RU2424599C1 - Способ изготовления активной массы катода литиевого источника тока - Google Patents

Способ изготовления активной массы катода литиевого источника тока Download PDF

Info

Publication number
RU2424599C1
RU2424599C1 RU2010123342/07A RU2010123342A RU2424599C1 RU 2424599 C1 RU2424599 C1 RU 2424599C1 RU 2010123342/07 A RU2010123342/07 A RU 2010123342/07A RU 2010123342 A RU2010123342 A RU 2010123342A RU 2424599 C1 RU2424599 C1 RU 2424599C1
Authority
RU
Russia
Prior art keywords
lithium
hours
cathode
temperature
current source
Prior art date
Application number
RU2010123342/07A
Other languages
English (en)
Inventor
Константин Сергеевич Смирнов (RU)
Константин Сергеевич Смирнов
Иван Александрович Пуцылов (RU)
Иван Александрович Пуцылов
Владимир Александрович Жорин (RU)
Владимир Александрович Жорин
Людмила Николаевна Смирнова (RU)
Людмила Николаевна Смирнова
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)") filed Critical Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)")
Priority to RU2010123342/07A priority Critical patent/RU2424599C1/ru
Application granted granted Critical
Publication of RU2424599C1 publication Critical patent/RU2424599C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых аккумуляторов с катодами на основе литий-железо фосфатов. Техническим результатом является упрощение процесса получения литий-железо фосфата, повышение его дисперсности, емкости и ресурса катодов на его основе. В способе изготовления литий-железо фосфата, заключающемся в том, что проводят смешение оксида железа с аммоний дигидрофосфатом и гидрооксидом лития в сухом виде с последующей механоактивацией и 2-стадийной термообработкой при температуре 400°С в течение 4 часов при температуре 600°С в течение 4 часов, согласно изобретению на первой стадии проводят смешение оксида железа с аммоний дигидрофосфатом, а гидрооксид лития добавляют в процессе пластического течения при кручении под давлением не менее 2.0 ГПа и величинах относительной деформации 20-22. 1 ил.

Description

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых источников тока с катодами на основе литий-железо фосфатов. Катоды литиевых источников являются композиционными материалами: они представляют собой смесь активной массы, связующего (фторопласт) и электропроводной добавки (сажа, графит). В качестве активной массы катода в настоящее время широко применяется литий-железо фосфат [1].
Известен высокотемпературный твердофазный способ изготовления литий-железо фосфата, который заключается в 2-стадийной термообработке смеси NH4H2PO4+FeC2O4,+LiOH сначала при Т=400°С в течение 10 часов, а затем при Т=800°С в течение 36 часов [2]. Полученное соединение имеет общую формулу LiFePO4 и циклируется в диапазоне потенциалов 2,0-4,0 В относительно литиевого электрода. Недостатками этого способа являются его длительность, а также низкая электронная проводимость LiFePO4 и, как следствие, неудовлетворительные разрядно-зарядные характеристики катодов.
Наиболее близким по технической сущности и достигаемым результатам является твердофазный способ изготовления LiFePO4, который заключается в следующем: порошок оксида железа перемешивают со смесью гидрооксида лития (карбоната лития) и аммоний дигидрофосфата (NH4H2PO4), полученную смесь механически активируют на планетарных мельницах с последующим нагреванием при Т=400°С в течение 4 часов и при Т=600°С в течение 4 часов в атмосфере аргона [3]. К недостаткам твердофазного способа можно отнести энергоемкость процесса, связанную с механической активацией, необходимость использования инертной атмосферы, что удорожает продукт, невысокую дисперсность порошков LiFePO4, что сказывается на емкости и ресурсе работы катода на его основе и источника тока в целом.
Техническая задача, решаемая изобретением, состоит в упрощении процесса получения литий-железо фосфата, повышение его дисперсности, емкости и ресурса катодов на его основе. Поставленная техническая задача достигается тем, что в известном способе изготовления литий-железо фосфата, заключающемся в том, что проводят смешение оксида железа с аммоний дигидрофосфатом и гидрооксидом лития в сухом виде с последующей механоактивацией и 2-стадийной термообработкой при температуре 400°С в течение 4 часов при температуре 600°С в течение 4 часов, согласно изобретению на первой стадии проводят смешение оксида железа с аммоний дигидрофосфатом, а гидрооксид лития добавляют в процессе пластического течения при кручении под давлением не менее 2.0 ГПа и величинах относительной деформации 20-22.
Способ осуществляют следующим образом. Fe2O3 и NH4H2PO4 в соотношении насыпают в керамическую чашку. Затем стеклянной палочкой их предварительно слегка перемешивают в сухом виде в течение пятнадцати секунд. Полученную массу помещают в муфельную печь и термообрабатывают при температуре 400°С в течение 4 часов. Затем в керамической чашке смешивают промежуточный продукт с гидроксидом лития. Полученную массу 1 насыпают на наковальню 2, прижимают сверху пуансоном 3 и помещают под пресс. Затем массу подвергают относительной деформации величиной 20-22 при давлении не менее 2.0 ГПа. Схематически это представлено на чертеже. В результате получается плоский диск, толщиной от 1,5 до 2 мм. Этот диск затем помещается в муфельную печь, где выдерживается при температуре 600°С в течение 4 часов в воздушной атмосфере.
Аппаратура, на которой проводилось дополнительное перемешивание, позволяет подвергать исследуемые вещества одновременному воздействию одноосного сжатия и сдвиговым напряжениям, величина которых не превышает предела текучести материала при данном давлении. Особенностью аппаратуры данного типа является то, что по мере увеличения давления напряжение, необходимое для поддержания постоянной скорости пластического деформирования, увеличивается. При постоянном давлении напряжение, необходимое для удержания постоянной скорости пластического деформирования, остается постоянным. Пластическое течение на аппаратуре данного типа реализуется в том случае, когда сила поверхностного трения больше или равна пределу текучести обрабатываемого материала. Такое соотношение для исследуемых смесей возникает при давлениях порядка 2.0 ГПа, при меньших давлениях сжимающие вещества наковальня и пуансон проскальзывают по поверхности вещества и исходные порошкообразные материалы так и остаются в виде порошка. При давлениях выше 2.0 ГПа порошкообразные материалы компактируются, т.е. составляющие части подвергаются пластическому деформированию. При данной методике можно развивать в исследуемых материалах при давлении выше пороговых пластические деформации в большом диапазоне без нарушения сплошности образцов. В нашем случае пластическая деформация относится не к единичным частицам, из которых состоит смесь, а ко всему образцу, который представляет собой цилиндр. Для данной схемы воздействия и геометрии образцов необходимо применять представления о деформациях кручения при воздействии скручивающих напряжений на цилиндрическое тело. Указанные деформации можно охарактеризовать отношением длины винтовой линии, в которую при деформировании трансформируется образующая цилиндра, к начальной высоте цилиндра [4]. При относительной деформации менее 20 единиц получается недостаточное равномерное перемешивание компонентов, что приводит ухудшению электрохимических характеристик катода. При относительной деформации более 22 единиц после термообработки полученной смеси образуется фаза LiFePO4 высокой упорядоченности, т.е. характеризуется малым количеством структурных дефектов, что усложняет процесс диффузии иона лития по твердой фазе в процессе разряда источника тока и соответственно приводит к снижению разрядной емкости катода. При температуре ниже 600°С не получается фазово-однородный продукт: образуется LiFePO4 с небольшими количествами примесей Fe2O3. При температуре выше 600°С образуется нестабильная структура LiFePO4, которая характеризуется агрегатированием частиц - слипанием в крупные агрегаты. Они отличаются невысокими коэффициентами диффузии иона лития и соответственно повышенными поляризационными потерями. 4 часов достаточно для полного преобразования смеси в тонкодисперсную фазу LiFePO4. Таким образом, выход вышеописанных параметров за указанные пределы приводит к снижению эффективности способа.
Реализация указанного способа позволяет увеличить емкость катодов и их ресурс на 20-25%, а также значительно сокращает длительность процесса изготовления катода и не требует инертной атмосферы. Для осуществления способа необходимы пресс, пуансон, наковальня и муфельная печь.
Пример 1. 5000 мг смеси Fe2O3 и NH4H2PO4 в соотношении 1:5 помещали в муфельную печь и термообрабатывали при температуре 400°С в течение 4 часов в воздушной атмосфере. Затем в керамической чашке смешивали полученный продукт с 20% гидроксида лития. Полученную массу подвергали относительной деформации величиной 20 при давлении 2.00 ГПа. Полученную массу затем помещали в муфельную печь, где выдерживали при температуре 600°С в течение 4 часов в воздушной атмосфере. Из полученного литий-металлфосфата изготавливали катод литиевого источника тока: 5010 мг катодной массы с содержанием LiFePO4, сажи и фторопласта в соотношении 80:15:5 соединяли с токоотводом. После сборки источника тока Li-LiFePO4 в типоразмере 316 его разрядная емкость составила 650 мА*ч в диапазоне напряжения 4.0-2.0 В на протяжении 110 циклов.
Пример 2. 5100 мг смеси Fe2O3 и NH4H2PO4 в соотношении 1:5 помещали в муфельную печь и термообрабатывали при температуре 400°С в течение 4 часов в воздушной атмосфере. Затем в керамической чашке смешивали полученный продукт с 20% гидроксида лития. Полученную массу подвергали относительной деформации величиной 21 при давлении 2.05 ГПа. Полученную массу затем помещали в муфельную печь, где выдерживали при температуре 600°С в течение 4 часов в воздушной атмосфере. Из полученного литий-металлфосфата изготавливали катод литиевого источника тока: 5020 мг катодной массы с содержанием LiFePO4, сажи и фторопласта в соотношении 82:13:5 соединяли с токоотводом. После сборки источника тока Li-LiFePO4 в типоразмере 316 его разрядная емкость составила 730 мА*ч в диапазоне напряжения 4.0-2.0 В на протяжении 115 циклов.
Пример 3. 4950 мг смеси Fe2O3 и NH4H2PO4 в соотношении 1:5 помещали в муфельную печь и термообрабатывали при температуре 400°С в течение 4 часов в воздушной атмосфере. Затем в керамической чашке смешивали полученный продукт с 20% гидроксида лития. Полученную массу подвергали относительной деформации величиной 22 при давлении 2.10 ГПа. Полученную массу затем помещали в муфельную печь, где выдерживали при температуре 600°С в течение 4 часов в воздушной атмосфере. Из полученного литий-металлфосфата изготавливали катод литиевого источника тока: 4940 мг катодной массы с содержанием LiFePO4, сажи и фторопласта в соотношении 80:10:10 соединяли с токоотводом. После сборки источника тока Li-LiFePO4 в типоразмере 316 его разрядная емкость составила 690 мА*ч в диапазоне напряжения 4.0-2.0 В на протяжении 100 циклов.
Во всех случаях литиевые источники удовлетворяли требованиям ГОСТ по емкости, разрядному напряжению и ресурсу.
Преимущества предлагаемого способа заключаются в том, что он позволяет снизить затраты на процесс изготовления катода литиевого источника тока, увеличить его емкость и ресурс.
Таким образом, повышается эффективность настоящего способа в целом, чем он выгодно отличается от известных.
ИСТОЧНИКИ ИНФОРМАЦИИ, ПРИНЯТЫЕ ВО ВНИМАНИЕ
1. Takahashi M., Tobishima S., Takei К., Sakurai Y. // Journal of power sourses. - 2001, №97-98, P.508-511.
2. Anderson A., Kalska В., Haggstrom L., Thomas J. // Solid State Ionics. - 2000. - V.130, №1, P.41-52.
3. Косова Н.В. // Электрохимическая энергетика. - 2005. Т.5 - №2. - C.123-129.
4. Жорин В.А., Усиченко В.М., Епиколонян Н.С. // Высокомолекулярные соединения, 1982, Т.24, №9, С.1889-1893.

Claims (1)

  1. Способ изготовления активной массы катода литиевого источника тока, в котором проводят смешение оксида железа с аммоний дигидрофосфатом и гидрооксидом лития в сухом виде с последующей механоактивацией и 2-стадийной термообработкой при температуре 400°С в течение 4 ч и при температуре 600°С в течение 4 ч, отличающийся тем, что на первой стадии проводят смешение оксида железа с аммоний дигидрофосфатом, а гидрооксид лития добавляют в процессе пластического течения при кручении под давлением не менее 2,0 ГПа и величинах относительной деформации 20-22.
RU2010123342/07A 2010-06-08 2010-06-08 Способ изготовления активной массы катода литиевого источника тока RU2424599C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010123342/07A RU2424599C1 (ru) 2010-06-08 2010-06-08 Способ изготовления активной массы катода литиевого источника тока

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010123342/07A RU2424599C1 (ru) 2010-06-08 2010-06-08 Способ изготовления активной массы катода литиевого источника тока

Publications (1)

Publication Number Publication Date
RU2424599C1 true RU2424599C1 (ru) 2011-07-20

Family

ID=44752674

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010123342/07A RU2424599C1 (ru) 2010-06-08 2010-06-08 Способ изготовления активной массы катода литиевого источника тока

Country Status (1)

Country Link
RU (1) RU2424599C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2585646C2 (ru) * 2013-07-11 2016-05-27 Общество с ограниченной ответственностью "Минерал" Способ получения литий-железо-фосфата
RU2627027C2 (ru) * 2014-10-17 2017-08-03 Тойота Дзидося Кабусики Кайся Смесевая активная масса положительного электрода, положительный электрод, аккумуляторная батарея с безводным электролитом и способ изготовления аккумуляторной батареи с безводным электролитом
RU2631239C2 (ru) * 2014-08-29 2017-09-20 Тойота Дзидося Кабусики Кайся Способ получения слоя активного материала положительного электрода для литий-ионного аккумулятора и слой активного материала положительного электрода для литий-ионного аккумулятора

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Takahashi M., Tobishima S., Takei К, Sakurai Y., "Journal of power sources", 2001, № 97-98, p.508-511. *
Косова Н.В. Электрохимическая энергетика, 2005, т.5, № 2, с.123-129. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2585646C2 (ru) * 2013-07-11 2016-05-27 Общество с ограниченной ответственностью "Минерал" Способ получения литий-железо-фосфата
RU2631239C2 (ru) * 2014-08-29 2017-09-20 Тойота Дзидося Кабусики Кайся Способ получения слоя активного материала положительного электрода для литий-ионного аккумулятора и слой активного материала положительного электрода для литий-ионного аккумулятора
RU2627027C2 (ru) * 2014-10-17 2017-08-03 Тойота Дзидося Кабусики Кайся Смесевая активная масса положительного электрода, положительный электрод, аккумуляторная батарея с безводным электролитом и способ изготовления аккумуляторной батареи с безводным электролитом

Similar Documents

Publication Publication Date Title
JP2015204215A (ja) リチウムイオン伝導性固体電解質とその製造方法、および、全固体電池
JP2021132047A (ja) 全固体リチウムイオン二次電池
JP5798678B2 (ja) ケイ素黒鉛複合粒子およびその製造方法ならびに電極およびその電極を備える非水電解質二次電池
CN112661148B (zh) 复合石墨负极材料及其制备方法和应用、锂离子电池
CN110165292B (zh) 一种改性nasicon型固态电解质片及其制备方法
CN109478640B (zh) 钝化的预锂化微米和次微米的iva族粒子及其制法
RU2329570C2 (ru) Способ изготовления активной массы катода литиевого аккумулятора
CN108933281B (zh) 一种柔性陶瓷/聚合物复合固态电解质及其制备方法
RU2424599C1 (ru) Способ изготовления активной массы катода литиевого источника тока
Orliukas et al. SEM/EDX, XPS, and impedance spectroscopy of LiFePO4 and LiFePO4/C ceramics
JP6905159B1 (ja) 黒鉛材料の製造方法
JP2016115418A (ja) ケイ素黒鉛複合粒子の使用方法、非水系二次電池用黒鉛負極の放電容量改良材、混合粒子、電極および非水電解質二次電池
CN106415902B (zh) 新型复合传导材料
TW201304258A (zh) 非水電解質二次電池用正極活性物質、非水電解質二次電池、車輛、及非水電解質二次電池用正極活性物質之製造方法
JP3153471B2 (ja) リチウム電池負極材料用炭素又は黒鉛粉末とその製造方法
RU2424600C1 (ru) Способ изготовления активной массы катода литиевого аккумулятора
RU2815267C1 (ru) Способ изготовления активной массы катода литиевого аккумулятора
CN102205954A (zh) 一种高密度磷酸铁锂材料的合成方法
RU2658305C1 (ru) Способ изготовления активной массы анода литиевого аккумулятора
RU2738800C1 (ru) Способ изготовления активной массы катода литиевого аккумулятора
CN116057734A (zh) 负极材料、电池
CN107017407B (zh) 一种锂离子电池石墨/碳复合负极材料的制备方法
RU2488196C1 (ru) Способ изготовления катода литиевого источника тока
CN114653302A (zh) 一种人造石墨的造粒方法及造粒料、人造石墨及制备方法和应用、二次电池
CN106784695A (zh) 制备碳纳米管/SiC/纳米Si复合材料的方法、该复合材料及锂离子电池

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20140116

MM4A The patent is invalid due to non-payment of fees

Effective date: 20160609

NF4A Reinstatement of patent

Effective date: 20170418

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180609