RU2428453C2 - Каталитический пиролиз тонкоизмельченной биомассы и способ уменьшения размера частиц твердой биомассы - Google Patents

Каталитический пиролиз тонкоизмельченной биомассы и способ уменьшения размера частиц твердой биомассы Download PDF

Info

Publication number
RU2428453C2
RU2428453C2 RU2009105252/04A RU2009105252A RU2428453C2 RU 2428453 C2 RU2428453 C2 RU 2428453C2 RU 2009105252/04 A RU2009105252/04 A RU 2009105252/04A RU 2009105252 A RU2009105252 A RU 2009105252A RU 2428453 C2 RU2428453 C2 RU 2428453C2
Authority
RU
Russia
Prior art keywords
biomass
particle size
inorganic
particles
mixing
Prior art date
Application number
RU2009105252/04A
Other languages
English (en)
Other versions
RU2009105252A (ru
Inventor
Пол О'КОННОР (NL)
Пол О'Коннор
Деннис СТЭМАЙРС (US)
Деннис СТЭМАЙРС
Original Assignee
Кайор Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кайор Инк. filed Critical Кайор Инк.
Publication of RU2009105252A publication Critical patent/RU2009105252A/ru
Application granted granted Critical
Publication of RU2428453C2 publication Critical patent/RU2428453C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/086Hydrothermal carbonization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Catalysts (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к улучшенному способу термической конверсии измельченного источника энергии на основе углерода в специфически тонкой измельченной биомассе. Описан способ термической конверсии тонкоизмельченной биомассы, включающий стадии: а) обеспечение смеси тонкоизмельченной биомассы, теплоносителя и неорганического измельченного материала, причем обеспечение включает смешивание частиц биомассы, имеющих размер частиц в интервале 5-50 мм, с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 до 5 мм, и перемешивание смеси газом, посредством чего размер частиц биомассы уменьшается до 0,1-3 мм; b) подвергание смеси конверсии нагреванием до температуры от 150 до 600°С. Также описан способ получения биожидкости из твердого материала биомассы, причем указанный способ включает стадии: а) обеспечение твердой биомассы в форме частиц, имеющих размер частиц больше 5 мм; b) смешивание частиц биомассы стадии а) с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 мм до 5 мм; с) перемешивание смеси, полученной в стадии b), газом, посредством чего размер частиц биомассы уменьшают до 0,1-3 мм; d) подвергание частиц биомассы, полученных в стадии с), гидротермической или ферментативной, или термической, или каталитической конверсии. Технический результат - осуществление термической конверсии при более мягких условиях температуры в присутствии теплоносителя - измельченного неорганического материала и каталитически активного материала. 5 н. и 19 з.п. ф-лы.

Description

Уровень техники
Настоящее изобретение относится к улучшенному способу термической конверсии измельченного источника энергии на основе углерода в специфически тонкой измельченной биомассе.
Одной из проблем термической конверсии твердой биомассы является обеспечить подходящую среду для передачи тепловой энергии измельченному материалу. Песок был предложен в качестве такой подходящей среды, и об использовании песка в способе с псевдоожиженным слоем для термической конверсии биомассы сообщалось. Однако песок существенно инертен и не вносит иного вклада в саму реакцию термической конверсии, кроме роли теплоносителя.
Другой проблемой термической конверсии твердой биомассы является обеспечить биомассу размером частиц, который способствует такой термической конверсии.
Цель настоящего изобретения - модифицировать такой теплоноситель, как песок, так чтобы придать ему каталитические свойства. Цель настоящего изобретения - придать такому теплоносителю, как песок, каталитические свойства, которые способствуют термической конверсии твердой измельченной биомассы в относительно умеренных условиях реакции.
Дальнейшая цель настоящего изобретения - обеспечить способ уменьшения размера частиц твердого материала биомассы.
Сущность изобретения
Настоящее изобретение относится к способу термической конверсии тонкой твердой измельченной биомассы, включающему стадии обеспечения смеси твердой измельченной биомассы, теплоносителя и каталитически активного материала; нагревание смеси до температуры от 150 до 600°C.
Теплоносителем предпочтительно является неорганический измельченный материал.
В предпочтительном варианте этого изобретения тонкую твердую измельченную биомассу получают жидким истиранием твердой измельченной биомассы в присутствии инертного измельченного неорганического материала.
Описание иллюстративных вариантов
Настоящее изобретение относится к способу термической конверсии твердой измельченной биомассы. Как используется здесь, термин измельченный материал относится к материалам, которые являются твердыми и имеют тонко измельченную форму. Пример включает биомассу в тонко измельченной форме, такую как древесные опилки или солома.
В предшествующих вариантах способа частицы биомассы смешивают с песком в таком способе термической конверсии, как способ в псевдоожиженном слое. В этих способах песок работает как носитель для передачи тепловой энергии материалу биомассы и также как приемник для смолы, которая образуется во время способа термической конверсии.
Будучи инертным материалом, песок не способствует процессу термической конверсии непосредственно. Недостатком предшествующих способов является то, что они требуют относительно высокой температуры конверсии. Следовательно, предшествующие способы термической конверсии требуют большого ввода тепловой энергии. Кроме того, высокая температура конверсии приводит к излишнему крекингу материала-источника энергии на основе углерода, связанному с образованием значительных количеств смолы. Поэтому желательно разработать способ, позволяющий проводить термическую конверсию материала-источника энергии на основе углерода при более низкой температуре, по сравнению с известными способами.
Найдено, что термическая конверсия материалов биомассы может быть выполнена при более мягких условиях температуры, если способ осуществляют в присутствии теплоносителя, например инертного измельченного неорганического материала, и каталитически активного материала.
В определенном варианте применяют измельченный неорганический материал, который является как теплоносителем, так и катализатором.
В определенном варианте каталитически активным материалом является неорганический оксид в измельченной форме. Предпочтительно, измельченный неорганический оксид выбирают из группы, состоящей из огнеупорных оксидов, глин, гидроталькитов, кристаллических алюмосиликатов, слоистых гидроксисолей и их смесей.
Примеры огнеупорных неорганических оксидов включают оксид алюминия, оксид кремния, диоксид титана, диоксид циркония и т.д. Огнеупорные оксиды, имеющие высокую удельную поверхность, являются предпочтительными. Особенно предпочтительные материалы имеют удельную поверхность по меньшей мере 50 м2/г, определенную по методу Брунауера-Эметта-Теллера (БЭТ).
Подходящие глинистые материалы включают и катионные, и анионные глины. Соответствующие примеры включают смектит, бентонит, сепиолит, атапульгит и гидроталькит.
Другие подходящие гидроксиды металлов и оксиды металлов включают боксит, гиббсит и их переходные формы. Дешевым каталитическим материалом может быть известь, солевой раствор и/или боксит, растворенный в основании (NaOH), или природные глины, растворенные в кислоте или основании, или тонкий порошковый цемент из обжиговой печи.
Термин "гидроталькит", как используется здесь, включает гидроталькит как таковой, также как другие смешанные оксиды и гидроксиды металлов, имеющие гидроталькитподобную структуру, также как гидроксисоли металлов.
Каталитически активный материал может включать каталитический металл. Каталитический металл может использоваться в дополнение к или вместо каталитически активного неорганического оксида. Металл может использоваться в металлической форме, в форме оксида, гидроксида, гидроксиоксида, соли или как металлоорганическое соединение, а также как материалы, включающие редкоземельные металлы (например, бастнезит).
Предпочтительно, каталитическим металлом является переходный металл, более предпочтительно неблагородный переходный металл. Особенно предпочтительные переходные металлы включают железо, цинк, медь, никель и марганец, причем железо является наиболее предпочтительным.
Есть несколько способов, которыми каталитически активное соединение металла может быть введено в реакционную смесь. Например, катализатор может быть добавлен в металлической форме, в форме малых частиц. Альтернативно, катализатор может быть прибавлен в форме оксида, гидроксида или соли. В одном предпочтительном варианте водорастворимую соль металла смешивают с материалом-источником энергии на основе углерода и инертным измельченным неорганическим материалом в форме водной суспензии. В этом предпочтительном варианте может быть желательно смешать частицы биомассы с водным раствором соли металла перед добавлением инертного измельченного неорганического материала, так чтобы удостовериться, что металл пропитывает материал биомассы. Также возможно сначала смешать биомассу с инертным измельченным неорганическим материалом до добавления водного раствора соли металла. В еще одном варианте водный раствор соли металла сначала смешивают с измельченным инертным неорганическим материалом, после чего материал высушивают перед смешиванием его с измельченной биомассой. В этом варианте инертные неорганические частицы преобразуются в частицы гетерогенного катализатора.
Специфическая природа инертного измельченного неорганического материала не имеет критического значения для способа по настоящему изобретению, поскольку его главная функция - служить носителем для теплопередачи. Его выбор в большинстве случаев будет основан на категории доступности и стоимости. Подходящие примеры включают кварц, песок, вулканическую золу, первичный (то есть, неиспользованный) неорганический гравий для пескоструйной обработки и т.д. Смеси этих материалов являются также пригодными. Первичный гравий для пескоструйной обработки, вероятно, является более дорогим, чем материалы, такие как песок, но он имеет преимущество быть доступным в определенных интервалах размеров частиц и твердости.
При использовании в способе с псевдоожиженным слоем инертный измельченный неорганический материал вызовет определенный уровень износа стен реактора, который обычно делают из стали. Износ вообще нежелателен, поскольку он вызывает недопустимое снижение срока службы реактора. В контексте существующего изобретения умеренная степень износа может фактически быть желательна. В случае, если есть износ, такое истирание может вводить малые частицы металла в реакционную смесь, включая металлические компоненты стали реактора (главным образом, Fe с незначительным количеством, например, Cr, Ni, Мn и т.д.). Это могло придать определенное количество каталитической активности инертному измельченному неорганическому материалу. Подразумевается, что термин "инертный измельченный неорганический материал", как используется здесь, включает материалы, которые являются по их природе инертными, но приобрели определенную степень каталитической активности в результате контактирования с, например, соединениями металлов.
Гравий пескоструйной обработки, который ранее использовался в способе пескоструйной обработки, является особенно пригодным для использования в способе по настоящему изобретению. Использованный гравий пескоструйной обработки считают ненужным материалом, который широко доступен при низкой цене. Предпочтительным является гравий пескоструйной обработки, который использовался в пескоструйной обработке металлических поверхностей. Во время процесса пескоструйной обработки гравий тесно смешивается с мелкими частицами металла, возникающими при пескоструйной обработке. Во многих случаях обработанный пескоструйным аппаратом металл является сталью. Гравий, который использовали в пескоструйной обработке стали, представляет тесную смесь, включающую малые частицы железа, и меньшие количества других соответствующих металлов, таких как никель, цинк, хром, марганец и т.д. Будучи по существу ненужным продуктом, гравий из способа пескоструйной обработки широко доступен при низкой цене. Тем не менее, он является очень ценным материалом в контексте способа по настоящему изобретению.
Эффективное контактирование материала-источника энергии на основе углерода, инертного неорганического материала и каталитического материала является существенным и может протекать по различным маршрутам. Два предпочтительных маршрута:
Сухой маршрут, посредством которого смесь измельченного материала биомассы и инертного неорганического материала нагревают и псевдоожижают, а каталитический материал добавляют как тонкие твердые частицы к этой смеси.
Влажный маршрут, посредством которого каталитический материал диспергируют в растворителе и этот растворитель добавляют к смеси измельченного материала биомассы и инертного неорганического материала. Предпочтительным растворителем является вода.
Термин "тонко измельченная биомасса", как используется здесь, относится к материалу биомассы, имеющему средний размер частиц в интервале от 0,1 мм до 3 мм, предпочтительно от 0,1 мм до 1 мм.
Биомасса источников, таких как солома и древесина, может быть преобразована к размеру частиц в интервале от 5 мм до 5 см относительно легко, используя методы, такие как размол или измельчение. Для эффективной термической конверсии желательно далее уменьшить средний размер частиц биомассы до меньше чем 3 мм, предпочтительно меньше чем 1 мм. Измельчение биомассы до этого интервала размеров частиц общеизвестно является трудной проблемой. Обнаружено, что твердая биомасса может быть уменьшена в размере частиц до среднего интервала размеров частиц от 0,1 мм до 3 мм истиранием частиц биомассы, имеющих средний размер частиц в интервале от 5 мм до 50 мм в способе, включающем механическое смешивание частиц биомассы с неорганическим измельченным материалом и газом.
Истирание частиц в способе с псевдоожиженным слоем известно и в большинстве контекстов является нежелательным явлением. В настоящем контексте это явление используется для уменьшения размера частиц твердого материала биомассы.
Таким образом, в одном варианте настоящего изобретения, частицы биомассы, имеющие размер частиц в интервале от 5 мм до 50 мм, смешивают с неорганическими частицами, имеющими размер частиц в интервале от 0,05 мм до 5 мм. Эту измельченную смесь перемешивают с газом. Поскольку неорганические частицы имеют твердость, которая больше, чем твердость частиц биомассы, перемешивание приводит к уменьшению размера частиц биомассы. Соответственно, этот способ применяют для уменьшения размера частиц биомассы до 0,1-3 мм.
Количество перемешивания измельченной смеси определяет в большой степени скорость уменьшения частиц биомассы. Для того чтобы увеличить активность истирания, перемешивание может быть таким, чтобы образовать псевдоожиженный слой, барботирование или кипящий слой, фонтанирующий слой или пневматическую подачу. Для цели настоящего изобретения фонтанирующий слой или пневматическая подача являются предпочтительными уровнями перемешивания.
Газ может быть воздухом, или может быть газом, имеющим пониженный уровень кислорода (по сравнению с воздухом), или может быть в основном безкислородным. Примеры включают пар, азот и газовые смеси такие, как могут быть получены в последующей термической конверсии тонких частиц биомассы. Такие газовые смеси могут включать моноксид углерода, пар и/или диоксид углерода.
Процесс истирания может быть выполнен при температуре окружающей среды или при повышенной температуре. Использование повышенных температур предпочтительно для частиц биомассы, содержащих значительное количество влаги, потому что это приводит к сушке частиц биомассы. Сушка увеличивает твердость частиц биомассы, делая частицы более восприимчивыми к измельчению истиранием. Предпочтительные температуры сушки располагаются от приблизительно 50 до 150°C. Более высокие температуры возможны, в особенности, если газ перемешивания обеднен кислородом или существенно не содержит кислорода.
Предпочтительными для использования в способе истирания являются те неорганические частицы, которые будут использоваться в последующем способе термической конверсии по настоящему изобретению. В другом предпочтительном варианте каталитический материал также присутствует во время способа истирания. Считается, что некоторое количество каталитического материала, если присутствует во время процесса истирания, становится внедренным в частицы биомассы, что делает последующий способ термической конверсии более эффективным.
В особенно предпочтительном варианте настоящего изобретения частицы биомассы, имеющие размер частиц в интервале от 5 мм до 50 мм смешивают с инертными неорганическими частицами и каталитическим материалом. Эту смесь перемешивают газом, предпочтительно приводя к образованию фонтанирующего слоя или пневматической подачи. После того, как частицы биомассы достигают среднего размера частиц в интервале от 0,1 мм до 3 мм, температура увеличивается от 150 до 600°C.
Малые частицы биомассы, полученные в способе истирания, являются особенно подходящими для конверсии в биожидкость в соответствующем способе конверсии. Примеры подходящих способов конверсии включают гидротермическую конверсию, ферментативную конверсию, пиролиз, каталитическую конверсию и мягкую термическую конверсию.
Предпочтительным аспектом настоящего изобретения является способ получения биожидкости из твердого материала биомассы, причем указанный способ включает стадии:
a) обеспечение твердой биомассы в форме частиц, имеющих размер больше 5 мм;
b) смешивание частиц биомассы стадии a) с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 мм до 5 мм;
c) перемешивание смеси, полученной в стадии b), газом, посредством чего размер частиц биомассы уменьшают до 0,1-3 мм;
d) подвергание частиц биомассы, полученных в стадии c), гидротермической конверсии.
Более предпочтительным аспектом настоящего изобретения является способ получения биожидкости из твердого материала биомассы, причем указанный способ включает стадии:
а) обеспечение твердой биомассы в форме частиц, имеющих размер частиц больше 5 мм;
b) смешивание частиц биомассы стадии a) с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 мм до 5 мм;
c) перемешивание смеси, полученной в стадии b), газом, посредством чего размер частиц биомассы уменьшают до 0,1-3 мм;
d) подвергание частиц биомассы, полученных в стадии c), ферментативной конверсии.
Другим особым аспектом настоящего изобретения является способ получения биожидкости из твердого материала биомассы, причем указанный способ включает стадии:
а) обеспечение твердой биомассы в форме частиц, имеющих размер частиц больше 5 мм;
b) смешивание частиц биомассы стадии a) с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 мм до 5 мм;
c) перемешивание смеси, полученной в стадии b), газом, посредством чего размер частиц биомассы уменьшают до 0,1-3 мм;
d) подвергание частиц биомассы, полученных в стадии c), каталитической конверсии.
Другим аспектом настоящего изобретения является способ получения биожидкости из твердого материала биомассы, причем указанный способ включает стадии:
а) обеспечение твердой биомассы в форме частиц, имеющих размер частиц больше 5 мм;
b) смешивание частиц биомассы стадии a) с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 мм до 5 мм;
c) перемешивание смеси, полученной в стадии b), газом, посредством чего размер частиц биомассы уменьшают до 0,1-3 мм;
d) подвергание частиц биомассы, полученных в стадии c), гидротермической конверсии.
Еще одним аспектом настоящего изобретения является способ получения биожидкости из твердого материала биомассы, причем указанный способ включает стадии:
а) обеспечение твердой биомассы в форме частиц, имеющих размер частиц больше 5 мм;
b) смешивание частиц биомассы стадии a) с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 мм до 5 мм;
c) перемешивание смеси, полученной в стадии b), газом, посредством чего размер частиц биомассы уменьшают до 0,1-3 мм;
d) подвергание частиц биомассы, полученных в стадии c), каталитической конверсии.
Предпочтительно, стадию d) выполняют в восстановительной атмосфере, например, газовой смеси, включающей водород и/или СО.
Кроме того, аспектом настоящего изобретения является способ получения биожидкости из твердого материала биомассы, причем указанный способ включает стадии:
а) обеспечение твердой биомассы в форме частиц, имеющих размер частиц больше 5 мм;
b) смешивание частиц биомассы стадии a) с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 мм до 5 мм;
c) перемешивание смеси, полученной в стадии b), газом, посредством чего размер частиц биомассы уменьшают до 0,1-3 мм;
d) подвергание частиц биомассы, полученных в стадии c), мягкой термической конверсии.
Термическая конверсия может быть осуществлена в присутствии водорода.
Способ термической конверсии может быть осуществлен при атмосферном давлении, или при пониженном давлении, причем пониженное давление предпочтительно. Термическую конверсию предпочтительно выполняют в обедненной кислородом или, более предпочтительно, в бескислородной атмосфере.
В наиболее предпочтительном варианте термическую конверсию выполняют в реакторе с псевдоожиженным слоем, например тип реактора, обычно используемого в каталитическом крекинге фракций сырой нефти со взвешенным катализатором. Температура в реакторе может быть однородной, или реактор может эксплуатироваться таким образом, что зоны различных температур устанавливаются в пределах реактора. Преимущественно две или больше температурных зоны могут существовать в пределах реактора, с самой нижней зоной, имеющей самую низкую температуру, причем температура каждой зоны выше, чем температура зоны непосредственно ниже нее.
Термическая конверсия может быть выполнена в единственном реакторе, или в ряду двух или больше реакторов. Если больше, чем один реактор используется, выгодно эксплуатировать индивидуальные реакторы при различных условиях реакции. Примеры условий реакции включают давление, температуру, и/или состояние псевдоожижения.
Во время термической конверсии отложение углерода, например, в форме смолы или кокса, может образовываться на измельченном теплоносителе и измельченном каталитическом материале. В предпочтительном варианте отложение углерода выгорает, и выделяемая в сжигании теплота может использоваться для поддерживания реактора при желательной температуре. После того, как теплоноситель и каталитический материал были регенерированы таким образом, они могут соответственно быть повторно введены в реактор. Необязательно, каталитический материал может быть пополнен перед этим повторным введением в реактор.
Таким образом, изобретение описано в отношении определенных вариантов, обсужденных выше. Следует признать, что эти варианты восприимчивы к различным модификациям, и альтернативные формы известны специалистам в технологии.
Много модификаций в дополнение к описанным выше могут быть сделаны к структурам и методикам, описанным здесь, не отступая от сущности и объема изобретения. Соответственно, хотя отдельные варианты были описаны, они являются только примерами и не ограничивают объем изобретения.

Claims (24)

1. Способ термической конверсии тонкоизмельченной биомассы, включающий стадии:
a) обеспечение смеси тонкоизмельченной биомассы, теплоносителя и неорганического измельченного материала, причем обеспечение включает смешивание частиц биомассы, имеющих размер частиц в интервале 5-50 мм, с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 до 5 мм, и перемешивания смеси газом, посредством чего размер частиц биомассы уменьшается до 0,1-3 мм;
b) подвергание смеси конверсии нагреванием до температуры от 150 до 600°С.
2. Способ по п.1, в котором теплоносителем является песок.
3. Способ по п.1, в котором неорганический измельченный материал представляет собой переходный металл.
4. Способ по п.1, в котором неорганический измельченный материал представляет собой неорганический оксид или неорганический гидроксид.
5. Способ по п.1, в котором неорганический измельченный материал включает каталитический материал.
6. Способ по п.1, в котором газом перемешивания является воздух.
7. Способ по п.1, в котором газом перемешивания является газ, обедненный кислородом.
8. Способ по п.1, в котором измельченную смесь перемешивают, чтобы образовать псевдоожиженный слой, кипящий слой или фонтанирующий слой.
9. Способ по п.1, в котором измельченную смесь перемешивают до точки пневматической подачи.
10. Способ по п.1, в котором измельченную смесь перемешивают при температуре в интервале 50-150°С.
11. Способ по п.1, в котором стадия а) дополнительно включает нагревание и псевдоожижение смеси теплоносителя и измельченного материала биомассы с образованием псевдоожиженной смеси, причем неорганический измельченный материал добавляют к псевдоожиженной смеси, где неорганический измельченный материал содержат каталитический материал.
12. Способ по п.1, в котором стадия а) дополнительно включает смешивание теплоносителя и измельченного материала биомассы с образованием инертной смеси, причем неорганический измельченный материал добавляют к инертной смеси, где неорганический измельченный материал содержат каталитический материал, причем неорганический измельченный материал диспергирован в растворителе.
13. Способ по п.2, в котором теплоносителем является песок, который использовался в способе пескоструйной обработки.
14. Способ по п.13, в котором песок использовался в пескоструйной обработке стали.
15. Способ по п.1, выполняемый в реакторе, который работает при пониженном давлении.
16. Способ по п.1, выполняемый в реакторе, который работает в атмосфере, обедненной кислородом.
17. Способ по п.1, выполняемый в реакторе, содержащем больше, чем одну температурную зону.
18. Способ по п.1, выполняемый в больше, чем одном реакторе, причем каждый функционирует в различных условиях реакции.
19. Способ по п.1, включающий далее стадию удаления углеродных отложений из теплоносителя выгоранием, и использование теплоты выгорания в способе термической конверсии на стадии b).
20. Способ получения биожидкости из твердого материала биомассы, причем указанный способ включает стадии:
a) обеспечение твердой биомассы в форме частиц, имеющих размер частиц больше 5 мм;
b) смешивание частиц биомассы стадии а) с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 до 5 мм;
c) перемешивание смеси, полученной в стадии b), газом, посредством чего размер частиц биомассы уменьшают до 0,1-3 мм;
d) подвергание частиц биомассы, полученных в стадии с), гидротермической конверсии.
21. Способ получения биожидкости из твердого материала биомассы, причем указанный способ включает стадии:
a) обеспечение твердой биомассы в форме частиц, имеющих размер частиц больше 5 мм;
b) смешивание частиц биомассы стадии а) с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 до 5 мм;
c) перемешивание смеси, полученной в стадии b), газом, посредством чего размер частиц биомассы уменьшают до 0,1-3 мм;
d) подвергание частиц биомассы, полученных в стадии с), ферментативной конверсии.
22. Способ получения биожидкости из твердого материала биомассы, причем указанный способ включает стадии:
a) обеспечение твердой биомассы в форме частиц, имеющих размер частиц больше 5 мм;
b) смешивание частиц биомассы стадии а) с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 до 5 мм;
c) перемешивание смеси, полученной в стадии b), газом, посредством чего размер частиц биомассы уменьшают до 0,1-3 мм;
d) подвергание частиц биомассы, полученных в стадии с), термической конверсии.
23. Способ получения биожидкости из твердого материала биомассы, причем указанный способ включает стадии:
a) обеспечение твердой биомассы в форме частиц, имеющих размер частиц больше 5 мм;
b) смешивание частиц биомассы стадии а) с неорганическим измельченным материалом, имеющим размер частиц в интервале от 0,05 до 5 мм;
c) перемешивание смеси, полученной в стадии b), газом, посредством чего размер частиц биомассы уменьшают до 0,1-3 мм;
d) подвергание частиц биомассы, полученных в стадии с), каталитической конверсии.
24. Способ по п.23, в котором стадию d) выполняют в восстановительной атмосфере.
RU2009105252/04A 2006-07-17 2007-07-13 Каталитический пиролиз тонкоизмельченной биомассы и способ уменьшения размера частиц твердой биомассы RU2428453C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US83124206P 2006-07-17 2006-07-17
US60/831,242 2006-07-17

Publications (2)

Publication Number Publication Date
RU2009105252A RU2009105252A (ru) 2010-08-27
RU2428453C2 true RU2428453C2 (ru) 2011-09-10

Family

ID=38828756

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009105252/04A RU2428453C2 (ru) 2006-07-17 2007-07-13 Каталитический пиролиз тонкоизмельченной биомассы и способ уменьшения размера частиц твердой биомассы

Country Status (11)

Country Link
US (1) US20100209965A1 (ru)
EP (1) EP2054488A2 (ru)
JP (1) JP2009543925A (ru)
KR (1) KR20090051046A (ru)
CN (1) CN101511971A (ru)
BR (1) BRPI0714324A2 (ru)
CA (1) CA2657879A1 (ru)
CO (1) CO6160244A2 (ru)
MX (1) MX2009000623A (ru)
RU (1) RU2428453C2 (ru)
WO (1) WO2008009643A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2564408C1 (ru) * 2011-12-14 2015-09-27 Юоп Ллк Способы дезоксигенирования полученного из биомассы пиролизного масла
RU2684108C2 (ru) * 2014-02-07 2019-04-04 Басф Корпорейшн Катализатор для пиролиза сырья

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460473A (zh) 2006-04-03 2009-06-17 药物热化学品公司 热提取方法和产物
US7905990B2 (en) 2007-11-20 2011-03-15 Ensyn Renewables, Inc. Rapid thermal conversion of biomass
AU2009220133B2 (en) 2008-03-04 2013-12-19 University Of Massachusetts Catalytic pyrolysis of solid biomass and related biofuels, aromatic, and olefin compounds
EP2105456A1 (en) 2008-03-25 2009-09-30 KiOR Inc. Composition comprising solid biomass coated onto a solid catalyst
WO2009143017A1 (en) * 2008-05-19 2009-11-26 Kior, Inc. Biomass pretreatment with a catalyst by high velocity agitation and separation
US8288599B2 (en) * 2008-06-30 2012-10-16 Kior, Inc. Co-processing solid biomass in a conventional petroleum refining process unit
CN102197113B (zh) * 2008-10-27 2014-12-10 科伊奥股份有限公司 生物质转化方法
RU2533542C2 (ru) * 2008-11-28 2014-11-20 Кайор Инк. Измельчение и уплотнение частиц биомассы
WO2010062936A1 (en) * 2008-11-28 2010-06-03 Kior Inc. Multi-functional catalyst composition for the conversion of biomass
WO2010068773A1 (en) * 2008-12-10 2010-06-17 Kior Inc. Process for preparing a fluidizable biomass-catalyst composite material
EP2199364A3 (en) * 2008-12-10 2010-10-06 KiOR, Inc. Counter-current process for biomass conversion
EP2367974B1 (en) * 2008-12-23 2018-02-14 Inaeris Technologies, LLC Modification of biomass for efficient conversion to fuels
US8524959B1 (en) 2009-02-18 2013-09-03 Kior, Inc. Biomass catalytic conversion process and apparatus for use therein
US8558043B2 (en) 2009-03-04 2013-10-15 Kior, Inc. Modular biomass treatment unit
CN102574114B (zh) * 2009-04-22 2015-12-02 科伊奥股份有限公司 活性受控的热解催化剂
US20120137572A1 (en) 2009-05-22 2012-06-07 Kior, Inc. Processing biomass with a hydrogen source
US8623634B2 (en) 2009-06-23 2014-01-07 Kior, Inc. Growing aquatic biomass, and producing biomass feedstock and biocrude therefrom
IN2012DN02602A (ru) 2009-09-09 2015-09-04 Univ Massachusetts
US8657960B2 (en) 2009-09-29 2014-02-25 Nova Pangaea Technologies, Inc. Method and system for fractionation of lignocellulosic biomass
US8519203B2 (en) 2010-02-17 2013-08-27 Uop Llc Low oxygen biomass-derived pyrolysis oils and methods for producing the same
US20110284359A1 (en) 2010-05-20 2011-11-24 Uop Llc Processes for controlling afterburn in a reheater and for controlling loss of entrained solid particles in combustion product flue gas
US8499702B2 (en) 2010-07-15 2013-08-06 Ensyn Renewables, Inc. Char-handling processes in a pyrolysis system
US8057641B2 (en) 2010-07-19 2011-11-15 Kior Inc. Method and apparatus for pyrolysis of a biomass
US8772556B2 (en) 2010-09-22 2014-07-08 Kior, Inc. Bio-oil production with optimal byproduct processing
US9017428B2 (en) 2010-11-16 2015-04-28 Kior, Inc. Two-stage reactor and process for conversion of solid biomass material
IT1406771B1 (it) 2010-12-23 2014-03-07 Sea Marconi Technologies Di Vander Tumiatti S A S Impianto modulare per la conduzione di procedimenti di conversione di matrici carboniose
EP2474591A1 (en) * 2011-01-10 2012-07-11 CSL Carbon Solutions Ltd Synthesis of artificial humic matter by hydrothermal carbonization
US9441887B2 (en) 2011-02-22 2016-09-13 Ensyn Renewables, Inc. Heat removal and recovery in biomass pyrolysis
US8921628B2 (en) * 2011-03-10 2014-12-30 Kior, Inc. Refractory mixed-metal oxides and spinel compositions for thermo-catalytic conversion of biomass
JP2014516769A (ja) * 2011-04-13 2014-07-17 キオール,インク. バイオマスを液体燃料と化学品に熱触媒変換するための改良された触媒
US8841495B2 (en) * 2011-04-18 2014-09-23 Gas Technology Institute Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor
US8927793B2 (en) * 2011-07-29 2015-01-06 Uop Llc Processes for converting lignocellulosics to reduced acid pyrolysis oil
US9347005B2 (en) 2011-09-13 2016-05-24 Ensyn Renewables, Inc. Methods and apparatuses for rapid thermal processing of carbonaceous material
US10400175B2 (en) 2011-09-22 2019-09-03 Ensyn Renewables, Inc. Apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material
US9044727B2 (en) 2011-09-22 2015-06-02 Ensyn Renewables, Inc. Apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material
US10041667B2 (en) 2011-09-22 2018-08-07 Ensyn Renewables, Inc. Apparatuses for controlling heat for rapid thermal processing of carbonaceous material and methods for the same
US9109177B2 (en) 2011-12-12 2015-08-18 Ensyn Renewables, Inc. Systems and methods for renewable fuel
EP2797687A1 (en) * 2011-12-28 2014-11-05 BIOeCON International Holding N.V. Optimized catalyst for biomass pyrolysis
US20130261355A1 (en) * 2012-03-28 2013-10-03 Kior, Inc. Catalyst Compositions for Use in a Two-Stage Reactor Assembly Unit for the Thermolysis and Catalytic Conversion of Biomass
US9670413B2 (en) 2012-06-28 2017-06-06 Ensyn Renewables, Inc. Methods and apparatuses for thermally converting biomass
US9518229B2 (en) 2012-07-20 2016-12-13 Inaeris Technologies, Llc Catalysts for thermo-catalytic conversion of biomass, and methods of making and using
IN2015DN00285A (ru) * 2012-08-08 2015-06-12 Albemarle Europe Sprl
CN102936511B (zh) * 2012-11-05 2014-08-27 北京华电光大新能源环保技术有限公司 一种在线催化裂解生物质快速热解产物制备高品位生物油的方法
US9085735B2 (en) 2013-01-02 2015-07-21 American Fuel Producers, LLC Methods for producing synthetic fuel
US9522392B2 (en) 2013-03-15 2016-12-20 Inaeris Technologies, Llc Phosphorous promotion of zeolite-containing catalysts
EP3013922A4 (en) 2013-06-26 2017-02-08 Ensyn Renewables, Inc. Systems and methods for renewable fuel
DK3337966T3 (da) 2015-08-21 2022-02-28 Ensyn Renewables Inc Opvarmningssystem med flydende biomasse
US10563129B2 (en) 2015-09-25 2020-02-18 Inaeris Technologies, Llc Use of cooling media in biomass conversion process
US10619103B2 (en) 2015-09-25 2020-04-14 Inaeris Technologies, Llc Catalyst addition to a circulating fluidized bed reactor
EP3565664A4 (en) 2016-12-29 2020-08-05 Ensyn Renewables, Inc. LIQUID BIOMASS DEMETALLIZATION

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616266A (en) * 1969-04-29 1971-10-26 Oil Shale Corp Horizontal retort with solid heat transfer medium
US3929585A (en) * 1972-08-16 1975-12-30 Us Energy Production of charcoal from sawdust in a fluidized bed
CA1163595A (en) * 1980-12-18 1984-03-13 Christian Roy Organic products and liquid fuels from lignocellulosic materials by vacuum pyrolysis
CA1201080A (en) * 1983-12-13 1986-02-25 Le H. Dao Process for converting biomass into hydrocarbons
US5961786A (en) * 1990-01-31 1999-10-05 Ensyn Technologies Inc. Apparatus for a circulating bed transport fast pyrolysis reactor system
US5792340A (en) * 1990-01-31 1998-08-11 Ensyn Technologies, Inc. Method and apparatus for a circulating bed transport fast pyrolysis reactor system
DK9700015U3 (da) * 1997-01-14 1997-04-11 Anton Aarup Fiber og proteinprodukt
EP1235886B1 (en) * 1999-11-11 2004-01-02 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Flash-pyrolysis in a cyclone
EP1259466B1 (en) * 2000-02-17 2008-10-22 Technical University of Denmark A method for processing lignocellulosic material
FI120909B (fi) * 2001-04-12 2010-04-30 Neste Oil Oyj Menetelmä hiilipitoisen materiaalin käsittelemiseksi
DE10327954C5 (de) * 2003-06-20 2008-06-26 Wilkening, Carl Ludwig, Dr. Verbesserte Verfahren zur Herstellung von Ethanol und Methan aus Getreide
EP1878783A1 (en) * 2006-07-14 2008-01-16 BIOeCON International Holding N.V. Modified biomass comprising synthetically grown carbon fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAPPAS A A: "Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals"; FUEL, IPC SCIENCE AND TECHNOLOGY PRESS, GUELDFORD, GB, vol.81, no.16, 01.11.2002, pages 2087-2095. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2564408C1 (ru) * 2011-12-14 2015-09-27 Юоп Ллк Способы дезоксигенирования полученного из биомассы пиролизного масла
RU2684108C2 (ru) * 2014-02-07 2019-04-04 Басф Корпорейшн Катализатор для пиролиза сырья

Also Published As

Publication number Publication date
RU2009105252A (ru) 2010-08-27
CO6160244A2 (es) 2010-05-20
MX2009000623A (es) 2009-04-08
CA2657879A1 (en) 2008-01-24
EP2054488A2 (en) 2009-05-06
WO2008009643A2 (en) 2008-01-24
CN101511971A (zh) 2009-08-19
KR20090051046A (ko) 2009-05-20
WO2008009643A3 (en) 2009-04-23
BRPI0714324A2 (pt) 2013-03-26
US20100209965A1 (en) 2010-08-19
JP2009543925A (ja) 2009-12-10

Similar Documents

Publication Publication Date Title
RU2428453C2 (ru) Каталитический пиролиз тонкоизмельченной биомассы и способ уменьшения размера частиц твердой биомассы
RU2437917C2 (ru) Улучшенный способ конверсии материала углеродного энергоносителя
CN101460593B (zh) 转化基于碳的能量载体材料的改进方法
US20120142520A1 (en) Controlled activity pyrolysis catalysts
US7696124B2 (en) Method for producing catalytically-active materials
CN102949957A (zh) 用于热解碳质材料的催化热载体及其制备方法
WO2005093014A1 (ja) 流動層炉におけるタールの除去方法
GB2560317A (en) Bed materials for fluidised bed reaction methods and fluidised bed reaction methods
KR20220094149A (ko) 탄화수소의 직접 분해 장치 및 직접 분해 방법
GB2558890A (en) Fluidised bed reaction methods
EP2797687A1 (en) Optimized catalyst for biomass pyrolysis
US2958647A (en) Cracking catalyst
CN115364840A (zh) 一种碱性炭材料催化剂及其制备方法和应用
DK2032675T3 (en) IMPROVED PROCEDURE FOR CARBON-BASED ENERGY CARRIERS
JPH05294683A (ja) 生石灰の製造方法
JPS6154234A (ja) 硫黄酸化物捕捉剤
Wang et al. A Novelty Catalytic Reforming of Tire Pyrolysis Oil for Rich-Hydrogen Syngas

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180714