RU2459857C2 - Способ и устройство для получения жидкого биотоплива из твердой биомассы - Google Patents

Способ и устройство для получения жидкого биотоплива из твердой биомассы Download PDF

Info

Publication number
RU2459857C2
RU2459857C2 RU2010121237/04A RU2010121237A RU2459857C2 RU 2459857 C2 RU2459857 C2 RU 2459857C2 RU 2010121237/04 A RU2010121237/04 A RU 2010121237/04A RU 2010121237 A RU2010121237 A RU 2010121237A RU 2459857 C2 RU2459857 C2 RU 2459857C2
Authority
RU
Russia
Prior art keywords
synthesis gas
crude synthesis
gasifier
crude
conditioning
Prior art date
Application number
RU2010121237/04A
Other languages
English (en)
Other versions
RU2010121237A (ru
Inventor
Петри КУККОНЕН (FI)
Петри КУККОНЕН
Пекка КНУУТТИЛА (FI)
Пекка КНУУТТИЛА
Пекка ЙОКЕЛА (FI)
Пекка ЙОКЕЛА
Original Assignee
Юпм-Киммене Ойй
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FI20075557A external-priority patent/FI122786B/fi
Priority claimed from FI20085400A external-priority patent/FI20085400A0/fi
Application filed by Юпм-Киммене Ойй filed Critical Юпм-Киммене Ойй
Publication of RU2010121237A publication Critical patent/RU2010121237A/ru
Application granted granted Critical
Publication of RU2459857C2 publication Critical patent/RU2459857C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • B01D53/526Mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • B01D53/8618Mixtures of hydrogen sulfide and carbon dioxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/503Fuel charging devices for gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/006Hydrogen cyanide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/12Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
    • C10K1/14Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors organic
    • C10K1/143Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors organic containing amino groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/023Reducing the tar content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2023Glycols, diols or their derivatives
    • B01D2252/2026Polyethylene glycol, ethers or esters thereof, e.g. Selexol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water
    • C10G2300/807Steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1618Modification of synthesis gas composition, e.g. to meet some criteria
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1838Autothermal gasification by injection of oxygen or steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Industrial Gases (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способу получения жидкого углеводородного продукта (1), такого как биотопливо, из твердой биомассы (2). Способ включает стадию газификации для газификации твердой биомассы (2) в газификаторе (6) с получением неочищенного синтез-газа (3). Далее кондиционирование неочищенного синтез-газа (3) для очистки неочищенного синтез-газа (3) с получением очищенного синтез-газа (4), имеющего молярное соотношение водорода и монооксида углерода в диапазоне от 2,5:1 до 0,5:1, причем одной из стадий кондиционирования является каталитическая обработка в риформере (20). Затем использование очищенного синтез-газа (4) для синтеза Фишера-Тропша в реакторе (5) Фишера-Тропша с получением жидкого углеводородного продукта (1). Также изобретение относится к устройству для осуществления данного способа. Настоящее изобретение предоставляет новые способ и устройства для получения жидкого биотоплива из твердой биомассы. 2 н. и 35 з.п. ф-лы, 4 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к способу получения жидкого углеводородного продукта, такого как жидкое биотопливо, из твердой биомассы, который определен в ограничительной части независимого пункта 1 формулы изобретения.
Изобретение также относится к устройству для получения жидкого углеводородного продукта, такого как жидкое биотопливо, из твердой биомассы, которое определено в ограничительной части независимого пункта 18 формулы изобретения.
Изобретение относится к способу и устройству для получения жидкого биотоплива из твердой биомассы, другими словами - к способу превращения биомассы в жидкое топливо (BTL). В данной области техники известно несколько способов получения жидкого биотоплива из твердой биомассы, в том числе - способ Фишера-Тропша. Способ Фишера-Тропша описан, например, в патенте US 1746464.
Публикация US 2005/0250862 A1 относится к установке и способу получения жидкого топлива, в котором исходным материалом является твердое сырье, содержащее органический материал. В данном способе твердое сырье подвергают пиролизу и газификации, так что это сырье преобразуется в синтез-газ. Полученный таким образом синтез-газ дополнительно газифицируют во второй зоне газификации при температуре выше 1000°C, после чего синтез-газ очищают. Очищенный синтез-газ преобразуют с использованием синтеза Фишера-Тропша в жидкий эффлюент и газообразный эффлюент, и жидкий эффлюент фракционируют с получением газообразной фракции, нафта-фракции, керосиновой фракции и газойлевой фракции. По меньшей мере часть нафта-фракции возвращают на стадию газификации.
В публикации WO 2006/043112 описаны способ и установка для переработки твердой биомассы с целью получения электроэнергии и жидких углеводородов, которые можно использовать в качестве топлива. Твердую биомассу, такую как древесные стружки, подают в газификатор с псевдоожиженным слоем; кроме того, в газификатор также подают поток газа, содержащего воздух и горячий пар с температурой выше 800°C, для флюидизации слоя твердого материала. Горячую газовую смесь, полученную из газификатора, можно охладить с получением пара под высоким давлением, приводящего в движение турбину. Предпочтительно газовую смесь охлаждают до температуры ниже 100°C, сжимают до давления, по меньшей мере равного 1,7 МПа, после чего проводят синтез Фишера-Тропша. При этом образуются жидкий углеводородный продукт и хвостовые газы. Поток горячего газа для газификатора можно обеспечить за счет сжигания хвостовых газов в компактном каталитическом реакторе с теплообменником.
В публикации WO 2008/011000 описаны способ и установка для преобразования углеродсодержащего материала в поток газа с высоким содержанием метана и монооксида углерода посредством нагревания углеродсодержащего материала в реакторе с псевдоожиженным слоем с использованием водорода в качестве флюидизирующей среды и пара в восстановительных условиях при температуре и давлении, достаточных для получения потока газа, обогащенного метаном и монооксидом углерода, но при достаточно низкой температуре и/или при достаточно высоком давлении, чтобы углеродсодержащий материал можно было флюидизировать водородом. В конкретных формах осуществления изобретения углеродсодержащий материал перед подачей в реактор с псевдоожиженным слоем подают в форме суспензии совместно с водородом в реактор обжигового типа. Способ может включать в себя стадию обработки потока газа с высоким содержанием метана и монооксида водорода посредством парового риформинга метана в условиях, при которых образуется синтез-газ, содержащий водород и монооксид углерода. Синтез-газ, полученный посредством парового риформинга метана, можно подать в реактор Фишера-Тропша с условиями, при которых образуется жидкое топливо.
Задача изобретения состоит в том, чтобы предложить новые и обладающие признаками изобретения способ и устройство для получения жидкого биотоплива из твердой биомассы.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Способ получения жидкого углеводородного продукта, такого как биотопливо, из твердой биомассы согласно настоящему изобретению характеризуется признаками, определенными в независимом пункте формулы изобретения 1.
Предпочтительные формы осуществления способа определены в зависимых пунктах 2-17 формулы изобретения.
Устройство для получения жидкого углеводородного продукта, такого как биотопливо, из твердой биомассы согласно настоящему изобретению соответственно характеризуется признаками, определенными в независимом пункте формулы изобретения 18.
Предпочтительные формы осуществления устройства определены в зависимых пунктах 19-34 формулы изобретения.
В качестве сырьевого материала для способа и устройства согласно настоящему изобретению можно использовать почти любой вид твердой биомассы, который можно газифицировать. Твердую биомассу в типичном случае выбирают из необработанных материалов или отходов, происходящих от растений, животных и/или рыб, муниципальных отходов, промышленных отходов или побочных продуктов, сельскохозяйственных отходов или побочных продуктов (включая навоз), отходов или побочных продуктов деревоперерабатывающей промышленности, отходов или побочных продуктов пищевой промышленности, морских растений (таких как водоросли) и их комбинаций. Материал твердой биомассы предпочтительно выбирают из непищевых ресурсов, таких как несъедобные отходы и непищевые растительные материалы, включая масла, жиры и воски. Предпочтительный материал твердой биомассы согласно настоящему изобретению представляет собой отходы и побочные продукты деревоперерабатывающей промышленности, такие как отходы лесозаготовок, городские древесные отходы, отходы пиломатериалов, древесную щепу, опилки, солому, дрова, древесные материалы, бумагу, побочные продукты процессов производства бумаги или строительных пиломатериалов, культуры короткой ротации и т.п. Материал твердой биомассы для способа согласно настоящему изобретению может также представлять собой растительные масла, животные жиры, рыбий жир, натуральные воски и жирные кислоты.
Способ согласно настоящему изобретению включает в себя стадию газификации, в ходе которой твердую биомассу газифицируют в газификаторе с получением синтез-газа, содержащего монооксид углерода и водород. Термин «неочищенный синтез-газ» в контексте настоящего изобретения означает, что синтез-газ, кроме монооксида углерода и водорода, также может содержать примеси, такие как CO2 (диоксид углерода), CH4 (метан), H2O (вода), N2 (азот), H2S (сероводород), NH3 (аммиак), HCl (хлористый водород), деготь и мелкие частицы, такие как зола и сажа. Неочищенный синтез-газ кондиционируют с целью очистки неочищенного синтез-газа с получением очищенного синтез-газа, пригодного для проведения синтеза Фишера-Тропша. Кондиционирование неочищенного синтез-газа означает, например, что очищенный синтез-газ имеет молярное соотношение водорода и монооксида углерода в диапазоне от 2,5:1 до 0,5:1, предпочтительно - в диапазоне от 2,1:1 до 1,8:1, более предпочтительно - примерно равное 2:1. Очищенный синтез-газ используют для синтеза Фишера-Тропша в реакторе Фишера-Тропша с получением жидкого углеводородного производного очищенного синтез-газа.
В предпочтительной форме осуществления настоящего изобретения для газификации твердой биомассы используют газификатор, содержащий реактор с псевдоожиженным слоем, такой как реактор с циркулирующим псевдоожиженным слоем или реактор с пузырьковым псевдоожиженным слоем. В этой предпочтительной форме осуществления настоящего изобретения в качестве газифицирующей и флюидизирующей среды в реакторе с псевдоожиженным слоем используют кислород и пар; кроме того, возможно использование хвостового газа из реактора Фишера-Тропша. Если в качестве газифицирующей и флюидизирующей среды используется кислород, то синтез Фишера-Тропша является более эффективным, чем при использовании в качестве флюидизирующей среды воздуха. В способах согласно предшествующему уровню техники, в которых в качестве флюидизирующей среды использован воздух, например в способе согласно WO 2006/043112, флюидизирующий воздух содержит инертные компоненты, такие как азот, который необходимо удалять перед проведением синтеза Фишера-Тропша.
В предпочтительной форме осуществления настоящего изобретения для подачи твердой биомассы в газификатор используется загрузочная воронка с затвором.
В предпочтительной форме осуществления настоящего изобретения кондиционирование неочищенного синтез-газа с целью получения очищенного синтез-газа включает в себя последовательность стадий кондиционирования, в ходе которых осуществляются различные виды кондиционирования неочищенного синтез-газа с целью кондиционирования неочищенного синтез-газа, полученного на стадии газификации, и очистки неочищенного синтез-газа с получением очищенного синтез-газа, пригодного для проведения синтеза Фишера-Тропша. Это означает, например, что очищенный синтез-газ имеет молярное соотношение водорода и монооксида углерода в диапазоне от 2,5:1 до 0,5:1, предпочтительно - в диапазоне от 2,1:1 до 1,8:1, более предпочтительно - равное примерно 2:1. Кондиционирование осуществляется с использованием устройств для кондиционирования неочищенного синтез-газа, которые представляют собой последовательность устройств для кондиционирования, выполняющих различные стадии кондиционирования. Другими словами, в предпочтительной форме осуществления устройства согласно настоящему изобретению между газификатором и реактором Фишера-Тропша размещена последовательность кондиционирующих устройств, представляющих собой устройства для кондиционирования неочищенного синтез-газа, и устройство согласно настоящему изобретению также содержит устройства для последовательного проведения неочищенного синтез-газа от газификатора через последовательность кондиционирующих устройств для получения очищенного синтез-газа, который в конечном итоге подается в реактор Фишера-Тропша.
В предпочтительной форме осуществления настоящего изобретения осуществляется стадия отделения твердых частиц в первом сепараторе твердых частиц, который предпочтительно, но не обязательно, содержит первый циклон для отделения твердых частиц, таких как зола, уголь и материал псевдоожиженного слоя, от неочищенного синтез-газа. В этой предпочтительной форме осуществления настоящего изобретения частицы, отделенные от неочищенного синтез-газа первым сепаратором твердых частиц, предпочтительно, но не обязательно, возвращаются в нижнюю часть газификатора. В другой предпочтительной форме осуществления настоящего изобретения кроме стадии отделения твердых частиц, осуществляемой в первом сепараторе твердых частиц, осуществляется стадия отделения пыли во втором сепараторе твердых частиц, который предпочтительно, но не обязательно, содержит второй циклон для снижения содержания пыли в неочищенном синтез-газе.
В предпочтительной форме осуществления настоящего изобретения одной из стадий кондиционирования является каталитическая обработка неочищенного синтез-газа, осуществляемая в риформере, с целью конверсии смолы и метана, содержащихся в неочищенном синтез-газе, в монооксид углерода и водород. Предпочтительно, но не обязательно, в риформере используют катализаторы, содержащие никель. Реакции, происходящие при риформинге смолы и метана, - это эндотермические химические реакции. Поэтому в этой предпочтительной форме осуществления настоящего изобретения кислород, и пар, и, возможно, хвостовой газ из синтеза Фишера-Тропша, предпочтительно, но не обязательно, подают в поток неочищенного синтез-газа, идущий в риформер, для повышения температуры неочищенного синтез-газа, предпочтительно - примерно до 900°C, прежде чем неочищенный синтез-газ попадет в риформер. В предпочтительной форме осуществления настоящего изобретения риформер представляет собой первое кондиционирующее устройство в последовательности кондиционирующих устройств, предназначенных для очистки неочищенного синтез-газа, которая расположена ниже по потоку относительно газификатора и выше по потоку относительно реактора Фишера-Тропша. При размещении риформера в качестве первого кондиционирующего устройства в последовательности кондиционирующих устройств легко задать температуру в риформере в относительно высоком диапазоне температур порядка 900°С для каталитической обработки, поскольку температура неочищенного синтез-газа, поступающего из газификатора и входящего в последовательность кондиционирующих устройств, составляет 750-850°C. Также обеспечивается экономия энергии по сравнению со способами, в которых риформер размещен относительно далеко от газификатора, т.е. после других стадий кондиционирования, в связи с чем температура неочищенного синтез-газа ниже. В предпочтительной форме осуществления настоящего изобретения неочищенный синтез-газ после каталитической обработки, выполненной в риформере, охлаждают в холодильнике, снижая температуру неочищенного синтез-газа ниже 250°C.
В предпочтительной форме осуществления настоящего изобретения одной из стадий кондиционирования является стадия фильтрации, целью которой является фильтрация неочищенного синтез-газа через фильтр для удаления из неочищенного синтез-газа твердых частиц, таких как зола и сажа. Фильтр предпочтительно, но не обязательно, представляет собой металлический или агломерированный керамический фильтр. Фильтр предпочтительно расположен ниже по потоку относительно холодильника в последовательности кондиционирующих устройств, поскольку, если неочищенный синтез-газ будет подаваться из газификатора в фильтр неохлажденным, то из-за высокой температуры неочищенного синтез-газа может произойти спекание частиц, удаляемых из неочищенного синтез-газа, или их прилипание к фильтру.
В предпочтительной форме осуществления настоящего изобретения одной из стадий кондиционирования является стадия конверсии водяного пара, осуществляемая в реакторе для конверсии водяного пара с целью регулирования молярного соотношения между водородом и монооксидом углерода до диапазона от 2,5:1 до 0,5:1, предпочтительно - до диапазона от 2,1:1 до 1,8:1, более предпочтительно - до примерно 2:1. Реактор для конверсии водяного пара предпочтительно расположен ниже по потоку относительно фильтра в последовательности кондиционирующих устройств.
В предпочтительной форме осуществления способа согласно настоящему изобретению одной из стадий кондиционирования является стадия промывки, целью которой является промывка, предпочтительно - промывка водой, неочищенного синтез-газа для удаления остаточных твердых веществ и остаточных смоляных компонентов, а также HCl (хлористого водорода), NH3 (аммиака) и других компонентов из неочищенного синтез-газа. Промывку осуществляют в газопромывателе (скруббере). Скруббер предпочтительно расположен в последовательности кондиционирующих устройств ниже по потоку относительно реактора для конверсии водяного пара.
В предпочтительной форме осуществления настоящего изобретения после стадии промывки неочищенный синтез-газ очищают посредством глубокой очистки (ультраочистки) для удаления серосодержащих компонентов, CO2 (диоксида углерода), H2O (воды), HCN (цианистого водорода), CH3Cl (хлористого метила), карбонилов, Cl (хлорида) и NOx (оксидов углерода) из неочищенного синтез-газа с целью обогащения очищенного синтез-газа для способа Фишера-Тропша. Очистку осуществляют в средствах для ультраочистки. В предпочтительной форме осуществления устройства согласно настоящему изобретению средства для ультраочистки адаптированы для обработки нечищеного синтез-газа метанолом или диметиловым эфиром при высоком давлении, например при давлении порядка 30-40 бар, например при давлении, примерно равном 35 бар, и при низкой температуре, например в диапазоне от -25°C до -60°C. При высоком давлении и низкой температуре повышается растворимость серосодержащих компонентов и диоксида углерода в жидком растворителе, используемом для их удаления из неочищенного синтез-газа. Примерами процессов, подходящих для этой стадии, являются процесс Rectisol® компании Lurgi AG или Selexol™ компании UOP LLP. В предпочтительной форме осуществления устройства согласно настоящему изобретению средства для ультраочистки адаптированы для обработки неочищенного синтез-газа посредством физической очистки, например, посредством промывки синтез-газа аминами. При промывке аминами неочищенный синтез-газ подают к нижней части абсорбера. При использовании противотока абсорбер можно нагреть от регенерированного раствора, как непосредственно, так и после его испарения. Горячий регенерированный раствор используют в качестве источника тепла. Ниже по потоку раствор полностью регенерируют посредством повторного кипячения, а кислые газы экспортируют в печь для сжигания. Охлажденный регенерированный раствор снова отправляют в верхнюю часть абсорбционной колонны. В способе промывки аминами COS (карбонилсульфидные) соединения, содержащиеся в неочищенном синтез-газе, можно гидролизовать до H2S перед промывкой аминами. В предпочтительной форме осуществления настоящего изобретения перед подачей неочищенного синтез-газа в средства для ультраочистки предусмотрен компрессор для повышения давления неочищенного синтез-газа примерно до 30-40 бар, например примерно до 35 бар. Средства для ультраочистки в последовательности кондиционирующих устройств предпочтительно расположены ниже по потоку относительно скруббера.
В предпочтительной форме осуществления настоящего изобретения для удаления серосодержащих соединений из синтез-газа перед подачей очищенного синтез-газа в реактор Фишера-Тропша предусмотрен реактор с защитным слоем, предпочтительно но не обязательно, содержащий катализаторы на основе оксида цинка и/или активированный уголь.
В предпочтительной форме осуществления настоящего изобретения для получения неочищенного синтез-газа используют несколько газификаторов. В этой предпочтительной форме осуществления способа согласно настоящему изобретению по меньшей мере один из нескольких газификаторов представляет собой газификатор для получения неочищенного синтез-газа из твердой биомассы и по меньшей мере один из нескольких газификаторов представляет собой газификатор для получения неочищенного синтез-газа из жидкой биомассы. Использование нескольких газификаторов увеличивает время работоспособности установки, поскольку это дает возможность начать синтез Фишера-Тропша даже в том случае, если один из газификаторов не генерирует неочищенный синтез-газ. Использование нескольких газификаторов также повышает производительность процесса. Кроме того, сочетание газификаторов, газифицирующих жидкую и твердую биомассу, облегчает управление поступающим потоком материала биомассы.
В предпочтительной форме осуществления настоящего изобретения предусмотрена стадия обогащения продукта с использованием средств для обогащения продукта, осуществляющих фракционирование жидкого углеводородного биотоплива, полученного в реакторе Фишера-Тропша, с целью выделения по меньшей мере фракции дизельного топлива и по меньшей мере нафта-фракции.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Далее изобретение будет описано более подробно со ссылками на прилагаемые графические материалы.
Фиг.1 представляет собой блок-схему устройства для получения жидкого биотоплива из твердой биомассы.
Фиг.2 представляет собой блок-схему второго устройства для получения жидкого биотоплива из твердой биомассы.
Фиг.3 представляет собой блок-схему третьего устройства для получения жидкого биотоплива из твердой биомассы.
Фиг.4 представляет собой блок-схему устройства для получения жидкого биотоплива из твердой и жидкой биомассы.
На Фиг.1-4 одинаковые цифровые обозначения относятся к одинаковым частям, и они не будут разъясняться отдельно при последующем изложении, кроме тех случаев, когда это необходимо для иллюстрации предмета обсуждения.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Чертежи демонстрируют предпочтительные формы осуществления способа получения жидкого углеводородного продукта 1, такого как жидкое биотопливо, из твердой биомассы 2, и предпочтительные формы осуществления устройства для получения жидкого углеводородного продукта 1, такого как жидкое биотопливо, из твердой биомассы 2 согласно настоящему изобретению.
На Фиг.1 представлена форма осуществления настоящего изобретения для получения жидкого углеводородного продукта 1 из твердой биомассы 2.
В форме осуществления, представленной на Фиг.1, твердую биомассу 2 газифицируют на стадии газификации с получением неочищенного синтез-газа 3, содержащего монооксид углерода и водород. Термин «неочищенный синтез-газ 3» в контексте настоящего изобретения означает, что синтез-газ, кроме монооксида углерода и водорода, содержит примеси, такие как диоксид углерода, метан, смола и/или мелкие частицы, такие как зола и/или сажа.
Неочищенный синтез-газ 3, полученный на стадии газификации, кондиционируют в ходе последовательных стадий кондиционирования, предназначенных для очистки неочищенного синтез-газа 3 с использованием устройств 26 для очистки неочищенного синтез-газа с целью по меньшей мере частичного удаления примесей из неочищенного синтез-газа 3 и получения очищенного синтез-газа 4, в котором молярное соотношение водорода и монооксида углерода лежит в диапазоне от 2,5:1 до 0,5:1, предпочтительно - в диапазоне от 2,1:1 до 1,8:1, более предпочтительно - примерно равно 2:1. В форме осуществления, изображенной на Фиг.1, стадии кондиционирования представляют собой каталитическую обработку, охлаждение, фильтрацию, реакцию конверсии водяного пара, промывку газа, ультраочистку и обработку в реакторе с защитным слоем.
Очищенный синтез-газ 4 используют в синтезе Фишера-Тропша в реакторе 5 Фишера-Тропша с получением жидкого углеводородного продукта 1 из очищенного синтез-газа 4.
Стадия газификации включает в себя по меньшей мере частичное сжигание твердой биомассы 2 в газификаторе 6 с получением вышеуказанного неочищенного синтез-газа 3, содержащего монооксид углерода и водород.
Используемый газификатор 6 представляет собой газификатор с псевдоожиженным слоем (например, реактор с циркулирующим псевдоожиженным слоем или реактор с пузырьковым псевдоожиженным слоем), предназначенный для по меньшей мере частичного сжигания твердой биомассы 2. Газификатор с псевдоожиженным слоем содержит материал псевдоожиженного слоя, который предпочтительно, но не обязательно, представляет собой смесь доломита и песка. Флюидизация слоя осуществляется с использованием флюидизирующих агентов, которые подают через решетку (не показана на чертежах). Топливо (в данном случае твердую биомассу 2) подают в нижнюю часть псевдоожиженного слоя. Взаимодействие между твердой биомассой 2, песком и доломитом снижает содержание смол в неочищенном синтез-газе 3, образующемся в газификаторе с псевдоожиженным слоем. Доломит снижает количество серосодержащих соединений в неочищенном синтез-газе 3, образующемся в газификаторе с псевдоожиженным слоем. В качестве флюидизирующих агентов в газификаторе используют кислород 7 и пар 8, имеющий температуру около 200°C; кроме того, можно использовать и рециркулированный хвостовой газ 9 из процесса Фишера-Тропша. По меньшей мере кислород и пар предпочтительно, но не обязательно, смешивают перед подачей в газификатор. Чистый кислород может расплавить золу, образующуюся при сжигании топлива, и привести к образованию агломератов и спекшихся кусков, которые могут заблокировать газификатор. Соединения, входящие в состав твердой биомассы 2, будут эндотермически реагировать с паром, образуя монооксид углерода и водород, а соединения твердой биомассы 2 будут экзотермически реагировать с кислородом, образуя монооксид углерода, диоксид углерода и дополнительный пар. В результате будет получен неочищенный синтез-газ 3.
Твердую биомассу 2 подают в газификатор 6 с помощью загрузочной воронки 10 с затвором. Давление в газификаторе 6 повышено, например, до 10-20 бар, например, примерно до 15 бар и поэтому необходимо повысить давление твердой биомассы 2 до такого же уровня, прежде чем подавать ее в газификатор 6. Загрузочную воронку 10 с затвором используют для повышения давления твердой биомассы 2 по меньшей мере до давления, существующего в газификаторе 6. Загрузочная воронка с затвором обычно содержит два бункера для топлива (первый топливный бункер 11 и второй топливный бункер 12), расположенные друг над другом, и клапанное устройство 13, размещенное между вторым бункером для топлива 12 и первым бункером для подачи топлива 11. Первый топливный бункер 11 постоянно работает при давлении, равном давлению в газификаторе 6, а давление во втором топливном бункере 12 колеблется между атмосферным давлением во время загрузки в него биомассы 2 и давлением в газификаторе 6 во время его опорожнения в первый топливный бункер 11, когда клапанное устройство 13, расположенное между вторым топливным бункером 12 и первым топливным бункером 11, открывается для подачи биомассы под давлением в газификатор 6. Газом, используемым для повышения давления в бункере 11, предпочтительно, но не обязательно, является диоксид углерода. Поскольку в первом бункере 11 давление должно быть немного выше, чем в газификаторе 6, то возможны утечки газа, используемого для повышения давления, в газификатор 6. При использовании диоксида углерода его утечку в технологический поток можно отделить от неочищенного синтез-газа 3, в отличие от случая, когда используется азот. Азот не является каталитическим ядом, но он будет действовать как инертный газ, снижающий производительность оборудования, расположенного ниже по потоку.
Из первого топливного бункера 11 твердая биомасса 2 под давлением подается в газификатор при помощи устройства 27 для подачи твердой биомассы, например, при помощи винтового конвейера, который расположен между первым бункером 11 загрузочной воронки 10 и газификатором 6.
Перед подачей твердой биомассы во второй топливный бункер 12 загрузочной воронки 10 с затвором твердую биомассу 2 предварительно обрабатывают посредством дробления или с помощью любого другого подходящего способа разделяют на частицы, которые предпочтительно, но не обязательно, имеют размер менее 50 мм. В предпочтительной форме осуществления способа согласно настоящему изобретению твердую биомассу 2 предварительно обрабатывают посредством дробления или с помощью любого другого подходящего способа разделяют на частицы, которые предпочтительно, но не обязательно, имеют размер менее 50 мм, перед подачей твердой биомассы 2 в верхний топливный бункер 12 загрузочной воронки 10.
Твердую биомассу 12 можно также предварительно обработать посредством термической сушки. Сушку проводят перед подачей твердой биомассы 2 в верхний топливный бункер 12 загрузочной воронки 10. В предпочтительной форме осуществления способа согласно настоящему изобретению твердую биомассу 2 предварительно обрабатывают посредством термической сушки до содержания влаги менее примерно 20%.
В формах осуществления настоящего изобретения, изображенных на Фиг.1-4, предварительная обработка твердой биомассы 2 осуществляется с использованием устройств 31 для предварительной обработки биомассы, представляющих собой дробилку 14 и/или сушилку 15, которые являются частью устройства для получения жидкого биотоплива из твердой биомассы 2, изображенного на чертежах. Альтернативно, предварительная обработка твердой биомассы 2 может по меньшей мере частично осуществляться за пределами этого устройства.
Неочищенный синтез-газ 3, образующийся в газификаторе 6, обрабатывают в первом сепараторе 16 твердых частиц, который предпочтительно, но не обязательно, представляет собой первый циклон, расположенный ниже по потоку относительно газификатора 6. В первом сепараторе 16 твердых частиц твердые частицы, такие как частицы золы, угля и материала псевдоожиженного слоя, отделяют на стадии отделения твердых частиц от неочищенного синтез-газа 3, и отделенные частицы направляют обратно в газификатор 6.
Кроме обработки в первом сепараторе 16 твердых частиц, неочищенный синтез-газ обрабатывают во втором сепараторе твердых частиц, который предпочтительно, но не обязательно, представляет собой второй циклон 17, расположенный ниже по потоку относительно первого сепаратора 16 твердых частиц. Второй сепаратор 17 твердых частиц используют на стадии отделения пыли для снижения содержания пыли в неочищенном синтез-газе 3. Целью стадии отделения твердых частиц в первом сепараторе 16 твердых частиц и стадии отделения пыли во втором сепараторе 17 твердых частиц является подготовка неочищенного синтез-газа 3 к последующим стадиям кондиционирования, осуществляемым ниже по потоку между стадией газификации и синтезом Фишера-Тропша.
Кондиционирование неочищенного синтез-газа осуществляется в виде последовательных стадий кондиционирования с помощью устройств 26 для кондиционирования неочищенного синтез-газа. Устройства 26 для кондиционирования неочищенного синтез-газа представляют собой несколько последовательно расположенных кондиционирующих устройств. В формах осуществления настоящего изобретения, изображенных на Фиг.1-4, устройства 26 для кондиционирования неочищенного синтез-газа представляют собой риформер 18, холодильник 19, фильтр 20, реактор 21 для конверсии водяного пара, скруббер 22, устройства 23 для ультраочистки и реактор 25 с защитным слоем. Устройства 26 для кондиционирования неочищенного газа могут также включать в себя другие устройства, которые не влияют на состав неочищенного синтез-газа, а лишь кондиционируют его для последующих кондиционирующих устройств. В формах осуществления настоящего изобретения, изображенных на Фиг.1-4, предусмотрен компрессор для повышения давления неочищенного синтез-газа, который в примере такого кондиционирующего устройства расположен ниже по потоку относительно скруббера 22.
Кондиционирование включает в себя стадию кондиционирования в форме каталитической обработки неочищенного синтез-газа 3 в риформере 18 для преобразования смол и метана, присутствующих в неочищенном синтез-газе 3, в монооксид углерода и водород. Этот каталитический процесс предпочтительно проводят при температуре около 900°C, а катализаторы предпочтительно содержат в своей основе никель и/или другие металлы. Поскольку риформинг смол и метана представляет собой эндотермические химические реакции, то есть химические реакции, потребляющие тепловую энергию и снижающие температуру синтез-газа 3, то неочищенный синтез-газ 3 предпочтительно нагревают перед подачей в риформер 18. В предпочтительной форме осуществления настоящего изобретения температуру неочищенного синтез-газа 3 повышают посредством подачи кислорода в поток неочищенного синтез-газа 3 перед подачей неочищенного синтез-газа 3 в риформер 18. Для предотвращения появления «горячих пятен» и плавления золы пар и, возможно, также хвостовой газ из синтеза Фишера-Тропша подают совместно с кислородом в поток неочищенного синтез-газа 3.
Кондиционирование также включает в себя охлаждение неочищенного синтез-газа 3 примерно до 250°C в холодильнике 19 после каталитической обработки в риформере 18.
После охлаждения неочищенного синтез-газа в холодильнике 19, его направляют на стадию кондиционирования, представляющую собой стадию фильтрации, для фильтрации неочищенного синтез-газа 3 через фильтр 20 с целью удаления из неочищенного синтез-газа 3 таких твердых частиц, как зола, сажа, уголь и захваченный материал псевдоожиженного слоя.
Кондиционирование также включает в себя стадию кондиционирования, на которой регулируют молярное соотношение водорода и монооксида углерода до диапазона от 2,5:1 до 0,5:1, предпочтительно - до диапазона от 2,1:1 до 1,8:1, более предпочтительно - до примерно 2:1 посредством реакции конверсии водяного пара в реакторе 21 для конверсии водяного пара, в соответствии со следующей химической формулой:
CO+H2O↔CO2+H2
Целевое значение соотношения H2 и CO, как указано, равно примерно 2:1.
Для достижения необходимого соотношения водорода и монооксида углерода и в зависимости от содержания влаги в неочищенном синтез-газе 3 предпочтительно, но не обязательно в неочищенный синтез-газ 3 подают пар 36. Стадия кондиционирования, которая осуществляется в реакторе 21 для конверсии водяного пара, расположена ниже по потоку относительно фильтра 20.
Из реактора 21 для конверсии водяного пара неочищенный синтез-газ подают на стадию промывки для промывки неочищенного синтез-газа 3 водой в скруббере 22 с целью удаления остаточных твердых веществ и остаточных смоляных компонентов, а также для удаления HCl (хлористого водорода), NH3 (аммиака) и других компонентов из неочищенного синтез-газа 3.
Кондиционирование также включает в себя стадию ультраочистки, выполняемой в устройствах 23 для ультраочистки с целью удаления по меньшей мере диоксида углерода и серосодержащих компонентов из неочищенного синтез-газа 3. Целевое значение для серосодержащих компонентов предпочтительно ниже 20 частей на миллиард, более предпочтительно - ниже 10 частей на миллиард, а для диоксида углерода - предпочтительно меньше 5 массовых процентов. Неочищенный синтез-газ подают в устройства для ультраочистки из скруббера 22.
Стадию ультраочистки для удаления серосодержащих компонентов, CO2 (диоксида углерода), H2O (воды), HCN (цианистого водорода), CH3Cl (хлористого метила), карбонилов, Cl (хлорида) и NOx (оксидов азота) из неочищенного синтез-газа 3 можно выполнить в форме процесса физической очистки. В процессе физической очистки в качестве растворителя используют метанол или диметиловый эфир, и его осуществляют при давлении, равном 30-40 бар, например при давлении, равном примерно 35 бар, и криогенных температурах - от -25°C до -60°C. При высоком давлении и низкой температуре повышается растворимость соединений, которые должны быть захвачены жидким растворителем, используемым для удаления их из процесса. Примером подходящего процесса является процесс Rectisol® компании Lurgi AG.
Альтернативно, стадию ультраочистки для удаления серосодержащих компонентов, CO2 (диоксида углерода), H2O (воды), HCN (цианистого водорода), CH3Cl (хлористого метила), карбонилов, Cl (хлорида) и NOx (оксидов азота) из неочищенного синтез-газа 3 можно выполнить в форме процесса химической очистки. Процессом химической очистки может быть, например, промывка неочищенного синтез-газа 3 аминами.
В предпочтительной форме осуществления способа согласно настоящему изобретению давление неочищенного синтез-газа повышают в компрессоре 24 до примерно 30-40 бар, например примерно до 35 бар, перед стадией ультраочистки.
Последняя стадия кондиционирования выполняется в реакторе 25 с защитным слоем, куда направляют неочищенный газообразный продукт после ультраочистки. Защитный слой содержит катализаторы на основе ZnO и активированный уголь. Целью стадии кондиционирования, осуществляемой в реакторе 25 с защитным слоем, является удаление вероятных соединений серы из неочищенного синтез-газа 3 или очищенного синтез-газа 4. Из реактора 25 с защитным слоем очищенный синтез-газ 4 направляют в реактор 5 Фишера-Тропша.
Из реактора 5 Фишера-Тропша жидкое углеводородное биотопливо направляют на стадию обогащения продукта для получения по меньшей мере фракции 34 дизельного топлива и по меньшей мере нафта-фракции 35.
В предпочтительной форме осуществления способа согласно настоящему изобретению этот способ включает в себя стадию обогащения продукта, осуществляемую в устройствах 32 для обогащения продукта с целью обогащения жидкого углеводородного биотоплива, полученного из реактора Фишера-Тропша, и получения по меньшей мере фракции 34 дизельного топлива и по меньшей мере нафта-фракции 35. Термин «нафта-фракция» относится к полученной при перегонке фракции углеводородов, которая состоит по существу из углеводородов с длиной углеродной цепью, составляющей от 5 до 10 атомов углерода (обозначаются как C5-C10). Углеводороды нафта-фракции - это углеводороды, которые обычно используют в качестве легкого топлива, растворителей или сырьевых материалов, например для последующих процессов, основанных на паровом крекинге.
Термин «фракция дизельного топлива» относится к фракции углеводородов, в которой углеводороды по существу представлены углеводородами, имеющими длину углеродной цепи от 11 до 20 атомов углерода (обозначаются как C11-C20). Эта дизельная фракция дистиллята обычно имеет температуру кипения в диапазоне от 150 до 400°C, предпочтительно - от 175 до 350°C. Эти углеводороды дизельной фракции дистиллята обычно используются в качестве дизельного топлива. Следует отметить, что поскольку дистилляция не обеспечивает абсолютной отсечки по определенной длине цепи, то различные фракции дистиллята могут содержать незначительные количества углеводородов, имеющих немного меньшую или немного большую длину углеродной цепи. Точка отсечки при дистилляции немного варьирует в зависимости от целевого назначения и желаемых свойств дизельной фракции дистиллята. Таким образом, фракцию дистиллята, содержащую более широкий спектр углеводородов, таких как от C9 до C22, или немного более узкий диапазон углеводородов, таких как от C14 до C18, также следует считать дизельной фракцией дистиллята.
В других формах осуществления настоящего изобретения для получения неочищенного синтез-газа 3 используется несколько газификаторов 6. Фигуры со 2 по 4 демонстрируют эти формы осуществления настоящего изобретения.
В форме осуществления настоящего изобретения, изображенной на Фиг.2, неочищенный синтез-газ 3 получают в двух газификаторах 3, которые газифицируют твердую биомассу 2. Неочищенный синтез-газ, полученный в обоих газификаторах, подают в одно и то же устройство 26 для кондиционирования неочищенного синтез-газа. Это означает, что для обоих газификаторов твердой биомассы 6 необходимо лишь одно устройство для кондиционирования синтез-газа 26. В форме осуществления изобретения, представленной на Фиг.1, оба газификатора 6 имеют свои собственные устройства 10, 11, 12, 27 для подачи топлива и устройства 31 для предварительной обработки биомассы. Устройства для подачи топлива и предварительной обработки биомассы можно также объединить, так что топливо будет обрабатываться в одном устройстве для подачи топлива и предварительной обработки, и оба газификатора будут получать топливо из этого единого устройства.
В форме осуществления изобретения, представленной на Фиг.3, также используются два газификатора 6, в которых газифицируется твердая биомасса 2. В каждом из газификаторов 6 образуется синтез-газ, который частично обрабатывается раздельно в устройствах 26 для кондиционирования неочищенного синтез-газа. Два раздельных и независимых потока неочищенного синтез-газа объединяют перед подачей объединенного потока неочищенного синтез-газа 3 в общий компрессор 24, расположенный выше по потоку относительно общих устройств 23 для ультраочистки и общего реактора 25 с защитным слоем.
В форме осуществления настоящего изобретения, изображенной на Фиг.4, один газификатор 6 используется для получения неочищенного синтез-газа 3 из твердой биомассы 2 и один газификатор 6a используется для получения неочищенного синтез-газа 3a из жидкой биомассы 33. Жидкая биомасса 33 может, например, представлять собой по меньшей мере один материал, выбранный из следующей группы: биометанол, талловое масло, черный щелок, лигнин, пиролизное масло и глицерин. Неочищенный синтез-газ 3a, полученный из газификатора 6a, предназначенного для получения неочищенного синтез-газа 3a из жидкой биомассы 33, предпочтительно, но не обязательно, соединяют для подачи потока неочищенного синтез-газа 3a в поток неочищенного синтез-газа 3, происходящий из газификатора 6, предназначенного для получения неочищенного синтез-газа 3 из твердой биомассы 2, в точке, расположенной после риформера 18, холодильника 19, фильтра 20, реактора 21 для конверсии водяного пара и скруббера 22. Это возможно, поскольку неочищенный синтез-газ 3a, произведенный газификатором 6а, предназначенным для получения неочищенного синтез-газа 3a из жидкой биомассы 33, содержит меньше загрязнений, таких как смолы и зола.
Если используется газификатор 6a для получения неочищенного синтез-газа 3a из жидкой биомассы 33, то газификатор 6a предпочтительно, но не обязательно, является газификатором с газификацией в потоке, в котором температура лежит в диапазоне от 900 до 1200°C, предпочтительно - примерно 1000°C. Из-за высокой температуры неочищенный синтез-газ 3a, производимый газификатором 6а, не содержит смол и метана, что означает отсутствие необходимости в риформинге неочищенного синтез-газа 3a, произведенного газификатором 6a. Неочищенный синтез-газ 3a не содержит твердых частиц, что означает, что фильтрацию можно признать ненужной. Этот неочищенный синтез-газ 3a преимущественно содержит CO2 (диоксид углерода), CO (монооксид углерода) и H2 (водород).
Неочищенный синтез-газ 3a, произведенный газификатором 6a, предпочтительно, но не обязательно, направляют на стадию конверсии водяного пара, осуществляемую в реакторе 21 для конверсии водяного пара с целью регулирования молярного соотношения между водородом и монооксидом углерода до диапазона от 2,5:1 до 0,5:1, предпочтительно - до диапазона от 2,1:1 до 1,8:1, более предпочтительно - примерно до 2:1. Неочищенный синтез-газ 3a, произведенный газификатором 6a, предпочтительно, но не обязательно, охлаждают примерно до 250°C перед подачей неочищенного синтез газа в реактор 21 для конверсии водяного пара.
В предпочтительной форме осуществления настоящего изобретения используют три газификатора 6 для получения неочищенного синтез-газа 3 из твердой биомассы 2 и один газификатор 6a для получения неочищенного синтез-газа 3a из жидкой биомассы 33.
Специалисту в данной области техники должно быть очевидно, что основную идею изобретения можно использовать различными способами с целью усовершенствования технологии. Поэтому изобретение и формы его осуществления не ограничены приведенными выше примерами, и они могут быть изменены в рамках формулы изобретения.
Перечень цифровых обозначений
1. Жидкий углеводородный продукт.
2. Твердая биомасса.
3. Неочищенный синтез-газ.
4. Очищенный синтез-газ.
5. Реактор Фишера-Тропша.
6. Газификатор.
7. Кислород.
8. Пар.
9. Хвостовой газ.
10. Загрузочная воронка с затвором.
11. Нижний топливный бункер.
12. Верхний топливный бункер.
13. Клапанное устройство.
14. Дробилка.
15. Сушилка.
16. Первый сепаратор частиц.
17. Второй сепаратор частиц.
18. Риформер.
19. Холодильник.
20. Фильтр.
21. Реактор для конверсии водяного пара.
22. Скруббер.
23. Устройство для ультраочистки.
24. Компрессор.
25. Реактор с защитным слоем.
26. Устройства для кондиционирования неочищенного синтез-газа.
27. Устройство для подачи твердой биомассы.
28. Устройство для подачи кислорода.
29. Кислород.
30. Устройство для подачи пара.
31. Устройство для предварительной обработки биомассы.
32. Устройство для обогащения продукта.
33. Жидкая биомасса.
34. Дизельная фракция.
35. Нафта-фракция.
36. Пар.

Claims (37)

1. Способ получения жидкого углеводородного продукта (1), такого как биотопливо, из твердой биомассы (2), включающий:
- стадию газификации для газификации твердой биомассы (2) в газификаторе (6) с получением неочищенного синтез-газа (3),
- кондиционирование неочищенного синтез-газа (3) для очистки неочищенного синтез-газа (3) с получением очищенного синтез-газа (4), имеющего молярное соотношение водорода и монооксида углерода в диапазоне от 2,5:1 до 0,5:1, причем одной из стадий кондиционирования является каталитическая обработка в риформере (18), и
- использование очищенного синтез-газа (4) для синтеза Фишера-Тропша в реакторе (5) Фишера-Тропша с получением жидкого углеводородного продукта (1).
2. Способ по п.1, отличающийся тем, что:
- стадия газификации включает в себя газификацию твердой биомассы (2) в газификаторе (6), представляющем собой реактор с псевдоожиженным слоем, и
- в качестве флюидизирующей среды в реакторе с псевдоожиженным слоем используют кислород (7) и пар (8).
3. Способ по п.1, отличающийся тем, что дополнительно в качестве газифицирующей и флюидизирующей среды в реакторе с псевдоожиженным слоем используют хвостовой газ (9) из реактора (5) Фишера-Тропша.
4. Способ по любому из пп.1-3, отличающийся тем, что для подачи твердой биомассы (2) в газификатор (6) используют загрузочную воронку (10) с затвором.
5. Способ по п.1, отличающийся тем, что неочищенный синтез-газ (3) подают в первый сепаратор (16) твердых частиц для осуществления стадии отделения твердых частиц, предназначенной для отделения от неочищенного синтез-газа (3) твердых частиц, таких как зола, уголь и материал псевдоожиженного слоя.
6. Способ по п.5, отличающийся тем, что неочищенный синтез-газ (3) из первого сепаратора (16) твердых частиц подают во второй сепаратор (17) твердых частиц для осуществления стадии отделения пыли, снижающей содержание пыли в неочищенном синтез-газе (3).
7. Способ по п.1, отличающийся тем, что проводят каталитическую обработку неочищенного синтез-газа (3) в риформере (18) для превращения смол и метана, присутствующих в неочищенном синтез-газе (3), в монооксид углерода и водород.
8. Способ по п.1, отличающийся тем, что кондиционирование включает в себя снижение температуры неочищенного синтез-газа (3) примерно до 250°С в холодильнике (19).
9. Способ по п.1, отличающийся тем, что кондиционирование неочищенного синтез-газа (3) включает в себя стадию фильтрации, состоящую в фильтрации неочищенного синтез-газа (3) через фильтр (20) для удаления твердых частиц, таких как зола, захваченный материал псевдоожиженного слоя и сажа, из неочищенного синтез-газа (3).
10. Способ по п.1, отличающийся тем, что кондиционирование неочищенного синтез-газа (3) включает в себя проведение с неочищенным синтез-газом (3) реакции конверсии водяного пара в реакторе для конверсии водяного пара (20) для регулирования молярного соотношения водорода и монооксида углерода до диапазона от 2,5:1 до 0,5:1, предпочтительно до диапазона от 2,1:1 до 1,8:1, более предпочтительно - до примерно 2:1.
11. Способ по п.1, отличающийся тем, что кондиционирование неочищенного синтез-газа (3) включает в себя стадию промывки газа для промывки неочищенного синтез-газа (3) для удаления твердых веществ и смоляных компонентов из неочищенного синтез-газа (3).
12. Способ по п.1, отличающийся тем, что кондиционирование неочищенного синтез-газа (3) включает в себя стадию ультраочистки для удаления серосодержащих компонентов, диоксида углерода, воды, цианистого водорода, хлористого метила, карбонилов, хлоридов и оксидов азота NOx из неочищенного синтез-газа (3).
13. Способ по п.12, отличающийся тем, что стадия ультраочистки включает в себя процесс физической очистки, в котором метанол или диметиловый эфир используют в качестве растворителя при давлении, примерно равном 30-40 бар, например, примерно равном 35 бар, и при температуре в диапазоне от примерно -25°С до -60°С.
14. Способ по п.12, отличающийся тем, что стадия ультраочистки включает в себя процесс химической очистки, в котором используют амины.
15. Способ по п.13 или 14, отличающийся тем, что кондиционирование включает в себя снижение температуры неочищенного синтез-газа (3) до примерно 250°С в холодильнике (19).
16. Способ по п.1, отличающийся тем, что включает в себя пропускание неочищенного синтез-газа (3) через по меньшей мере один реактор с защитным слоем (25), содержащим катализаторы на основе оксида цинка и активированный уголь, для удаления серосодержащих соединений из неочищенного синтез-газа (3).
17. Способ по п.1, отличающийся тем, что для получения неочищенного синтез-газа (3) используют несколько газификаторов, из которых по меньшей мере один является газификатором (6) для получения неочищенного синтез-газа (3) из твердой биомассы (2), и по меньшей мере один является газификатором (6а) для получения неочищенного синтез-газа (3а) из жидкой биомассы.
18. Способ по п.1, отличающийся тем, что молярное соотношение водорода и монооксида углерода в очищенном синтез-газе (4) составляет от 2,1:1 до 1,8:1.
19. Способ по п.1, отличающийся тем, что молярное соотношение водорода и монооксида углерода в очищенном синтез-газе (4) составляет примерно 2:1.
20. Устройство для получения жидкого углеводородного продукта (1), такого как биотопливо, из твердой биомассы (2), характеризующееся тем, что содержит:
- газификатор (6) для газификации твердой биомассы (2) с получением неочищенного синтез-газа (3),
- устройства для кондиционирования неочищенного синтез-газа (3) для получения очищенного синтез-газа (4), имеющего молярное соотношение водорода и монооксида углерода в диапазоне от 2,5:1 до 0,5:1, включающий риформер (18) для каталитической обработки неочищенного синтез-газа (3), и
- реактор (5) Фишера-Тропша для синтеза Фишера-Тропша с использованием очищенного синтез-газа (4) для получения жидкого углеводородного продукта (1) из очищенного синтез-газа (4).
21. Устройство по п.20, отличающееся тем, что:
- газификатор (6) содержит реактор с псевдоожиженным слоем, и
- газификатор (6) содержит устройства для подачи кислорода (7) и пара (8) в газификатор (6) для использования кислорода (7) и пара (8) в качестве флюидизирующей среды в реакторе с псевдоожиженным слоем.
22. Устройство по п.21, отличающееся тем, что содержит устройства для подачи хвостового газа из реактора (5) Фишера-Тропша в газификатор (6) для использования газа из реактора Фишера-Тропша в качестве флюидизирующей среды в реакторе с псевдоожиженным слоем.
23. Устройство по п.20, отличающееся тем, что содержит загрузочную воронку (10) с затвором для подачи твердой биомассы (2) в газификатор.
24. Устройство по п.20, отличающееся тем, что содержит устройства (31) для предварительной обработки твердой биомассы, предназначенные для сушки твердой биомассы (2) до содержания влаги менее 20% и/или измельчения твердой биомассы (2) с получением сырья, размер частиц которого меньше 50 мм.
25. Устройство по п.20, отличающееся тем, что содержит первый сепаратор (16) твердых частиц для отделения твердых частиц, таких как зола, уголь и частицы материала псевдоожиженного слоя, от неочищенного синтез-газа (3).
26. Устройство по п.20, отличающееся тем, что оно содержит второй сепаратор (17) твердых частиц для отделения пыли от неочищенного синтез-газа (3).
27. Устройство по п.20, отличающееся тем, что риформер (20) для каталитической обработки неочищенного синтез-газа (3) выполнен с возможностью преобразования смол и метана, присутствующих в неочищенном синтез-газе (3), в монооксид углерода и водород.
28. Устройство по п.20, отличающееся тем, что содержит холодильник (19) для снижения температуры неочищенного синтез-газа (3) примерно до 250°С.
29. Устройство по п.20, отличающееся тем, что содержит фильтр (20) для отделения посредством фильтрации золы, захваченного материала псевдоожиженного слоя и/или сажи от неочищенного синтез-газа (3).
30. Устройство по п.20, отличающееся тем, что содержит реактор (21) для конверсии водяного пара для регулирования молярного соотношения водорода и монооксида углерода в неочищенном синтез-газе (3) до диапазона от 2,5:1 до 0,5:1, предпочтительно - до диапазона от 2,1:1 до 1,8:1, более предпочтительно - до примерно 2:1.
31. Устройство по п.20, отличающееся тем, что содержит скруббер (22) для удаления твердых веществ и смоляных компонентов из неочищенного синтез-газа (3).
32. Устройство по п.20, отличающееся тем, что содержит устройства (23) для ультраочистки для удаления серосодержащих компонентов, диоксида углерода, воды, цианистого водорода, хлористого метила, карбонилов, хлоридов и оксидов азота NOx из неочищенного синтез-газа (3).
33. Устройство по п.32, отличающееся тем, что содержит компрессор (24) для повышения давления неочищенного синтез-газа (3) до примерно 30-40 бар, например, примерно до 35 бар, перед направлением неочищенного синтез-газа (3) в устройства (23) для ультраочистки.
34. Устройство по п.20, отличающееся тем, что содержит реактор (25) с защитным слоем для удаления серосодержащих соединений.
35. Устройство по п.20, отличающееся тем, что оно содержит несколько газификаторов для получения неочищенного синтез-газа (3), из которых по меньшей мере один является газификатором (6) для получения неочищенного синтез-газа (3) из твердой биомассы (2), и по меньшей мере один является газификатором (6а) для получения неочищенного синтез-газа (3а) из жидкой биомассы.
36. Устройство по п.20, отличающееся тем, что молярное соотношение водорода и монооксида углерода в очищенном синтез-газе (4) составляет от 2,1:1 до 1,8:1.
37. Устройство по п.20, отличающееся тем, что молярное соотношение водорода и монооксида углерода в очищенном синтез-газе (4) составляет примерно 2:1.
RU2010121237/04A 2007-07-20 2008-07-18 Способ и устройство для получения жидкого биотоплива из твердой биомассы RU2459857C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FI20075557A FI122786B (fi) 2007-07-20 2007-07-20 Synteettisten hiilivetyketjujen valmistuksessa syntyvän hiilidioksidin käyttö
FI20075557 2007-07-20
FI20085400 2008-04-30
FI20085400A FI20085400A0 (fi) 2007-11-09 2008-04-30 Menetelmä jäteveden integroidulle käsittelylle

Publications (2)

Publication Number Publication Date
RU2010121237A RU2010121237A (ru) 2011-12-10
RU2459857C2 true RU2459857C2 (ru) 2012-08-27

Family

ID=40281889

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010121237/04A RU2459857C2 (ru) 2007-07-20 2008-07-18 Способ и устройство для получения жидкого биотоплива из твердой биомассы

Country Status (9)

Country Link
US (1) US9434615B2 (ru)
EP (2) EP3135747B1 (ru)
CN (1) CN101848979A (ru)
CA (1) CA2693401C (ru)
DK (2) DK2190950T3 (ru)
ES (2) ES2603281T3 (ru)
PL (2) PL3135747T3 (ru)
RU (1) RU2459857C2 (ru)
WO (1) WO2009013233A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2670761C2 (ru) * 2013-06-26 2018-10-25 Праксайр Текнолоджи, Инк. Регулирование кислого газа в процессе производства жидкого топлива

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982078B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7982077B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7982075B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption
US8003834B2 (en) 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US7915460B2 (en) 2007-09-20 2011-03-29 Uop Llc Production of diesel fuel from biorenewable feedstocks with heat integration
US7982076B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7999142B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7999143B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption
FI20075794L (fi) * 2007-11-09 2009-05-10 Upm Kymmene Oyj Integroitu prosessi diesel-polttoaineen valmistamiseksi biologisesta materiaalista ja prosessiin liittyvät tuotteet, käyttötavat ja laitteisto
US8742183B2 (en) 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
US8193399B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel and aviation fuel from renewable feedstocks
US8058492B2 (en) 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US8039682B2 (en) 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US8198492B2 (en) 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
US8193400B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel from renewable feedstocks
CA2720599C (en) 2008-04-06 2015-02-24 Michael J. Mccall Fuel and fuel blending components from biomass derived pyrolysis oil
US8324438B2 (en) 2008-04-06 2012-12-04 Uop Llc Production of blended gasoline and blended aviation fuel from renewable feedstocks
US8329967B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended fuel from renewable feedstocks
US8329968B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended gasoline aviation and diesel fuels from renewable feedstocks
US8304592B2 (en) 2008-06-24 2012-11-06 Uop Llc Production of paraffinic fuel from renewable feedstocks
US8766025B2 (en) 2008-06-24 2014-07-01 Uop Llc Production of paraffinic fuel from renewable feedstocks
US7982079B2 (en) 2008-09-11 2011-07-19 Uop Llc Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
FI125812B (fi) * 2008-10-31 2016-02-29 Upm Kymmene Corp Menetelmä ja laitteisto nestemäisen biopolttoaineen tuottamiseksi kiinteästä biomassasta
US8921627B2 (en) 2008-12-12 2014-12-30 Uop Llc Production of diesel fuel from biorenewable feedstocks using non-flashing quench liquid
US8471079B2 (en) 2008-12-16 2013-06-25 Uop Llc Production of fuel from co-processing multiple renewable feedstocks
US8314274B2 (en) 2008-12-17 2012-11-20 Uop Llc Controlling cold flow properties of transportation fuels from renewable feedstocks
US8283506B2 (en) 2008-12-17 2012-10-09 Uop Llc Production of fuel from renewable feedstocks using a finishing reactor
WO2010090863A2 (en) * 2009-01-21 2010-08-12 Rentech, Inc. System and method for dual fluidized bed gasification
US8471081B2 (en) 2009-12-28 2013-06-25 Uop Llc Production of diesel fuel from crude tall oil
EP2531573A4 (en) * 2010-02-05 2013-07-31 Texas A & M Univ Sys DEVICES AND METHOD FOR A PYROLYSIS AND GASIFICATION SYSTEM FOR A BIOMASS RAW MATERIAL
DE102010007588A1 (de) 2010-02-05 2011-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Herstellungsverfahren für ein Synthesegas aus einer Biomasse
FI20105503A (fi) * 2010-05-10 2011-11-11 Neste Oil Oyj Menetelmä hiilivetykoostumuksen tuottamiseksi
CN102443440A (zh) * 2010-10-15 2012-05-09 中国石油化工股份有限公司 固定床加压气化制合成气装置
CN102443439A (zh) * 2010-10-15 2012-05-09 中国石油化工股份有限公司 固定床加压气化制合成气方法
FI20106204L (fi) * 2010-11-16 2012-05-17 Vapo Oy Menetelmä mäntyöljyn tislauksesta saatavien tislejakeiden hyödyntämiseksi btl- tai sellutehtaassa
EP2484427B1 (en) 2011-02-08 2017-07-19 Neste Oyj A two-stage gas washing method
US8951476B2 (en) 2011-03-24 2015-02-10 Cool Planet Energy Systems, Inc. System for making renewable fuels
US8143464B2 (en) 2011-03-24 2012-03-27 Cool Planet Biofuels, Inc. Method for making renewable fuels
US8900443B2 (en) 2011-04-07 2014-12-02 Uop Llc Method for multi-staged hydroprocessing using quench liquid
ES2785988T3 (es) * 2011-05-30 2020-10-08 Neste Oyj Procedimiento de producción de una composición de hidrocarburo
WO2012175796A1 (en) * 2011-06-23 2012-12-27 Upm-Kymmene Corporation Integrated biorefinery plant for the production of biofuel
ES2746912T3 (es) * 2011-06-30 2020-03-09 Neste Oyj Método para ajustar la relación de hidrógeno a monóxido de carbono en un gas de síntesis
US9127219B2 (en) 2011-07-19 2015-09-08 General Electric Company Additive systems for biomass gasification
EP2564918B1 (en) 2011-08-31 2018-03-07 Neste Oyj A two-stage gas washing method applying sulfide precipitation and alkaline absorption
BR112014009997A2 (pt) * 2011-10-26 2020-12-01 Rentech, Inc. método e sistema para à produção de gás de síntese
JP5835003B2 (ja) * 2012-02-27 2015-12-24 Jfeスチール株式会社 有機物質の利材化方法
US20130270483A1 (en) * 2012-04-12 2013-10-17 Primus Green Energy Inc. Catalytical gasifier configuration for biomass pyrolysis
US8835517B2 (en) * 2012-05-30 2014-09-16 Cool Planet Energy Systems, Inc. Method for producing dimethyl ether using a separator
US9527022B2 (en) * 2012-06-08 2016-12-27 Uop Llc Method and apparatus for producing pyrolysis oil having improved stability
FI20125658L (fi) * 2012-06-14 2013-12-15 Upm Kymmene Corp Menetelmä ja järjestelmä nestemäisen polttoaineen valmistamiseksi biomassasta
CN102703107B (zh) * 2012-06-26 2015-04-01 武汉凯迪工程技术研究总院有限公司 一种由生物质生产的合成气制造液态烃产品的方法
CN102730637B (zh) * 2012-07-17 2014-12-10 武汉凯迪工程技术研究总院有限公司 低碳排放的费托合成尾气综合利用工艺
JP6103628B2 (ja) * 2012-11-26 2017-03-29 国立研究開発法人産業技術総合研究所 メタン改質方法および、それに用いるメタン改質触媒
ITMI20130039A1 (it) * 2013-01-14 2014-07-15 Eni Spa Procedimento integrato per produrre idrocarburi a partire da materiale carbonioso
JP2014205806A (ja) * 2013-04-15 2014-10-30 株式会社Ihi ガス化ガス生成システム
JP6146351B2 (ja) * 2014-03-20 2017-06-14 Jfeスチール株式会社 一酸化炭素及び水素の製造方法
AU2015333547B2 (en) * 2014-10-15 2020-03-05 Canfor Pulp Ltd Integrated kraft pulp mill and thermochemical conversion system
CN104449793A (zh) * 2014-12-11 2015-03-25 广州迪森热能技术股份有限公司 生物质液化系统
EP3241804A1 (en) * 2016-05-03 2017-11-08 Casale SA Process for producing a synthesis gas
US10364398B2 (en) 2016-08-30 2019-07-30 Thermochem Recovery International, Inc. Method of producing product gas from multiple carbonaceous feedstock streams mixed with a reduced-pressure mixing gas
DE102017210044A1 (de) * 2017-06-14 2018-12-20 Thyssenkrupp Ag Nachbehandlungsanordnung und Verfahren zum Nachbehandeln von zumindest Gasen stromab einer Wirbelschichtvergasung sowie Logikeinheit und Verwendung
WO2020016806A1 (en) * 2018-07-17 2020-01-23 Sabic Global Technologies B.V. Process for removal of sulfides from carbon monoxide rich gas stream at ambient temperatures
CN109852421A (zh) * 2019-02-25 2019-06-07 合肥德博生物能源科技有限公司 一种生物质气化制氢的装置和方法
US20220177790A1 (en) * 2019-03-29 2022-06-09 Eastman Chemical Company Gasification of densified textiles and solid fossil fuels to produce organic compounds
AU2020384273A1 (en) * 2019-11-11 2022-05-26 Takachar Limited System and method for the control of biomass conversion systems
GB2593939B (en) * 2020-04-09 2022-04-27 Velocys Tech Limited Manufacture of a synthetic fuel
WO2023201091A1 (en) * 2022-04-15 2023-10-19 Mote, Inc. Method of producing syngas from biomass utilizing tail gas for tar removal
WO2024089472A1 (en) * 2022-10-26 2024-05-02 Aether Fuels Pte. Ltd. Enhanced gasification system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1713420A3 (ru) * 1984-01-30 1992-02-15 Флуор Корпорейшн (Фирма) Автотермический реактор дл получени синтезгаза

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1746464A (en) 1925-07-21 1930-02-11 Fischer Franz Process for the production of paraffin-hydrocarbons with more than one carbon atom
US4592762A (en) * 1981-10-22 1986-06-03 Institute Of Gas Technology Process for gasification of cellulosic biomass
US5980858A (en) * 1996-04-23 1999-11-09 Ebara Corporation Method for treating wastes by gasification
CN1536270A (zh) * 1998-11-05 2004-10-13 株式会社荏原制作所 可燃物气化发电系统
AU6258001A (en) * 2000-06-12 2001-12-24 Sasol Tech Pty Ltd Cobalt catalysts
US6596780B2 (en) * 2001-10-23 2003-07-22 Texaco Inc. Making fischer-tropsch liquids and power
US20080021120A1 (en) 2006-07-18 2008-01-24 Norbeck Joseph M Operation of a steam hydro-gasifier in a fluidized bed reactor
US20080031809A1 (en) * 2006-07-18 2008-02-07 Norbeck Joseph M Controlling the synthesis gas composition of a steam methane reformer
US7753973B2 (en) * 2002-06-27 2010-07-13 Galloway Terry R Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
WO2004037717A1 (en) * 2002-10-28 2004-05-06 Sasol Technology (Proprietary) Limited Production of synthesis gas and synthesis gas derived products
SE526429C2 (sv) 2003-10-24 2005-09-13 Swedish Biofuels Ab Metod för att framställa syreinnehållande föreningar utgående från biomassa
FR2861402B1 (fr) 2003-10-24 2008-09-12 Inst Francais Du Petrole Production de carburants liquides par un enchainement de procedes de traitement d'une charge hydrocarbonee
US7235172B2 (en) 2004-02-25 2007-06-26 Conocophillips Company Olefin production from steam cracking using process water as steam
US7892511B2 (en) * 2004-07-02 2011-02-22 Kellogg Brown & Root Llc Pseudoisothermal ammonia process
GB0423037D0 (en) 2004-10-18 2004-11-17 Accentus Plc Process and plant for treating biomass
US20060149423A1 (en) * 2004-11-10 2006-07-06 Barnicki Scott D Method for satisfying variable power demand
KR20080031380A (ko) 2005-07-05 2008-04-08 쉘 인터내셔날 리써취 마트샤피지 비.브이. 합성 가스의 제조 시스템 및 그 방법
US20070100003A1 (en) * 2005-10-28 2007-05-03 Holley James L Hybrid system for Gasification of Biomass and conversion to synthesis gas suitable for fuel synthesis, with 3 potential applications
US20070129450A1 (en) * 2005-11-18 2007-06-07 Barnicki Scott D Process for producing variable syngas compositions
DE102006054472B4 (de) * 2006-11-18 2010-11-04 Lurgi Gmbh Verfahren zur Gewinnung von Kohlendioxid
US8137655B2 (en) * 2008-04-29 2012-03-20 Enerkem Inc. Production and conditioning of synthesis gas obtained from biomass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1713420A3 (ru) * 1984-01-30 1992-02-15 Флуор Корпорейшн (Фирма) Автотермический реактор дл получени синтезгаза

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2670761C2 (ru) * 2013-06-26 2018-10-25 Праксайр Текнолоджи, Инк. Регулирование кислого газа в процессе производства жидкого топлива
RU2670761C9 (ru) * 2013-06-26 2018-12-17 Праксайр Текнолоджи, Инк. Регулирование кислого газа в процессе производства жидкого топлива

Also Published As

Publication number Publication date
RU2010121237A (ru) 2011-12-10
US9434615B2 (en) 2016-09-06
PL2190950T3 (pl) 2017-04-28
DK3135747T3 (da) 2021-05-31
DK2190950T3 (en) 2016-11-28
CA2693401C (en) 2016-04-12
WO2009013233A2 (en) 2009-01-29
EP3135747B1 (en) 2021-04-28
WO2009013233A3 (en) 2009-09-17
EP3135747A1 (en) 2017-03-01
ES2603281T3 (es) 2017-02-24
CN101848979A (zh) 2010-09-29
PL3135747T3 (pl) 2021-07-19
ES2873524T3 (es) 2021-11-03
US20100305220A1 (en) 2010-12-02
EP2190950B1 (en) 2016-09-07
EP2190950A2 (en) 2010-06-02
CA2693401A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
RU2459857C2 (ru) Способ и устройство для получения жидкого биотоплива из твердой биомассы
JP5384649B2 (ja) 炭素質フィードストックのガス化のための方法
US8361428B2 (en) Reduced carbon footprint steam generation processes
AU661176B2 (en) Integrated carbonaceous fuel drying and gasification processand apparatus
KR101424941B1 (ko) 탄소질 공급원료의 히드로메탄화
US8888875B2 (en) Methods for feedstock pretreatment and transport to gasification
EP2350233B1 (en) Method and apparatus for producing liquid biofuel from solid biomass
KR20110070878A (ko) 차르 메탄화 촉매를 사용한 기체화 방법
JP2010024448A (ja) 代替天然ガスの製造設備及び方法
KR101818783B1 (ko) 이-단 가스 발생 장치로 저 메탄 합성가스의 생산
WO2012117423A1 (en) A method and a system for synthetic liquid fuel production by indirect gasification
JP6173333B2 (ja) バイオメタンの製造方法
KR20140080453A (ko) 열 교환기가 구비된 순환 유동층 가스화기
Hernández et al. Gasification of grapevine pruning waste in an entrained-flow reactor: gas products, energy efficiency and gas conditioning alternatives
US11268030B1 (en) Direct biochar cooling methods and systems
US11268031B1 (en) Direct biochar cooling methods and systems
US11268039B1 (en) Direct biochar cooling methods and systems
US11268029B1 (en) Direct biochar cooling methods and systems
WO2022182474A1 (en) Direct biochar cooling gas methods
WO2022182475A1 (en) Direct biochar cooling steam methods
NZ626549B2 (en) Biomethane production method