RU2432469C2 - Устройство оценки количества накопления твердых частиц в дизельном фильтре твердых частиц - Google Patents

Устройство оценки количества накопления твердых частиц в дизельном фильтре твердых частиц Download PDF

Info

Publication number
RU2432469C2
RU2432469C2 RU2009148503/06A RU2009148503A RU2432469C2 RU 2432469 C2 RU2432469 C2 RU 2432469C2 RU 2009148503/06 A RU2009148503/06 A RU 2009148503/06A RU 2009148503 A RU2009148503 A RU 2009148503A RU 2432469 C2 RU2432469 C2 RU 2432469C2
Authority
RU
Russia
Prior art keywords
amount
accumulation
model
dftc
engine
Prior art date
Application number
RU2009148503/06A
Other languages
English (en)
Other versions
RU2009148503A (ru
Inventor
Казунари ИДЕ (JP)
Казунари ИДЕ
Original Assignee
Мицубиси Хэви Индастриз, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мицубиси Хэви Индастриз, Лтд. filed Critical Мицубиси Хэви Индастриз, Лтд.
Publication of RU2009148503A publication Critical patent/RU2009148503A/ru
Application granted granted Critical
Publication of RU2432469C2 publication Critical patent/RU2432469C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Изобретение относится к устройству оценки количества накопления Твердых Частиц (ТЧ) в Дизельном Фильтре Твердых Частиц (ДФТЧ). Сущность изобретения: устройство оценки количества накопления ТЧ в ДФТЧ предназначено для оценки количества накопления ТЧ в ДФТЧ, предоставленном для удаления ТЧ из выхлопных газов, и оно включает в себя модель оценки количества эмиссии ТЧ, в которой количество эмиссии ТЧ устанавливается на основании рабочего состояния двигателя, модели количества регенерации ТЧ, в которой количество регенерации ТЧ устанавливается на основании температурной разницы между температурой на выходе и температурой на входе ДФТЧ, и модель дифференциального давления ДФТЧ, в которой количество накопления ТЧ устанавливается на основании дифференциального давления между потоковой скоростью выхлопных газов и ДФТЧ, причем оцененное количество накопления ТЧ в ДФТЧ вычисляется путем суммирования скорректированного количества накопления ТЧ, получаемого путем применения коэффициента K, который определяется на основании скорости вращения двигателя и количества впрыска топлива двигателя, а также разности между количеством эмиссии ТЧ и количеством регенерации ТЧ. Техническим результатом изобретения является обеспечение повышенной точность оценки. 3 з.п. ф-лы, 7 ил.

Description

Область техники
Настоящее изобретение относится к устройству оценки количества накопления Твердых Частиц (ТЧ) в Дизельном Фильтре Твердых Частиц (ДФТЧ), которое оценивает количество накопления в ДФТЧ. Устройство оценки количества накопления ТЧ в ДФТЧ используется с регенерирующим устройством ДФТЧ дизельного двигателя, которое снабжено ДФТЧ для удаления ТЧ из выхлопных газов, причем ДФТЧ устанавливается в выхлопном патрубке, который соединен с выхлопным отверстием.
Уровень техники
ДФТЧ, используемые в дизельных двигателях для удаления твердых частиц в выхлопных газах двигателя, бывают двух типов - металлического типа и керамического типа. ДФТЧ металлического типа просты в эксплуатации, но имеют низкую эффективность захвата, которая составляет от 50 до 60%. Между тем, ДФТЧ керамического типа имеют высокую эффективность захвата (90% и более), но в них имеет место накопление ТЧ, что требует принудительного сжигания этих ТЧ.
Ожидается, что в будущем ограничения по ТЧ будут еще строже, и, соответственно, ДФТЧ керамического типа, которые имеют высокую эффективность захвата, рассматриваются как приоритетное перспективное решение. Для регенерации ДФТЧ крайне важно точно оценивать количество накопления ТЧ на основании истории эксплуатации двигателя и состояния ДФТЧ.
Фиг.6 представляет собой продольный разрез типового устройства ДФТЧ. На фиг.6 ссылочный номер 13 обозначает выхлопную трубу, соединенную с выхлопным отверстием двигателя (не показан), а ссылочный номер 50 обозначает устройство ДФТЧ, соединенное с выхлопной трубой 13. Устройство 50 ДФТЧ включает в себя ДФТЧ 1, расположенный в главном блоке 2 ДФТЧ, и окислительный катализатор 3 предварительной ступени, установленный на входной стороне ДФТЧ 1.
Выхлопные газы из двигателя проходят через впускную камеру 4 из выхлопной трубы 13 и попадают в окислительный катализатор 3 предварительной ступени, где выхлопные газы окисляются. Генерируемое тепло приводит к нагреванию ДФТЧ 1 до температуры 600-650°C, чтобы сжечь ТЧ, накопившиеся в ДФТЧ 1, и газообразные продукты горения выводятся наружу через выпускную камеру 5.
Ссылаясь на фиг.6, P1 обозначает давление на входе ДФТЧ 1, T1 обозначает температуру на входе ДФТЧ 1, P2 обозначает давление на выходе ДФТЧ 1, а T2 обозначает температуру на выходе ДФТЧ 1.
Фиг.7 представляет собой структурную схему оценки количества накоплений ТЧ, применяемую в контроллере регенерации обычного ДФТЧ.
На данном чертеже величина количества эмиссии ТЧ, схематически вычисляемая как величина модели, устанавливается в модели 11 количества эмиссии ТЧ в форме карты оценки, причем упомянутая величина схематически вычисляется на основании частоты вращения двигателя, целевого количества впрыска топлива и степени открытия дроссельного клапана двигателя, а также степени открытия клапана Рециркуляции Отработавших Газов (РОГ), если рассматривается двигатель с РОГ.
Кроме того, величина количества регенерации ТЧ в ДФТЧ 1, схематически вычисленная как величина модели на основании действительно измеренной величины T1 температуры на входе ДФТЧ 1 и температуры T2 на выходе ДФТЧ 1, установлена в модели 12 количества регенерации ТЧ в форме карты оценки.
Далее, модель 12 количества регенерации ТЧ вычитается из модели 11 количества эмиссии ТЧ, чтобы определить логику 14a оценки количества ТЧ.
Между тем, величина потоковой скорости выхлопных газов, схематически вычисленная как величина модели, установлена в модели 13 потоковой скорости выхлопных газов в форме карты оценки, причем упомянутая величина вычисляется на основании частоты вращения двигателя, целевого количества впрыска топлива и степени открытия дроссельного клапана двигателя, а также степени открытия клапана РОГ, который регулирует величину РОГ, если используется двигатель с РОГ.
Сверх того, в качестве величины детектирования дифференциального давления ДФТЧ 1, дифференциальное давление между давлением P2 на выходе ДФТЧ 1 и давлением P1 на входе ДФТЧ 1 было вычислено как дифференциальное давление ДФТЧ.
Кроме того, дифференциальное давление ДФТЧ, схематически вычисленное как величина модели посредством модели 13 потоковой скорости выхлопных газов и дифференциального давления ДФТЧ, устанавливается как модель 15 дифференциального давления ДФТЧ в форме карты оценки.
Таким образом, в оценщике 17a количества накопления ТЧ величина накопления ТЧ, которая является общим количеством ТЧ, определяется посредством логики 14a оценки количества накопления ТЧ, которая была оценена, и модели 15 дифференциального давления ДФТЧ.
Кроме того, интегрированная величина количества впрыска топлива, вычисленная посредством интегрирующего измерителя 16 количества потребления топлива на основании частоты вращения двигателя и целевого количества впрыска топлива, а также времени, сохраняется в оценщике 17a количества накопления ТЧ.
Как описано выше, согласно предшествующему уровню техники, если три установленных элемента оценки, а именно логика 14a оценки количества накопления ТЧ, модель 15 дифференциального давления ДФТЧ и интегрирующий измеритель 16 количества потребления топлива, превышают контрольные верхние предельные величины количества накопления, то это означает, что количество накопления ТЧ достигло предельного значения.
Кроме того, согласно раскрытому Патентному Документу 1 (Опубликованная японская патентная заявка №2004-197722) первое количество ТЧ1 накопления ТЧ оценивается на основании дифференциального давления до и после ДФТЧ, количество эмиссии ТЧ интегрируется, чтобы вычислить второе количество ТЧ2 накопления ТЧ, и наибольшая из величин ТЧ1 и ТЧ2 принимается как количество накопления ТЧ, которое должно быть окончательной оцененной величиной.
В устройстве оценки количества накопления ДФТЧ, проиллюстрированном на фиг.7, три элемента оценки, то есть логика 14a оценки количества накопления ТЧ, модель 15 дифференциального давления ДФТЧ и интегрирующий измеритель 16 количества потребления топлива, конструируются независимым образом, и если превышаются верхние лимиты количества накопления, на которых основаны упомянутые три элемента, то это означает, что количество накопления ТЧ достигло предельного значения.
По этой причине, если действительное количество эмиссии ТЧ превышает значения в упомянутых элементах оценки, то вывод оцененного количества ТЧ, формируемый логикой 14a оценки количества накопления ТЧ, будет существенно отличаться от действительного количества накопления в течение времени, что вызывает проблемы, которые в особенности выражаются, если действительное количество накопления становится равным или более оцененного количества ТЧ.
Кроме того, в устройстве оценки количества накопления ДФТЧ, проиллюстрированном на фиг.7, модель 15 дифференциального давления ДФТЧ подвержена существенному влиянию потоковой скорости выхлопных газов, так что потоковая скорость выхлопных газов должна быть введена в модель оценивания. Тем не менее, точное измерение отношения между дифференциальным давлением ДФТЧ, потоковой скоростью выхлопных газов и количеством накопления ТЧ во всем рабочем диапазоне двигателя представляется сложной задачей. Следовательно, в зависимости от рабочего состояния двигателя, точность оценки модели 15 дифференциального давления ДФТЧ может деградировать.
В частности, когда рабочее состояние двигателя значительно меняется или в условиях низкой нагрузки, количество накопления ТЧ, оцененное посредством логики 14a оценки количества накопления ТЧ и модели 15 дифференциального давления ДФТЧ, может отличаться от действительного количества накопления.
Сущность изобретения
Исходя из проблем существующего уровня техники, описанных выше, целью настоящего изобретения является предоставление устройства оценки количества накопления ТЧ в ДФТЧ, в котором используется интегрированная логика оценки количества накопления ТЧ, комбинирующая разность между количеством эмиссии ТЧ двигателя и количеством регенерации ТЧ, и модель дифференциального давления ДФТЧ, таким образом обеспечивается повышенная точность оценки с минимальным воздействием изменений потоковой скорости выхлопных газов и т.п. на точность.
Для этой цели согласно настоящему изобретению предоставлено устройство оценки накопления ТЧ в ДФТЧ для оценки количества накопления ТЧ в ДФТЧ, предоставленном для удаления ТЧ из выхлопных газов, причем ДФТЧ устанавливается в выхлопном патрубке, соединенном с выхлопным отверстием, причем устройство оценки количества накопления ТЧ в ДФТЧ включает в себя модель количества эмиссии ТЧ, в которой количество эмиссии ТЧ устанавливается на основании рабочего состояния двигателя, модель количества регенерации ТЧ, в которой количество регенерации ТЧ устанавливается на основании температурной разности между температурой на выходе и на входе ДФТЧ, и модель дифференциального давления ДФТЧ, в которой количество накопления ТЧ устанавливается на основании дифференциального давления между потоковой скоростью выхлопных газов и ДФТЧ, причем количество эмиссии из модели количества эмиссии ТЧ, количество регенерации из модели количества регенерации ТЧ и скорректированное количество накопления ТЧ, которое получается путем коррекции оцененной величины количества накопления ТЧ из модели дифференциального давления ДФТЧ посредством коэффициента K, определяемого на основании частоты вращения двигателя и количества впрыска топлива двигателя, используются для вычисления оцененного количества накопления ТЧ в ДФТЧ.
Описанное выше изобретение отличается тем, что скорректированное количество накопления ТЧ вычисляется путем умножения погрешности оценки между оцененной величиной количества накопления ТЧ из модели дифференциального давления ДФТЧ и оцененным количеством накопления ТЧ на упомянутый коэффициент K, а оцененное количество накопления ТЧ вычисляется путем суммирования скорректированного количества накопления ТЧ и величины, получаемой путем вычитания количества регенерации, полученного из модели количества регенерации ТЧ, из количества эмиссии, полученного из модели количества эмиссии ТЧ.
Кроме того, упомянутый коэффициент, предпочтительно, устанавливается следующим образом.
(1) Коэффициент K определяется таким образом, что он увеличивается по мере увеличения частоты вращения двигателя и количества впрыска топлива двигателя, когда упомянутая частота вращения двигателя и количество впрыска топлива двигателя равны или больше предопределенных величин.
(2) Коэффициент K устанавливается в нулевое значение, когда изменения частоты вращения двигателя и количества впрыска топлива двигателя равны или больше предопределенных величин, и оцененная величина количества накопления ТЧ из модели дифференциального давления ДФТЧ не корректируется.
Согласно настоящему изобретению устройство оценки накопления ТЧ в ДФТЧ содержит модель количества эмиссии ТЧ, в которой количество эмиссии ТЧ устанавливается на основании рабочего состояния двигателя, модель количества регенерации ТЧ, в которой количество регенерации ТЧ устанавливается на основании температурной разности между температурой на выходе и на входе ДФТЧ, и модель дифференциального давления ДФТЧ, в которой количество накопления ТЧ устанавливается на основании дифференциального давления между потоковой скоростью выхлопных газов и ДФТЧ, причем количество эмиссии из модели количества эмиссии ТЧ, количество регенерации из модели количества регенерации и скорректированное количество накопления ТЧ, которое было получено путем коррекции оцененной величины количества накопления ТЧ из модели дифференциального давления ДФТЧ посредством коэффициента K, определяемого на основании частоты вращения двигателя и количества впрыска топлива двигателя, используются для вычисления оцененного количества накопления ТЧ в ДФТЧ. Таким образом, даже если карта количества эмиссии ТЧ и карта количества регенерации ТЧ содержат погрешности, эти погрешности корректируются посредством оцененной величины из модели дифференциального давления ДФТЧ, в результате чего обеспечивается повышенная точность для оценки количества накопления ТЧ.
Данная схема предотвращает существенное расхождение между оцененным количеством накопления ТЧ и действительным количеством накопления ТЧ.
Сверх того скорректированное количество накопления ТЧ вычисляется путем умножения погрешности оценки между оцененной величиной количества накопления ТЧ из модели дифференциального давления ДФТЧ и оцененным количеством накопления ТЧ на упомянутый коэффициент K, а оцененное количество накопления ТЧ вычисляется путем суммирования скорректированного количества накопления ТЧ и величины, получаемой путем вычитания количества регенерации, полученного из модели количества регенерации ТЧ, из количества эмиссии, полученного из модели количества эмиссии ТЧ. Таким образом, коэффициент K, учитывающий такие факторы, как частота вращения двигателя и количество впрыска топлива двигателя, которые соответствуют потоковой скорости выхлопных газов, используется для оценки количества накопления ТЧ, так что воздействие потоковой скорости выхлопных газов на точность оценки сокращается, в результате чего обеспечивается более высокая точность оценки количества ТЧ.
Кроме того, коэффициент K меняется с частотой вращения двигателя и количеством впрыска топлива двигателя, и коэффициент K определяется таким образом, что он увеличивается по мере увеличения частоты вращения двигателя и количества впрыска топлива двигателя, если частота вращения двигателя и количество впрыска топлива двигателя равны или больше предопределенных величин. Таким образом, установка коэффициента K таким образом, чтобы он увеличивался по мере увеличения частоты вращения двигателя и количества впрыска топлива двигателя, улучшает коррекцию на основании оцененного количества из модели дифференциального давления ДФТЧ в диапазоне, где потоковая скорость выхлопных газов увеличивается, и обеспечивается высокая надежность модели дифференциального давления ДФТЧ. Оцененное количество накопления ТЧ, основанное на рабочем состоянии двигателя, может быть скорректировано в усовершенствованном окружении коррекции, в результате чего обеспечивается более высокая точность оценки для оцениваемого количества накопления ТЧ.
Сверх того коэффициент K устанавливается в нулевое значение, когда изменения частоты вращения двигателя и количества впрыска топлива двигателя равны или больше предопределенных величин, и оцененная величина количества накопления ТЧ из модели дифференциального давления ДФТЧ не корректируется. Следовательно, когда изменения частоты вращения двигателя и количества впрыска топлива двигателя равны или больше предопределенных величин, потоковая скорость выхлопных газов также значительно меняется, что приводит к ухудшению надежности оцененного количества накопления ТЧ из модели дифференциального давления ДФТЧ. По этой причине точность оценки для оцененного количества накопления ТЧ повышается путем установки коэффициента K в нулевое значение так, чтобы не выполнять коррекцию при таких изменениях.
Краткое описание чертежей
Фиг.1 - структурная схема оценки количества накоплений ТЧ в контроллере регенерации ДФТЧ согласно первому варианту осуществления настоящего изобретения;
Фиг.2 - увеличенный вид логики оценки количества накопления ТЧ согласно первому варианту осуществления настоящего изобретения;
Фиг.3 - увеличенный вид логики оценки количества накопления ТЧ согласно второму варианту осуществления настоящего изобретения;
Фиг.4 - схема последовательности операций управления в устройстве оценки количества накопления ТЧ в первом варианте осуществления настоящего изобретения;
Фиг.5(A) и 5(B) - графики, иллюстрирующие коэффициент K в первом варианте осуществления;
Фиг.6 - продольный разрез типового устройства ДФТЧ;
Фиг.7 - структурная схема оценки количества накоплений ТЧ в контроллере регенерации ДФТЧ согласно существующему уровню техники.
Лучший вариант осуществления изобретения
Ниже следует подробное описание настоящего изобретения со ссылкой на варианты осуществления, проиллюстрированные в прилагаемых чертежах. Тем не менее показанные размеры, материалы, формы, относительное расположение и т.п. различных компонентов не ограничивают объем настоящего изобретения и являются лишь примером, если не указано иного.
Первый вариант осуществления
Фиг.1 представляет собой структурную схему оценки количества накопления ТЧ в контроллере регенерации ДФТЧ согласно настоящему изобретению, а фиг.2 представляет собой увеличенный вид логики 14 оценки количества накопления ТЧ с фиг.1. Фиг.6 представляет собой продольный разрез типового устройства ДФТЧ.
На фиг.6, ссылочный номер 13 обозначает выхлопную трубу, соединенную с выхлопным отверстием двигателя (не показано), а ссылочный номер 50 обозначает устройство ДФТЧ, соединенное с выхлопной трубой 13. Устройство 50 ДФТЧ включает в себя ДФТЧ 1, расположенный в главном блоке 2 ДФТЧ, и окислительный катализатор 3 предварительной ступени, установленный на входной стороне ДФТЧ 1.
Выхлопные газы из двигателя проходят через впускную камеру 4 из выхлопной трубы 13 и попадают в окислительный катализатор 3 предварительной ступени, где выхлопные газы окисляются. Генерируемое тепло приводит к нагреванию ДФТЧ 1 до температуры 600-650°C, чтобы сжечь ТЧ, накопившиеся в ДФТЧ 1, и газообразные продукты горения выводятся наружу через выпускную камеру 5.
Ссылаясь на фиг.6, P1 обозначает давление на входе ДФТЧ 1, T1 обозначает температуру на входе ДФТЧ 1, P2 обозначает давление на выходе ДФТЧ 1, а T2 обозначает температуру на выходе ДФТЧ 1.
Настоящее изобретение относится к устройству оценки количества накопления ТЧ в устройстве ДФТЧ, проиллюстрированном на фиг.6.
На фиг.1 величина количества эмиссии ТЧ, схематически вычисленная как величина модели на основании частоты вращения двигателя, целевого количества впрыска топлива, степени открытия дроссельного клапана двигателя, а также степени открытия клапана Рециркуляции Отработавших Газов (РОГ), если рассматривается двигатель с РОГ, устанавливаются в модели 11 количества эмиссии ТЧ в форме карты оценки.
Кроме того, величина количества регенерации ТЧ в ДФТЧ 1, схематически вычисленная как величина модели на основании действительно измеренной величины T1 температуры на входе ДФТЧ 1 и температуры T2 на выходе ДФТЧ 1, а также потоковой скорости выхлопных газов, установлена в модели 12 количества регенерации ТЧ в форме карты оценки.
Между тем величина потоковой скорости отработавших газов, схематически вычисленная как величина модели на основании частоты вращения двигателя, целевого количества впрыска топлива, степени открытия дроссельного клапана двигателя, а также степени открытия клапана РОГ, если используется двигатель с РОГ, установлена в модели 13 потоковой скорости выхлопных газов в форме карты оценки.
Кроме того, в качестве величины детектирования дифференциального давления ДФТЧ 1, дифференциальное давление между давлением P2 на выходе ДФТЧ 1 и давлением P1 на входе ДФТЧ 1 (см.Фиг.6) вычисляется как дифференциальное давление ДФТЧ.
Кроме того, дифференциальное давление ДФТЧ, схематически вычисленное как величина модели посредством модели 13 потоковой скорости выхлопных газов и дифференциального давления ДФТЧ, устанавливается как модель 15 дифференциального давления ДФТЧ в форме карты оценки.
Кроме того, на фиг.2 количество v эмиссии из модели 11 количества эмиссии ТЧ, количество w регенерации ТЧ из модели 12 количества регенерации ТЧ и оцененное количество yd накопления ТЧ из модели 15 дифференциального давления ДФТЧ вводятся в логику 14 оценки количества накопления ТЧ.
В логике 14 оценки количества накопления ТЧ:
dx/dt=v-w+K(yd-y)
y=x,
где x обозначает оцененную величину количества накопления ТЧ.
Далее, x заменяется на y, чтобы вычислить оцененное количество (g) накопления ТЧ.
Здесь коэффициент K представляет собой коэффициент, который определяется на основании частоты вращения двигателя и количества впрыска топлива двигателя, и вычисляется величина K(yd-y), которая являет собой величину накопления ТЧ, скорректированную посредством коэффициента K.
(yd-y) обозначает погрешность оценки между оцененным количеством yd накопления ТЧ и оцененным количеством y накопления ТЧ из модели 15 дифференциального давления ДФТЧ, и разность погрешностей умножается на коэффициент K, чтобы вычислить скорректированную величину накопления ТЧ.
Если частота вращения двигателя и количество впрыска топлива двигателя превышают соответствующие величины, то скорректированное количество накопления ТЧ вычисляется путем умножения оцененной погрешности между оцененной величиной количества накопления ТЧ и оцененным количеством накопления ТЧ из модели дифференциального давления ДФТЧ на упомянутый коэффициент K, а оцененное количество накопления ТЧ вычисляется путем суммирования скорректированного количества накопления ТЧ и величины, получаемой путем вычитания количества регенерации, полученного из модели количества регенерации ТЧ, из количества эмиссии, полученного из модели количества эмиссии ТЧ.
Таким образом, коэффициент K, учитывающий такие факторы, как частота вращения двигателя и количество впрыска топлива двигателя, которые соответствуют потоковой скорости выхлопных газов, используется для оценки количества накопления ТЧ, так что воздействие потоковой скорости выхлопных газов сокращается, в результате чего обеспечивается более высокая точность оценки количества накопления ТЧ.
Фиг.4 представляет собой схему последовательности операций управления для устройства оценки количества накопления ТЧ согласно вышеизложенному описанию.
Ссылаясь на фиг.4, количество yd накопления из дифференциального давления ДФТЧ оценивается посредством модели 11 количества эмиссии ТЧ, модели 12 количества регенерации ТЧ, потоковой скорости выхлопных газов и т.п. (этап 1), и посредством вышеперечисленного определяется фактор (коэффициент) K усиления (этап 2).
Далее, оценивается (x→y) количество накопления ТЧ (этап 3), и если упомянутое количество накопления ТЧ превышает верхнюю пороговую величину количества накопления (этап 4), то выполняется принудительная регенерация ДФТЧ (этап 5).
Второй вариант осуществления
Фиг.3 представляет собой структурную схему логики оценки количества накопления ТЧ в контроллере регенерации ДФТЧ согласно второму варианту осуществления настоящего изобретения.
Во втором варианте осуществления, как проиллюстрировано на фиг.5(A) и 5(B), вышеупомянутый коэффициент K определяется таким образом, что он изменяется в соответствии с частотой вращения двигателя и количеством впрыска топлива двигателя (14s на фиг.3), увеличивается со скоростью вращения двигателя, как проиллюстрировано на фиг.5(A), и увеличивается по мере увеличения количества впрыска топлива двигателя, как проиллюстрировано на фиг.5(B).
Согласно данной структуре коэффициент K увеличивается по мере увеличения частоты вращения двигателя и количества впрыска топлива двигателя, и оцененное количество накопления ТЧ увеличивается по мере увеличения потоковой скорости выхлопных газов двигателя, что обеспечивает возможность коррекции оцененного количества накопления ТЧ в соответствии с рабочим состоянием двигателя. Результатом является повышение точности оценки количества накопления ТЧ.
Сверх того когда изменения частоты вращения двигателя и количество впрыска топлива двигателя равны или больше предопределенных величин, изменения потоковой скорости выхлопных газов также имеют соответствующую большую величину, что вызывает ухудшение надежности оцененного количества накопления ТЧ из модели дифференциального давления ДФТЧ. По этой причине при таких изменениях коэффициент K устанавливается в нулевое значение, чтобы предотвратить коррекцию, в результате чего повышается точность оценки количества накопления ТЧ.
Таким образом, согласно первому и второму вариантам осуществления, количество накопления ТЧ оценивается гибридным образом на основании количества эмиссии ТЧ из модели 11 количества эмиссии ТЧ, в которой количество эмиссии ТЧ устанавливается согласно рабочему состоянию двигателя, температурной разницы между температурой на выходе и температурой на входе ДФТЧ, количества регенерации ТЧ из модели 12 количества регенерации ТЧ, в которой количество регенерации ТЧ устанавливается согласно потоковой скорости выхлопных газов, и скорректированного количества накопления ТЧ, получаемого путем коррекции оцененной величины из модели 15 дифференциального давления ДФТЧ посредством коэффициента K, определенного на основании частоты вращения двигателя и количества впрыска топлива двигателя. Следовательно, даже если карта 11 количества эмиссии ТЧ и карта 12 количества регенерации ТЧ содержат погрешности, то эти погрешности корректируются посредством оцененной величины из модели дифференциального давления ДФТЧ, в результате чего обеспечивается повышенная точность для оценки количества накопления ТЧ.
Данная схема предотвращает существенное расхождение между оцененным количеством накопления ТЧ и действительным количеством накопления ТЧ.
Промышленная применимость
Согласно настоящему изобретению обеспечивается возможность предоставления устройства оценки количества накопления ТЧ в ДФТЧ с повышенной точностью оценки, которое минимизирует воздействие изменений потоковой скорости выхлопных газов и т.п. путем использования интегрированной логики оценки количества накопления ТЧ, которая комбинирует разность между количеством эмиссии ТЧ двигателя и количеством регенерации ТЧ, а также модели дифференциального давления ДФТЧ.

Claims (4)

1. Устройство оценки количества накопления твердых частиц (ТЧ) в дизельном фильтре твердых частиц (ДФТЧ), которое оценивает количество накопления ТЧ в ДФТЧ, предоставленном для удаления ТЧ из выхлопных газов, причем ДФТЧ установлен в выхлопном патрубке, соединенном с выхлопных отверстием, причем упомянутое устройство оценки количества накопления ТЧ в ДФТЧ содержит: модель количества эмиссии ТЧ, в которой количество эмиссии ТЧ устанавливается на основании рабочего состояния двигателя; модель количества регенерации ТЧ, в которой количество регенерации ТЧ устанавливается на основании температурной разности между температурой на выходе и температурой на входе ДФТЧ; и модель дифференциального давления ДФТЧ, в которой количество накопления ТЧ устанавливается на основании дифференциального давления между потоковой скоростью выхлопных газов и ДФТЧ, причем количество эмиссии из модели количества эмиссии ТЧ, количество регенерации из модели количества регенерации ТЧ и скорректированное количество накопления ТЧ, которое было получено путем коррекции оцененной величины количества накопления ТЧ из модели дифференциального давления ДФТЧ посредством коэффициента K, определяемого на основании частоты вращения двигателя и количества впрыска топлива двигателя, используются для вычисления оцененного количества накопления ТЧ в ДФТЧ.
2. Устройство оценки накопления ТЧ в ДВТЧ по п.1, в котором скорректированное количество накопления ТЧ вычисляется путем умножения погрешности оценки между оцененной величиной количества накопления ТЧ из модели дифференциального давления ДФТЧ и оцененного количества накопления ТЧ на упомянутый коэффициент K, а оцененное количество накопления ТЧ вычисляется путем суммирования скорректированного количества накопления ТЧ и величины, получаемой путем вычитания количества регенерации, полученного из модели количества регенерации ТЧ, из количества эмиссии, полученного из модели количества эмиссии ТЧ.
3. Устройство оценки количества накопления ТЧ в ДФТЧ по п.1, в котором коэффициент K определяется таким образом, что коэффициент K увеличивается по мере увеличения частоты вращения двигателя и количества впрыска топлива двигателя в случае, если частота вращения двигателя и количество впрыска топлива двигателя равны или больше предопределенных величин.
4. Устройство оценки количества накопления ТЧ в ДФТЧ по п.1, в котором коэффициент K устанавливается в нулевое значение, когда изменения частоты вращения двигателя и количества впрыска топлива двигателя равны или больше предопределенных величин, и оцененная величина количества накопления ТЧ из модели дифференциального давления ДФТЧ не корректируется.
RU2009148503/06A 2008-02-08 2009-01-28 Устройство оценки количества накопления твердых частиц в дизельном фильтре твердых частиц RU2432469C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-029317 2008-02-08
JP2008029317A JP5123686B2 (ja) 2008-02-08 2008-02-08 Dpf堆積量推定装置

Publications (2)

Publication Number Publication Date
RU2009148503A RU2009148503A (ru) 2011-06-27
RU2432469C2 true RU2432469C2 (ru) 2011-10-27

Family

ID=40952151

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009148503/06A RU2432469C2 (ru) 2008-02-08 2009-01-28 Устройство оценки количества накопления твердых частиц в дизельном фильтре твердых частиц

Country Status (8)

Country Link
US (1) US8286420B2 (ru)
EP (1) EP2163740B1 (ru)
JP (1) JP5123686B2 (ru)
KR (2) KR20120109659A (ru)
CN (1) CN101688451B (ru)
BR (1) BRPI0903891A2 (ru)
RU (1) RU2432469C2 (ru)
WO (1) WO2009099077A1 (ru)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2965013B1 (fr) * 2010-09-22 2012-08-31 Renault Sa Procede d'estimation adaptative d'une charge courante en suie d'un filtre a particules.
US20120102921A1 (en) * 2010-10-28 2012-05-03 Gm Global Technology Operations, Inc. System and method for controlling regeneration of an exhaust after-treatment device
CN102656438B (zh) * 2010-11-08 2015-02-25 丰田自动车株式会社 内燃机的粒状物质检测装置
JP2012145056A (ja) * 2011-01-13 2012-08-02 Hitachi Constr Mach Co Ltd 作業機械の排気浄化装置
JP5325249B2 (ja) * 2011-03-18 2013-10-23 株式会社小松製作所 粒子状物質堆積量推定装置、排気ガス浄化システム、および粒子状物質堆積量推定方法
GB2490937A (en) * 2011-05-19 2012-11-21 Gm Global Tech Operations Inc Controlling the regeneration of a diesel particulate filter
CN103946507B (zh) * 2011-10-26 2017-07-21 博夏特汽车测试服务有限公司 用于柴油微粒过滤器的过热/过压安全装置
WO2013105423A1 (ja) * 2012-01-13 2013-07-18 日立建機株式会社 建設機械
US8904757B2 (en) * 2012-01-17 2014-12-09 GM Global Technology Operations LLC System and method for controlling regeneration within an after-treatment component of a compression-ignition engine
US20130204508A1 (en) * 2012-02-08 2013-08-08 GM Global Technology Operations LLC System and method for controlling an engine
US20130298529A1 (en) * 2012-05-14 2013-11-14 GM Global Technology Operations LLC System amd method for controlling an after-treatment component of a compression-ignition engine
US9303579B2 (en) * 2012-08-01 2016-04-05 GM Global Technology Operations LLC System and method for monitoring a particulate filter in a vehicle exhaust aftertreatment device
FR2994709B1 (fr) * 2012-08-22 2014-08-29 Peugeot Citroen Automobiles Sa Procede de correction d'une estimation en masse de suies dans un filtre a particules
US9114344B2 (en) * 2012-12-12 2015-08-25 GM Global Technology Operations LLC Particulate filter regeneration management
US9074507B2 (en) * 2013-08-07 2015-07-07 GM Global Technology Operations LLC Event-based deviation integration temperature control loop diagnostic system
CN103511043B (zh) * 2013-09-22 2015-10-07 潍柴动力股份有限公司 一种颗粒物捕集器的主动再生控制方法及装置
JP6201894B2 (ja) * 2014-05-28 2017-09-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
GB2525354B (en) * 2015-08-13 2016-08-24 Gm Global Tech Operations Llc A method of controlling a particulate filter
CN106481419B (zh) * 2016-11-08 2018-12-07 清华大学苏州汽车研究院(吴江) 一种柴油机微粒捕集器的积碳量计算方法
CN106640303B (zh) * 2017-01-25 2019-02-15 中国第一汽车股份有限公司 柴油机颗粒补集器的再生控制系统
FR3073252B1 (fr) * 2017-11-08 2019-10-04 Psa Automobiles Sa Procede de gestion de la regeneration d’un filtre a particules d’un vehicule automobile
JP6939493B2 (ja) * 2017-12-11 2021-09-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN110410180B (zh) * 2018-04-26 2023-04-28 罗伯特·博世有限公司 主动再生过程控制方法及系统、可读存储介质和控制单元
JP7070440B2 (ja) * 2019-01-07 2022-05-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
US11118518B2 (en) * 2019-07-23 2021-09-14 Caterpillar Inc. Method and system for aftertreatment control
CN110425022A (zh) * 2019-08-14 2019-11-08 广西玉柴机器股份有限公司 优化dpf碳载量标定效果的方法
CN111502807B (zh) * 2020-06-02 2021-03-23 徐州徐工挖掘机械有限公司 工程机械排气烟度测试方法、装置和系统、存储介质
EP4001601B1 (de) * 2020-11-16 2024-04-03 Robert Bosch GmbH Verfahren zur bestimmung einer russmasse zum beladen und/oder einer russmasse für eine regeneration eines partikelfilters mithilfe maschineller lernverfahren
CN112682144B (zh) * 2020-12-25 2022-06-28 潍柴动力股份有限公司 Dpf的碳载量确定方法和装置
CN112761757B (zh) * 2021-01-27 2022-03-15 东风商用车有限公司 一种dpf初始化自学习方法及装置
CN113606025B (zh) * 2021-08-20 2022-11-22 一汽解放汽车有限公司 一种用于柴油机dpf捕集效率故障诊断方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229223A (ja) 1988-03-09 1989-09-12 Osaka Prefecture 光シャッタ
JPH06341311A (ja) * 1993-06-03 1994-12-13 Toyota Autom Loom Works Ltd 排気ガス浄化装置
JP3846309B2 (ja) * 2001-02-05 2006-11-15 日産自動車株式会社 排気浄化装置
JP2002256846A (ja) 2001-02-28 2002-09-11 Bosch Automotive Systems Corp フィルタ制御装置
JP3707395B2 (ja) * 2001-04-26 2005-10-19 トヨタ自動車株式会社 排気ガス浄化装置
JP3911406B2 (ja) * 2001-11-21 2007-05-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
ITTO20020072A1 (it) * 2002-01-25 2003-07-25 Fiat Ricerche Metodo per la determinazione della quantita' di particolato accumulata in un filtro per particolato.
JP3885604B2 (ja) * 2002-02-14 2007-02-21 日産自動車株式会社 排気浄化装置
JP3824979B2 (ja) * 2002-08-09 2006-09-20 ボッシュ株式会社 フィルタ制御方法及び装置
JP2004197722A (ja) 2002-12-20 2004-07-15 Nissan Motor Co Ltd パティキュレートフィルタの再生装置及びエンジンの排気ガス浄化装置
JP3864910B2 (ja) * 2003-01-10 2007-01-10 日産自動車株式会社 内燃機関の排気浄化装置
ITTO20030999A1 (it) * 2003-12-12 2005-06-13 Fiat Ricerche Metodo di attivazione della rigenerazione di un filtro del particolato in base ad una stima della quantita' di particolato accumulata nel filtro del particolato.
JP4038187B2 (ja) * 2004-03-11 2008-01-23 トヨタ自動車株式会社 内燃機関排気浄化装置の粒子状物質再生制御装置
JP4424040B2 (ja) 2004-04-05 2010-03-03 株式会社デンソー 内燃機関の排気浄化装置
DE112005002682B4 (de) * 2004-11-25 2018-05-30 Avl List Gmbh Verfahren zum Ermitteln der Partikelemissionen im Abgasstrom einer Brennkraftmaschine
US7500358B2 (en) * 2006-08-11 2009-03-10 Fleetguard, Inc Apparatus, system, and method for enhancing soot filter protection

Also Published As

Publication number Publication date
KR20120109659A (ko) 2012-10-08
US20100319319A1 (en) 2010-12-23
RU2009148503A (ru) 2011-06-27
KR20100011987A (ko) 2010-02-03
US8286420B2 (en) 2012-10-16
EP2163740B1 (en) 2016-03-09
JP5123686B2 (ja) 2013-01-23
EP2163740A1 (en) 2010-03-17
BRPI0903891A2 (pt) 2015-06-30
WO2009099077A1 (ja) 2009-08-13
CN101688451B (zh) 2012-07-04
JP2009185781A (ja) 2009-08-20
KR101220610B1 (ko) 2013-01-10
EP2163740A4 (en) 2014-09-03
CN101688451A (zh) 2010-03-31

Similar Documents

Publication Publication Date Title
RU2432469C2 (ru) Устройство оценки количества накопления твердых частиц в дизельном фильтре твердых частиц
JP5325249B2 (ja) 粒子状物質堆積量推定装置、排気ガス浄化システム、および粒子状物質堆積量推定方法
US7721528B2 (en) Exhaust gas purifying apparatus for internal combustion engine
US8966882B2 (en) Differential pressure-based enablement of a particulate filter diagnostic
US8495861B2 (en) Fault detection system for PM trapper
EP1741907A2 (en) Diesel engine exhaust gas after-treatment device
CN108278146B (zh) 内燃机微粒过滤器控制系统
US10422265B2 (en) Exhaust gas purifying system and exhaust gas purifying method
US8596115B2 (en) Exhaust gas pressure loss calculation device for engine
JP4648274B2 (ja) 内燃機関の制御装置
US11536209B2 (en) Control device, engine, and control method of engine
US8387364B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP5912494B2 (ja) ディーゼルエンジンの排気浄化装置
JP2013019389A (ja) パティキュレートフィルタの故障診断装置
JP2006316682A (ja) 内燃機関の排気浄化装置
JP4737159B2 (ja) 内燃機関の排気浄化装置及び粒子状物質排出量推定方法
JP4432693B2 (ja) エンジンの排気浄化装置本発明はエンジンの排気浄化装置に関し、詳しくはエンジン排気中の微粒子状物質を捕集するフィルタの再生処理技術の改良に関する。
JP2005069207A (ja) 内燃機関の排気浄化装置
JP2010275891A (ja) 内燃機関の排気浄化装置
JP4776507B2 (ja) 内燃機関の制御装置
KR101571119B1 (ko) 엔진 유해 배기배출물 저감을 위한 엔진 제어 장치 및 방법
JP2015094309A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190129