terminal of the signal S2.
A twentieth series circuit composed of a series circuit of three NMOS transistors connected between the terminal of the voltage VDD0 and the terminal of the signal S2,
A twenty-first series circuit comprising a series circuit of two PMOS transistors and two NMOS transistors connected between the terminal of the voltage VDD1 and the terminal of the signal S2,
Between the terminal of the voltage VDD1 and the terminal of the signal S2, one terminal side is connected in series with two PMOS transistors and NMOS transistors, and the other terminal side is connected in series with two PMOS transistors and NMOS transistors. A twenty-second series circuit;
Between the terminal of the voltage VDD1 and the terminal of the signal S2, one terminal side is connected in series with two PMOS transistors and NMOS transistors, and the other terminal side is connected with two PMOS transistors and NMOS transistors, for a total of four, And a 23rd series circuit having a central connection point connected to a central connection point of the 22nd series circuit,
The signal INVA21 obtained by inverting the signal A by a CMOS inverter using VDD2 and VDD1 as a power source, the signal B, and the signal BB obtained by inverting the signal B are input to the gates of the PMOS transistors of the seventeenth series circuit, respectively. And
A signal INVB21 obtained by inverting the signal B by a CMOS inverter using VDD2 and VDD1 as a power source, the signal A, and a signal AB obtained by inverting the signal A are input to the gates of the PMOS transistors of the eighteenth series circuit, respectively. And
The signal INVA10, the signal B, and the signal BB obtained by inverting the signal A with a CMOS inverter using the VDD1 and VDD0 as power sources are input to the gates of the NMOS transistors of the nineteenth series circuit,
The signal INVB10, the signal A, and the signal AB obtained by inverting the signal B with a CMOS inverter using the VDD1 and VDD0 as power sources are input to the gates of the NMOS transistors of the twentieth series circuit, respectively.
The signals INVA10 and INVB10 are input to the gates of the two PMOS transistors of the twenty-first series circuit, respectively, and the signals INVA21 and INVB21 are input to the gates of the two NMOS transistors, respectively.
The signal A is input to the gate of the PMOS transistor on the terminal side of the VDD1 in the twenty-second series circuit, the signal AB is input to the gate of the NMOS transistor, and the gate of the PMOS transistor on the terminal side of the signal S2. The signal B and the signal BB are input to the gates of the NMOS transistor,
The signal AB is input to the gate of the PMOS transistor on the terminal side of the VDD1 in the 23rd series circuit, the signal A is input to the gate of the NMOS transistor, and the gate of the PMOS transistor on the terminal side of the signal S2. The signal B is input to the signal BB and the gate of the NMOS transistor, respectively.
A CMOS adder characterized by being configured as described above.
請求項1に記載のCMOS加算器において、前記第2の桁上げ部は、
3値のサインデジット数「−1」、「0」、「+1」に対応する電圧VDD0,VDD1,VDD2(VDD0<VDD1<VDD2)のいずれかの2個の信号A,B(但し、Aは前記信号S1、Bは前記信号C1i-1)を入力して前記信号C2を出力する桁上げ部であって、
前記電圧VDD2の端子と前記信号C2の端子との間に接続され2個のPMOSトランジスタの直列回路からなる第24の直列回路と、
前記電圧VDD0の端子と前記信号C2の端子との間に接続され2個のNMOSトランジスタの直列回路からなる第25の直列回路と、
前記電圧VDD1の端子と前記信号C2の端子との間に接続された、2個のPMOSトランジスタの並列回路と2個のNMOSトランジスタの並列回路を直列接続した第26の直列回路と、を具備し、
前記第24の直列回路の各PMOSトランジスタのゲートには、前記信号Aを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVA21、前記信号Bを前記VDD2とVDD1を電源とするCMOSインバータで反転した信号INVB21がそれぞれ入力し、
前記第25の直列回路の各NMOSトランジスタのゲートには、前記信号Aを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVA10、前記信号Bを前記VDD1とVDD0を電源とするCMOSインバータで反転した信号INVB10がそれぞれ入力し、
前記第26の直列回路の2個のPMOSトランジスタのゲートには前記信号INVA10,INVB10がそれぞれ入力し、2個のNMOSトランジスタのゲートには前記信号INVA21,INVB21がそれぞれ入力する、
ようにしたことを特徴とするCMOS加算器。
2. The CMOS adder according to claim 1, wherein the second carry section is
Two signals A and B of voltages VDD0, VDD1 and VDD2 (VDD0 <VDD1 <VDD2) corresponding to ternary sign digit numbers “−1”, “0” and “+1” (where A is The signals S1 and B are carry units for inputting the signal C1i-1) and outputting the signal C2,
A 24th series circuit comprising a series circuit of two PMOS transistors connected between the terminal of the voltage VDD2 and the terminal of the signal C2,
A 25th series circuit comprising a series circuit of two NMOS transistors connected between the terminal of the voltage VDD0 and the terminal of the signal C2,
A 26th series circuit in which a parallel circuit of two PMOS transistors and a parallel circuit of two NMOS transistors connected in series are connected between the terminal of the voltage VDD1 and the terminal of the signal C2. ,
The gate of each PMOS transistor of the twenty-fourth series circuit is a signal INVA21 obtained by inverting the signal A with a CMOS inverter using VDD2 and VDD1 as a power source, and the signal B is a CMOS inverter using VDD2 and VDD1 as power sources. Each inverted signal INVB21 is input,
The gate of each NMOS transistor of the twenty-fifth series circuit is a signal INVA10 obtained by inverting the signal A by a CMOS inverter using VDD1 and VDD0 as power supplies, and the signal B is a CMOS inverter using VDD1 and VDD0 as power supplies. Each inverted signal INVB10 is input,
The signals INVA10 and INVB10 are input to the gates of the two PMOS transistors of the 26th series circuit, respectively, and the signals INVA21 and INVB21 are input to the gates of the two NMOS transistors, respectively.
A CMOS adder characterized by being configured as described above.
JP2004141853A 2004-05-12 2004-05-12 CMOS adder Expired - Fee Related JP4240393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141853A JP4240393B2 (en) 2004-05-12 2004-05-12 CMOS adder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141853A JP4240393B2 (en) 2004-05-12 2004-05-12 CMOS adder

Publications (2)

Publication Number Publication Date
JP2005326914A true JP2005326914A (en) 2005-11-24
JP4240393B2 JP4240393B2 (en) 2009-03-18

Family

ID=35473246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141853A Expired - Fee Related JP4240393B2 (en) 2004-05-12 2004-05-12 CMOS adder

Country Status (1)

Country Link
JP (1) JP4240393B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833432A (en) * 2010-04-21 2010-09-15 宁波大学 Tri-valued, thermal-insulating and low-power adder unit and adder
RU2476922C1 (en) * 2012-02-13 2013-02-27 Лев Петрович Петренко FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC)
RU2517245C9 (en) * 2011-12-20 2014-10-27 Лев Петрович Петренко f3 ADDER FUNCTIONAL STRUCTURE (ΣCD) OF ARBITRARY "g" DIGIT IMPLEMENTING DECODING PROCEDURE FOR ARGUMENTS OF SUMMANDS [1,2Sg h1]f(2n) AND [1,2Sg h2]f(2n) OF POSITION FORMAT "EXTRA CODE RU" BY ARITHMETIC AXIOMS OF TERNARY NOTATION f(+1,0,-1) AND DOUBLE LOGICAL DIFFERENTIATION d1,2/dn → f1,2(+←↓-)d/dn OF ACTIVE ARGUMENTS OF "LEVEL 2" AND REMOVAL OF ACTIVE LOGICAL ZEROES "+1""-1"→"0" IN "LEVEL 1" (VERSIONS OF RUSSIAN LOGIC)
CN113314176A (en) * 2021-06-04 2021-08-27 哈尔滨工程大学 memristor-CMOS (complementary Metal oxide semiconductor transistor) logic module and factorization carry look-ahead adder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833432A (en) * 2010-04-21 2010-09-15 宁波大学 Tri-valued, thermal-insulating and low-power adder unit and adder
CN101833432B (en) * 2010-04-21 2012-05-09 宁波大学 Tri-valued, thermal-insulating and low-power adder unit and adder
RU2517245C9 (en) * 2011-12-20 2014-10-27 Лев Петрович Петренко f3 ADDER FUNCTIONAL STRUCTURE (ΣCD) OF ARBITRARY "g" DIGIT IMPLEMENTING DECODING PROCEDURE FOR ARGUMENTS OF SUMMANDS [1,2Sg h1]f(2n) AND [1,2Sg h2]f(2n) OF POSITION FORMAT "EXTRA CODE RU" BY ARITHMETIC AXIOMS OF TERNARY NOTATION f(+1,0,-1) AND DOUBLE LOGICAL DIFFERENTIATION d1,2/dn → f1,2(+←↓-)d/dn OF ACTIVE ARGUMENTS OF "LEVEL 2" AND REMOVAL OF ACTIVE LOGICAL ZEROES "+1""-1"→"0" IN "LEVEL 1" (VERSIONS OF RUSSIAN LOGIC)
RU2476922C1 (en) * 2012-02-13 2013-02-27 Лев Петрович Петренко FUNCTIONAL DESIGN OF ADDER f3(ΣCD)max OF "k" CONDITIONALLY MOST SIGNIFICANT BITS OF PARALLEL-SERIAL MULTIPLIER fΣ(ΣCD), IMPLEMENTING PROCEDURE FOR "DECRYPTION" OF ARGUMENTS OF TERMS [1,2Sg h1] AND [1,2Sg h2] "COMPLEMENTARY CODE RU" BY ARITHMETIC AXIOM OF TERNARY NUMBER SYSTEM f(+1,0,-1) AND LOGIC DIFFERENTIATION d1/dn → f1(+←↓-)d/dn (VERSIONS OF RUSSIAN LOGIC)
CN113314176A (en) * 2021-06-04 2021-08-27 哈尔滨工程大学 memristor-CMOS (complementary Metal oxide semiconductor transistor) logic module and factorization carry look-ahead adder

Also Published As

Publication number Publication date
JP4240393B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP5211310B2 (en) Semiconductor integrated circuit
US5994935A (en) Latch circuit and flip-flop circuit reduced in power consumption
US7208979B2 (en) Signal level conversion circuit
US7449953B2 (en) Input buffer design using common-mode feedback (CMFB)
US7289375B2 (en) Data holding circuit
JP4240393B2 (en) CMOS adder
US6066978A (en) Partial product generating circuit
US9239703B2 (en) Full adder circuit
KR20220073770A (en) Earth leakage compensation dynamic registers, data operation units, chips, hash boards and computing devices
JP4286617B2 (en) CMOS adder
JP5643158B2 (en) Level shift circuit
JP4153404B2 (en) CMOS logic circuit
Saida et al. Implementation of low power BCD adder using gate diffusion input cell
JP4044018B2 (en) CMOS driver circuit and CMOS inverter circuit
JP4370229B2 (en) CMOS logic circuit
JP4664774B2 (en) Binary / ternary conversion circuit
KR20100005016A (en) Data transfer system
JP2818449B2 (en) Logic integrated circuit
JP4444044B2 (en) CMOS driver circuit and CMOS inverter circuit
JP4145222B2 (en) CMOS latch circuit and CMOS / DFF circuit
CN117155375A (en) Low-delay latch capable of resisting double-node overturning
CN116909515A (en) carry bypass adder
KR100744643B1 (en) Level shifter circuit
JP2007514365A (en) Circuit element
KR20130105213A (en) Output driving circuit capable of decreasing noise, and semiconductor memory device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4240393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees