RU2585646C2 - Способ получения литий-железо-фосфата - Google Patents

Способ получения литий-железо-фосфата Download PDF

Info

Publication number
RU2585646C2
RU2585646C2 RU2013132124/05A RU2013132124A RU2585646C2 RU 2585646 C2 RU2585646 C2 RU 2585646C2 RU 2013132124/05 A RU2013132124/05 A RU 2013132124/05A RU 2013132124 A RU2013132124 A RU 2013132124A RU 2585646 C2 RU2585646 C2 RU 2585646C2
Authority
RU
Russia
Prior art keywords
iron
lithium
phosphate
mixing
obtaining
Prior art date
Application number
RU2013132124/05A
Other languages
English (en)
Other versions
RU2013132124A (ru
Inventor
Михаил Александрович Архипов
Мухамед Магомедович Арсанукаев
Сергей Степанович Ковалёв
Владимир Фёдорович Шицле
Владимир Анатольевич Муханов
Александр Иванович Мотчаный
Ольга Викторовна Соловьёва
Original Assignee
Общество с ограниченной ответственностью "Минерал"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Минерал" filed Critical Общество с ограниченной ответственностью "Минерал"
Priority to RU2013132124/05A priority Critical patent/RU2585646C2/ru
Publication of RU2013132124A publication Critical patent/RU2013132124A/ru
Application granted granted Critical
Publication of RU2585646C2 publication Critical patent/RU2585646C2/ru

Links

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к химической технологии получения катодных материалов для литий-ионных аккумуляторов. В способе получения литий-железо-фосфата, включающем смешивание в стехиометрических соотношениях соединения железа с водным раствором, содержащим литий- и фосфат-ионы и аскорбиновую кислоту в качестве углеродсодержащего восстановителя, активирование полученной смеси и последующую термическую обработку продукта взаимодействия, в качестве соединения железа используют порошок оксида железа со степенью окисления железа в диапазоне +2,03…+2,2 с размером частиц до 125 мкм, смешивая его с водным раствором дигидрофосфата лития концентрацией 30-57 вес.%, а активирование полученной смеси путем механического перемешивания осуществляют при температуре 15-30°C до образования геля. Результатом является разработка простого, быстрого и более дешевого способа получения высокодисперсных композиционных катодных материалов на основе литий-железо-фосфатов с высоким удельным выходом продукта с единицы реакционного объема. 11 пр.

Description

Изобретение относится к химической технологии получения катодных материалов для литий-ионных аккумуляторов.
Известен способ получения литий-железо-фосфата путем нагревания в инертной атмосфере до температуры 700-800°C эквимолярной смеси порошков карбоната лития, оксалата железа и дигидрофосфата аммония.
0,5Li2CO3+FeC2O4·4H2O+NH4H2PO4=LiFePO4+NH3+CO+1,5CO2+5,5H2O
Недостатком способа является то, что литий-железо-фосфат образуется в виде плотного спека и его необходимо подвергнуть для использования длительному дроблению до размера частиц 0,2-0,5 мкм (Han Chen, Shao-Chang Han, Wen-Zhi Yu, Hong-Zhi Bo, Chang-Ling Fan and Zhong-Yu Xu. Preparation and elektrochemikal properties of LiFePO / С composite cathodes for lithium-ion batteries. Bull. Mater. Sci., Vol. 29, No. 7, December 2006, pp. 689-692).
Наиболее близким техническим решением к предлагаемому изобретению является получение литий-железо-фосфата путем взаимодействия растворов стехиометрических количеств гидроокиси лития, сернокислого железа и фосфорной кислоты с небольшой добавкой аскорбиновой кислоты по химической реакции:
3LiOH·H2O+FeSO4·7H2O+H3PO4=LiFePO4+12H2O+Li2SO4·H2O
и гидротермальной обработки полученного продукта при температуре 150-220°C и давлении 100-500 атмосфер в течение 3-5 часов.
Недостатком способа является малый удельный выход литий-железо-фосфата из-за ограниченной растворимости гидроокиси лития и сернокислого железа в воде, а использование дорогостоящего сырья - гидроокиси лития приводит к удорожанию способа (патент США №7998618 В2, приоритет 2010 г.).
Технической задачей предлагаемого изобретения является разработка простого, быстрого и более дешевого способа получения высокодисперсных композиционных катодных материалов на основе литий-железо-фосфатов с высоким удельным выходом продукта с единицы реакционного объема.
Поставленная техническая задача решается за счет того, что в способе получения литий-железо-фосфата, включающем смешивание в стехиометрических соотношениях соединения железа с водным раствором, содержащим литий- и фосфат-ионы и аскорбиновую кислоту в качестве углеродсодержащего восстановителя, активирование полученной смеси и последующую термическую обработку продукта взаимодействия, в качестве соединения железа используют порошок оксида железа со степенью окисления железа в диапазоне +2,03…+2,2 с размером частиц до 125 мкм, смешивая его с водным раствором дигидрофосфата лития концентрацией 30-57 вес.%, а активирование полученной смеси путем механического перемешивания осуществляют при температуре 15-30°C до образования геля.
Причиной использования оксида железа со степенью окисления железа в диапазоне +2,03…+2,2 является термодинамическая нестабильность двухвалентного оксида железа, а поэтому использовать двухвалентный оксид железа в массовом производстве практически невозможно из-за коммерческой недоступности этого реактива. Оксид железа со степенью окисления +2,0 практически невозможно получить в промышленных объемах, однако есть промышленное производство реактива FeO1+x, где x=0,015-0,100, то есть со степенью окисления +2,03…+2,2.
При смешивании оксида железа с водным раствором дигидрофосфата лития и аскорбиновой кислотой происходит их взаимодействие, в ходе которого каждая частица оксида железа покрывается слоем LiFePO4(OH)x по реакции:
FeO1+x+LiH2PO4=LiFePO4(OH)2x+(1-х)·H2O
с небольшими прослойками концентрирванного раствора дигидрофосфата лития (LiH2PO4) между частицами. Полное реагирование оксида железа происходит при термообработке геля в автоклаве.
Восстановление аскорбиновой кислотой происходит в автоклаве при термообработке по реакции:
LiFePO4(OH)2x+0,1х·С6Н8О6=LiFePO4+0,6x·CO2+1,4x·H2O
Следует отметить, что если х больше 0,1 процесс восстановления не идет до конца: наряду с литий-железо-фосфатом в продуктах реакции присутствует значительное количество гидроксида литий-железо-фосфата несмотря на избыток восстановителя.
Частицы оксида железа с размером до 125 мкм обеспечивают полноту химического реагирования их с раствором. А частицы оксида железа более 125 мкм не полностью реагируют, снижая при этом выход целевого продукта.
В качестве источника литий- и фосфат-ионов в предлагаемом способе используют водный раствор дигидрофосфата лития, концентрация которого составляет 30-57 вес.%, выбрана опытным путем и является оптимальной для получения наибольшего выхода конечного продукта. При концентрации ниже 30 вес.% плохо получается продукт, происходит расслоение реакционной массы, слеживание частиц оксида железа, что ведет к снижению выхода целевого продукта, а концентрация 57 вес.% является максимальной для дигидрофосфата лития при 20°C.
Температура механического активирования смеси 15-30°C выбрана опытным путем и является оптимальной для химического взаимодействия компонентов, входящих в ее состав. При температуре ниже 15°C взаимодействие компонентов практически не идет, а при температуре выше 30°C реакция идет слишком быстро: частицы оксида слипаются в большие агломераты, которые не полностью реагируют с LiH2PO4, в результате чего снижается выход целевого продукта. При перемешивании смесь загустевает и с течением времени превращается в густой гель. Активирование смеси осуществляют до получения геля. В таком состоянии продуктом заполняют реакционный объем - получают очень плотное заполнение без пор и пустот, что обуславливает при дальнейшей термической обработке продукта получение субмикронного кристаллического порошка литий-железо-фосфата с выходом до 1,05 г на 1 см3 реакционного объема. Далее гель проходит термообработку в герметизированном автоклаве.
Примеры конкретного выполнения
Пример 1.
Порошок оксида железа со степенью окисления +2,2 с размером частиц до 125 мкм в количестве 294,4 г смешивали с 732 г водного раствора дигидрофосфата лития концентрацией 57 вес.% в присутствии 72 г аскорбиновой кислоты. Полученную суспензию подвергали механической активации путем перемешивания при температуре 20°C до образования продукта взаимодействия в виде геля (в течение 30 минут). Было получено 1098,4 г такого продукта, который помещали в автоклав объемом 600 см3. Заполнение автоклава таким продуктом было очень плотное без пор и пустот. Содержимое предварительно герметизированного автоклава подвергли термической обработке при температуре 250°C. Получили 632 г литий-железо-фосфата. После охлаждения автоклав вскрыли, вещество извлекли, отфильтровывали и подвергли сушке. Удельный выход составил 1,05 г с 1 см3.
Пример 2.
Аналогично примеру 1, но механическую активацию полученной суспензии проводили при температуре 15°C. Получили 553 г литий-железо-фосфата. Выход литий-железо-фосфата составил 0,92 г с 1 см3.
Пример 3.
Аналогично примеру 1, но механическую активацию полученной суспензии проводили при температуре 30°C. Получили 607 г литий-железо-фосфата. Выход литий-железо-фосфата составил 1,01 г с 1 см3.
Пример 4.
Аналогично примеру 1, но порошок оксида железа брали со степенью окисления +2,03 и механическую активацию полученной суспензии проводили при температуре 15°C. Получили 566 г литий-железо-фосфата. Выход литий-железо-фосфата составил 0.94 г с 1 см3.
Пример 5.
Аналогично примеру 1, но порошок оксида железа брали со степенью окисления +2,03 и механическую активацию полученной суспензии проводили при температуре 30°C. Получили 620 г литий-железо-фосфата. Выход литий-железо-фосфата составил 1,03 г с 1 см3.
Пример 6.
Аналогично примеру 1, но порошок оксида железа брали размером 160/125 мкм. Оксид железа полностью не прореагировал. Получили 226,2 г литий-железо-фосфата. Выход литий-железо-фосфата составил 0,377 г на 1 см3 автоклава.
Пример 7.
Аналогично примеру 1, только порошок оксида железа смешали с 1387 г 30%-ного водного раствора дигидрофосфата лития, получили 1753 г густой смеси, ее поместили в автоклав емкостью 1264 см3. После проведения термообработки получили 632 г литий-железо-фосфата или 0,50 г с 1 см3 автоклава.
Пример 8.
Аналогично примеру 1, но порошок оксида железа смешали с 1605 г 26%-ного водного раствора дигидрофосфата лития. Не удалось при перемешивании получить густую массу. При загрузке геля массой 2019,4 г в автоклав объемом 1500 см3 смесь расслоилась. Часть оксида железа не прореагировала. Выход литий-железо-фосфата составил 319,5 г или 0,213 г/см3.
Пример 9.
Аналогично примеру 1, но механическое активирование смеси проводили при температуре 13°C в течение 2 часов. Смесь не загустела, при загрузке в автоклав оксид железа выпал в осадок. Выход литий-железо-фосфата составил 66 г или 0,11 г с 1 см3 автоклава.
Пример 10.
Аналогично примеру 1, но механическое активирование смеси проводили при температуре 33°C. Смесь в значительной степени скомковалась. Выход литий-железо-фосфата составил 225 г или 0,375 г с 1 см3 автоклава.
Пример 11.
Аналогично примеру 1, отличающийся тем, что взяли 296 г оксида железа состава FeO1,125 (степень окисления равна 2,25) и 125 г аскорбиновой кислоты. Получили 1153 г смеси, которую поместили в автоклав объемом 650 см3. Получили 649 г продукта, представляющего собой по данным рентгенофазового анализа и мессбауэровской спектроскопии смесь LiFePO4 и LiFePO4(OH) в примерном соотношении 3:1 по весу.
Достигаемый технический результат, получаемый благодаря заявляемому способу, приводит к упрощению и удешевлению процесса синтеза литий-железо-фосфата в автоклаве при увеличении удельного выхода конечного продукта с единицы реакционного объема.

Claims (1)

  1. Способ получения литий-железо-фосфата, включающий смешивание в стехиометрическом соотношении соединения железа с водным раствором, содержащим литий- и фосфат-ионы и аскорбиновую кислоту в качестве углеродсодержащего восстановителя, активирование полученной смеси и последующую термическую обработку продукта взаимодействия, отличающийся тем, что в качестве соединения железа используют порошок оксида железа со степенью окисления железа в диапазоне +2,03…+2,2 с размером частиц до 125 мкм, смешивая его с водным раствором дигидрофосфата лития концентрацией 30-57 вес.%, а активирование полученной смеси путем механического перемешивания осуществляют при температуре 15-30°C до образования геля.
RU2013132124/05A 2013-07-11 2013-07-11 Способ получения литий-железо-фосфата RU2585646C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013132124/05A RU2585646C2 (ru) 2013-07-11 2013-07-11 Способ получения литий-железо-фосфата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013132124/05A RU2585646C2 (ru) 2013-07-11 2013-07-11 Способ получения литий-железо-фосфата

Publications (2)

Publication Number Publication Date
RU2013132124A RU2013132124A (ru) 2015-01-20
RU2585646C2 true RU2585646C2 (ru) 2016-05-27

Family

ID=53280717

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013132124/05A RU2585646C2 (ru) 2013-07-11 2013-07-11 Способ получения литий-железо-фосфата

Country Status (1)

Country Link
RU (1) RU2585646C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044820A (zh) * 2021-04-28 2021-06-29 四川思特瑞锂业有限公司 粗制锂盐生产电池级磷酸二氢锂的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390473B1 (en) * 2002-10-29 2008-06-24 Nei Corp. Method of making fine lithium iron phosphate/carbon-based powders with an olivine type structure
US20100233540A1 (en) * 2008-10-22 2010-09-16 Lg Chem, Ltd. Lithium iron phosphate having olivine structure and method for preparing the same
CN101901892A (zh) * 2009-05-26 2010-12-01 上海比亚迪有限公司 一种锂离子二次电池正极及锂离子二次电池
RU2424599C1 (ru) * 2010-06-08 2011-07-20 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)") Способ изготовления активной массы катода литиевого источника тока
US7998618B2 (en) * 2003-11-14 2011-08-16 Sud-Chemi Ag Lithium metal phosphates, method for producing the same and use thereof as electrode material
RU2444815C1 (ru) * 2010-08-27 2012-03-10 Учреждение Российской академии наук Институт химии твердого тела и механохимии Сибирского отделения РАН (ИХТТМ СО РАН) СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ КАТОДНЫХ МАТЕРИАЛОВ LixFeyMzPO4/C СО СТРУКТУРОЙ ОЛИВИНА

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390473B1 (en) * 2002-10-29 2008-06-24 Nei Corp. Method of making fine lithium iron phosphate/carbon-based powders with an olivine type structure
US7998618B2 (en) * 2003-11-14 2011-08-16 Sud-Chemi Ag Lithium metal phosphates, method for producing the same and use thereof as electrode material
US20100233540A1 (en) * 2008-10-22 2010-09-16 Lg Chem, Ltd. Lithium iron phosphate having olivine structure and method for preparing the same
CN101901892A (zh) * 2009-05-26 2010-12-01 上海比亚迪有限公司 一种锂离子二次电池正极及锂离子二次电池
RU2424599C1 (ru) * 2010-06-08 2011-07-20 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)") Способ изготовления активной массы катода литиевого источника тока
RU2444815C1 (ru) * 2010-08-27 2012-03-10 Учреждение Российской академии наук Институт химии твердого тела и механохимии Сибирского отделения РАН (ИХТТМ СО РАН) СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ КАТОДНЫХ МАТЕРИАЛОВ LixFeyMzPO4/C СО СТРУКТУРОЙ ОЛИВИНА

Also Published As

Publication number Publication date
RU2013132124A (ru) 2015-01-20

Similar Documents

Publication Publication Date Title
TWI328564B (en) Process for preparing lithium metal phosphate
KR102611412B1 (ko) 인산텅스텐산지르코늄의 제조 방법
RU2670920C1 (ru) Способ получения сульфидного твердого электролита
JP5748146B2 (ja) オルトリン酸鉄の製造
TWI266744B (en) Lithium iron phosphate, process for production thereof and use as an electrode material
KR101718918B1 (ko) 인산제2철 함수물 입자 분말 및 그의 제조법, 올리빈형 인산철리튬 입자 분말 및 그의 제조법 및 비수전해질 이차 전지
CN103443968B (zh) 锂钛混合氧化物
JP5801317B2 (ja) アルカリ金属オキシアニオン電極材料の電気化学性能を改善するための方法、及びそれにより得られたアルカリ金属オキシアニオン電極材料
CA2722547A1 (en) Method for producing cathode active material for lithium ion batteries, cathode active material for lithium ion batteries obtained by the production method, lithium ion battery electrode, and lithium ion battery
CN111377426B (zh) 一种无水磷酸铁纳米颗粒的制备方法
TWI750137B (zh) 磷酸鎢酸鋯的製造方法
JP5347603B2 (ja) 活物質の製造方法、活物質、電極及びリチウムイオン二次電池
US20160145104A1 (en) Method for making lithium iron phosphate
JP5515343B2 (ja) 活物質の製造方法、活物質、電極及びリチウムイオン二次電池
JP7189006B2 (ja) リチウムイオン二次電池の固体電解質用nasicon型酸化物粒子の製造方法
RU2585646C2 (ru) Способ получения литий-железо-фосфата
JP7130460B2 (ja) 二次電池の固体電解質用latp結晶粒子の製造方法
Park et al. Synthesis of hollow spherical LiFePO 4 by a novel route using organic phosphate
US20150251909A1 (en) Method for producing the lithium iron phosphate
JP2020027734A (ja) ナトリウムイオン二次電池用負極活物質粒子及びその製造方法
JP7165048B2 (ja) リチウムイオン二次電池の固体電解質用lisicon型結晶粒子を製造する方法
JP7189007B2 (ja) リチウムイオン二次電池の固体電解質用nasicon型酸化物粒子及びその製造方法
CN114620698B (zh) 一种大颗粒磷酸锆及其制备方法
JP2012004046A (ja) 活物質の製造方法、活物質及びリチウムイオン二次電池
JP2019218248A (ja) 固体電解質用latp結晶粒子及びその製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170712