RU2424246C2 - Способы сайт-специфического пегилирования - Google Patents

Способы сайт-специфического пегилирования Download PDF

Info

Publication number
RU2424246C2
RU2424246C2 RU2008151775/04A RU2008151775A RU2424246C2 RU 2424246 C2 RU2424246 C2 RU 2424246C2 RU 2008151775/04 A RU2008151775/04 A RU 2008151775/04A RU 2008151775 A RU2008151775 A RU 2008151775A RU 2424246 C2 RU2424246 C2 RU 2424246C2
Authority
RU
Russia
Prior art keywords
free
peg
specified
group
peptide
Prior art date
Application number
RU2008151775/04A
Other languages
English (en)
Other versions
RU2008151775A (ru
Inventor
Чжен Ксин ДОНГ (US)
Чжен Ксин Донг
Джон С. ЭЙНОН (US)
Джон С. ЭЙНОН
Original Assignee
Ипсен Фарма С.А.С.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ипсен Фарма С.А.С. filed Critical Ипсен Фарма С.А.С.
Publication of RU2008151775A publication Critical patent/RU2008151775A/ru
Application granted granted Critical
Publication of RU2424246C2 publication Critical patent/RU2424246C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/08Peptides being immobilised on, or in, an organic carrier the carrier being a synthetic polymer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • C08G65/3348Polymers modified by chemical after-treatment with organic compounds containing sulfur containing nitrogen in addition to sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)

Abstract

Настоящее изобретение относится к способам хемоселективного пегилирования цистеинового остатка, обладающего неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой в пептидах. Предлагаются аналогичные способы хемоселективного пегилирования гомоцистеинового, селенцистеинового, пеницилламинового и N-метилцистеинового остатков. 9 н. и 4 з.п. ф-лы.

Description

УРОВЕНЬ ТЕХНИКИ
Настоящее изобретение относится к способам хемоселективного пегилирования цистеинового остатка, обладающего неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой, в белках, пептидах и других молекулах.
Если низкомолекулярные лекарственные средства обычно вводят пероральным путем, то белковые и пептидные терапевтические агенты, как правило, вводят инъекционно вследствие их крайне низкой пероральной биодоступности. После инъекции большинство белков и пептидов быстро расщепляется ферментами и выводится из организма, что приводит к краткому сроку циркуляции (периоду полураспада) in vivo. Малое время циркуляции (период полураспада) приводит к более низкой эффективности, более частому введению, худшему соблюдению больным режима и схемы лечения и более высокой стоимости белковых и пептидных лекарственных препаратов. Поэтому существует острая необходимость в развитии способов продления времени действия белковых и пептидных лекарственных средств.
Доказано, что ковалентное присоединение белков и пептидов к полиэтиленгликолю (PEG) представляет собой эффективный способ увеличения времени циркуляции (периода полураспада) белков и пептидов в организме (Abuchowski, A. et al., Cancer Biochem. Biophys., 1984, 7:175-186; Hershfield, M.S. et al., N. Engl. J. Medicine 316:589-596; и Meyers, F. J. et al., Clin. Pharmacol. Ther., 1991, 49:307-313). Ковалентное присоединение PEG к белкам и пептидам не только защищает молекулы от ферментативного расщепления, но и снижает скорость их выведения из организма. Размер PEG, присоединенного к белку, имеет существенное влияние на время циркуляции (период полураспада) белка. Как правило, больший PEG приводит in vivo к более длительному периоду полураспада присоединенного белка. Коммерчески доступны молекулы PEG нескольких размеров (Nektar Advanced PEGylation Catalog 2005-2006; и NOF DDS Catalogue Ver 7.1), которые подходят для получения белков и пептидов с намеченными сроками циркуляции (периодами полураспада). Фрагмент PEG также повышает растворимость в воде и снижает иммуногенность белков, пептидов и других молекул (Katre, N.V. et al., Proc. Natl. Aced. Sci. USA, 1998, 84:1487-1491; и Katre, N.V. et al., J. Immunology, 1990, 144:209-213).
В литературе сообщалось о нескольких способах пегилирования белков. Например, для пегилирования свободных аминогрупп лизиновых остатков и N-концов белков использовали N-гидроксисукцинимид (NНS)-PEG. Поскольку белки обычно содержат большое число лизиновых остатков и концевую аминогруппу, с использованием данного способа пегилируется большое число сайтов белка. Такое неселективное пегилирование приводит к снижению эффективности пегилированных белков, поскольку большое число фрагментов PEG обычно препятствует взаимодействию между белками и их биологическими молекулами-мишенями (Teh, L.-C. and Chapman, G.E., Biochem. Biophys. Res. Comm., 1988, 150:391-398; и Clark, R. et al., J. Biol. Chem. 1996, 271:21969-21977). Неселективное, повторенное на большом числе сайтов пегилирование, кроме того, создает гетерогенные смеси конечных продуктов. Многие из этих гетерогенных пегилированных белков не подходят для применения в лечебных целях из-за низкоспецифических активностей. Гетерогенные пегилированные белки трудно поддаются очистке и характеристике. Как правило, высоко разнообразие содержания различных партий продукта гетерогенных пегилированных белков и контроль качества этих смесей затруднителен.
Несмотря на то что для пегилирования аминоконцов белков были использованы молекулы PEG, несущие альдегидные группы, при наличии восстановителя, такой способ не создает исключительно N-концевых пегилированных белков, и лизиновые остатки белков также пегилируются. Таким образом, полученные белки также представляют собой гетерогенные смеси (Kinstler O.B. et al., заявка США №09/817725). Недостатком этого способа также является использование жестких условий реакции восстановления. Восстановители, такие как цианоборогидрид, могут повреждать белки и приводить к меньшему выходу реакции.
Для селективного пегилирования свободных тиоловых групп цистеиновых остатков в белках использовали молекулы PEG с малеимидными функциональными группами. Для такого способа часто необходима точковая мутация, приводящая к появлению нового цистеина. Поскольку большинство белков содержит один или несколько цистеиновых остатков для того, чтобы избирательно помешать тиоловой группе нового, «неприродного», цистеинового остатка образовать дисульфидный мостик с другими цистеиновыми остатками, и затем для избирательного пегилирования исключительно этого нового цистеина требуются очень сложные условия проведения реакции (патент США №6753165, выданный 22 июня 2004, и патент США №6608183, выданный 19 августа 2003). Даже в контролируемых условиях проведения реакции могут пегилироваться другие цистеиновые остатки, и получаются гетерогенные продукты.
Сообщалось о сайт-специфическом пегилировании ацетил-фенилаланинового остатка аналогов гормона роста. Для такого способа необходима точковая мутация с образованием неприродной аминокислоты ацетил-фенилаланина (заявка США №11/046432, поданная 28 января 2005). Одним из недостатков этого способа является то, что пегилирование белков, обладающих неприродными аминокислотами, такими как ацетил-фенилаланин, можно осуществить лишь в бактериальных клетках, но не в клетках млекопитающих.
Для пегилирования белка были использованы свободные тиоловые и аминогруппы, полученные в реакции аминотиолактона со свободной аминогруппой интерлейкина-2. Тем не менее, в данном способе использованный аминотиолактон взаимодействует с любыми функциональными аминогруппами лизиновых остатков и N-концов в белках, и способ не является сайт-селективным (патент США №6310180, выданный 30 октября 2001).
Поэтому несмотря на ранее предпринятые различными коллективами усилия до сих пор существует острая необходимость в разработке легких и удобных в использовании способов сайт-специфического пегилирования белков, пептидов и других молекул.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение в целом относится к новым способам сайт-специфического пегилирования белков, пептидов и других молекул. Было обнаружено, что PEG, содержащий альдегидную функциональную группу (PEG-альдегид), самопроизвольно взаимодействует, в водном растворе в широком диапазоне значений рН с цистеином, обладающим неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой, с образованием тиазолидина, благодаря чему PEG-альдегид вследствие гидрофильной природы и большого размера PEG (например, 30 кДа) взаимодействует с пептидным фрагментом, содержащим большое число функциональных групп, который не был точно определен. Авторы изобретения также обнаружили, что с PEG-альдегидом взаимодействует лишь цистеиновый остаток, имеющий боковую цепь с неокисленным сульфгидрилом и свободную α-аминогруппу. Другие функциональные группы в других остатках (например, тиоловая группа цистеина, не имеющего свободной α-аминогруппы, гуанидиниловая группа Arg, аминогруппа Lys, карбоксильная группа боковой цепи Asp, карбоксильная группа боковой цепи Glu, гидроксильная группа Tyr и гидроксильная группа Ser) не взаимодействуют с PEG-альдегидом.
Используя настоящие способы, пегилируются лишь цистеиновые остатки, имеющие боковую цепь с неокисленным сульфгидрилом и свободную α-аминогруппу, но не какие-либо другие аминокислоты в белках, пептидах и других молекулах. Таким образом, настоящие способы являются высоко сайт-селективными. Свойство настоящих способов пегилирования быть сайт-специфичными приводит к получению более гомогенных продуктов, которые легко поддаются характеристике, очистке и их легко получить и у них меньше различий между разными партиями. У PEG, присоединенного к конкретному сайту (т.е. N-концевому цистеину) белков и пептидов, должен быть меньше риск взаимодействия с биологическими мишенями, и поэтому должны получаться более эффективные терапевтические агенты.
В настоящем изобретении альдегидная функциональная группа PEG самопроизвольно взаимодействует с амино- и тиоловыми функциональными группами цистеинового остатка на N-конце белка или пептида в водном растворе в диапазоне значений рН (например, рН 2-8) и при различных температурах (например, при комнатной температуре). Вновь полученная функциональная группа между PEG и белком или пептидом представляет собой 1,3-тиазолидин. В таких условиях пегилирования карбоксильные группы остатков глутаминовой и аспарагиновой кислот и С-концевая карбоксильная группа, аминогруппы лизиновых остатков, гуанидиниловые группы аргининовых остатков, тиоловые группы внутренних цистеиновых остатков и гидроксильные группы сериновых, треониновых и тирозиновых остатков не взаимодействуют с альдегидной функциональной группой PEG. Таким образом, настоящее изобретение относится к сайт-специфическому пегилированию N-концевого цистеинового остатка. Для предотвращения образования в процессе пегилирования дисульфидного мостика можно использовать восстановители, такие как трис(карбоксиэтил) фосфин (ТСЕР), и реакции можно проводить в атмосфере азота и аргона. Можно использовать PEG-альдегид в количестве 1-4 эквивалентов. Реакции обычно завершают через 2-72 часа в зависимости от значения рН раствора и количества эквивалентов использованного PEG-альдегида. Если при пегилировании встречаются несвернутые белки, после пегилирования белковые продукты могут вновь свернуться. При проведении пегилирования на правильно свернутых белках стадия повторного сворачивания не совершается.
Молекулы PEG, использованные в настоящем изобретении, могут иметь различную молекулярную массу (например, 2-40 кДа), иметь линейную, разветвленную и сильноразветвленную структуру и содержать одну или несколько альдегидных функциональных групп. При использовании PEG, содержащего две альдегидных функциональных группы, конечный продукт будет представлять собой белковый или пептидный димер, и PEG будет в нем линкером. PEG с большим числом альдегидных функциональных групп будет создавать мультимер пегилированных белков или пептидов.
Для контроля значения рН реакционного раствора можно использовать системы забуференных растворов, такие как PBS. Для содействия проведению реакций реакционные растворы также могут содержать другие агенты, такие как EDTA.
Конечные пегилированные белки и пептиды можно очистить c помощью различных способов очистки, таких как обратнофазовая высокоэффективная жидкостная хроматография (RP-HPLC), гель-хроматография и ионообменная хроматография, и охарактеризовать с помощью MALDI-MS, хроматографических способов, электрофореза, аминокислотного анализа и методик секвенирования белков и пептидов.
В первом варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную альдегидную группу, с боковой цепью, содержащей неокисленный сульфгидрил, и свободной α-аминогруппой цистеинового остатка молекулы, указанный способ содержит взаимодействие свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой указанного цистеинового остатка с образованием в продукте 1,3-тиазолидиновой группы, где указанный продукт имеет структуру
Figure 00000001
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу.
Во втором варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную альдегидную группу, с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой цистеинового остатка молекулы, включающему взаимодействие в реакционном растворе свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой указанного цистеинового остатка с образованием в промежуточном продукте 1,3-тиазолидиновой группы, и доведение рН реакционного раствора до значения приблизительно 7, при котором, указанный промежуточный продукт перегруппируется с образованием конечного продукта, где указанный промежуточный продукт имеет структуру
Figure 00000002
и указанный конечный продукт имеет структуру
Figure 00000003
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу. В данном документе под термином «приблизительно» понимают ±10%.
В третьем варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную альдегидную группу, с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой пеницилламинового остатка молекулы, включающему взаимодействие свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой указанного пеницилламинового остатка с образованием в продукте 5,5-диметил-1,3-тиазолидиновой группы, где указанный продукт имеет структуру
Figure 00000004
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу.
В четвертом варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную альдегидную группу, с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой пеницилламинового остатка молекулы, включающему взаимодействие в реакционном растворе свободной альдегидной группы указанного PEG с неокисленной сульфигидрильной боковой цепью и свободной α-аминогруппой указанного пеницилламинового остатка с образованием в промежуточном продукте 5,5-диметил-1,3-тиазолидиновой группы, и доведение рН реакционного раствора до значения приблизительно 7, при котором указанный промежуточный продукт перегруппируется с образованием конечного продукта, где указанный промежуточный продукт имеет структуру
Figure 00000005
и указанный конечный продукт имеет структуру
Figure 00000006
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу. В данном документе под термином «приблизительно» понимают ±10%.
В пятом варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную альдегидную группу, с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой гомоцистеинового остатка молекулы, включающему взаимодействие свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой указанного гомоцистеинового остатка с образованием в продукте 6-членной кольцевой системы, где указанный продукт имеет структуру
Figure 00000007
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу.
В шестом варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную альдегидную группу, с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой гомоцистеинового остатка молекулы, включающему взаимодействие в реакционном растворе свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой указанного гомоцистеинового остатка с образованием в промежуточном продукте 6-членной кольцевой системы, и доведение рН реакционного раствора до значения приблизительно 7, таким образом, указанный промежуточный продукт перегруппируется с образованием конечного продукта, где указанный промежуточный продукт имеет структуру
Figure 00000008
и указанный конечный продукт имеет структуру
Figure 00000009
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу. В данном документе под термином «приблизительно» понимают ±10%.
В седьмом варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную альдегидную группу, с неокисленной свободной селеногруппой и свободной α-аминогруппой селенцистеинового остатка молекулы, включающему взаимодействие свободной альдегидной группы указанного PEG с неокисленной свободной селеногруппой и свободной α-аминогруппой указанного селенцистеинового остатка с образованием в продукте 5-членной кольцевой системы, где указанный продукт имеет структуру
Figure 00000010
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу.
В восьмом варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную альдегидную группу, с неокисленной свободной селеногруппой и свободной α-аминогруппой селенцистеинового остатка молекулы, включающему взаимодействие в реакционном растворе свободной альдегидной группы указанного PEG с неокисленной свободной селеногруппой и свободной α-аминогруппой указанного селенцистеинового остатка с образованием в промежуточном продукте 5-членной кольцевой системы, и доведение рН реакционного раствора до значения приблизительно 7, при котором, указанный промежуточный продукт перегруппируется с образованием конечного продукта, где указанный промежуточный продукт имеет структуру
Figure 00000011
и указанный конечный продукт имеет структуру
Figure 00000012
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу. В данном документе под термином «приблизительно» понимают ±10%.
В девятом варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную альдегидную группу, с неокисленной сульфгидрильной боковой цепью и свободной α-метиламиногруппой N-метилцистеинового остатка молекулы, включающему взаимодействие свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-метиламиногруппой указанного N-метилцистеинового остатка с образованием в продукте 3-метил-1,3-тиазолидиновой группы, где указанный продукт имеет структуру
Figure 00000013
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу.
В каждом из вышеуказанных вариантов осуществления изобретения - т.е. с пятого по девятый варианты осуществления изобретения - свободная альдегидная группа присоединяется к указанному PEG посредством линкера, который может содержать в качестве функциональной группы амид, сложный эфир, сульфонамид, сульфонил, тиол, окси, алкил, алкенил, алкинил, арил, малеимид или амин или любое их сочетание.
В десятом варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную малеимидную группу, с неокисленной сульфгидрильной боковой цепью N-метилцистеинового остатка молекулы, включающему взаимодействие свободной малеимидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью указанного N-метилцистеина с образованием конъюгированного продукта, где указанный конъюгированный продукт имеет структуру
Figure 00000014
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу.
В одиннадцатом варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную малеимидную группу, с неокисленной сульфгидрильной боковой цепью пеницилламинного остатка молекулы, включающему взаимодействие свободной малеимидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью указанного пеницилламинного остатка с образованием конъюгированного продукта, где указанный конъюгированный продукт имеет структуру
Figure 00000015
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу.
В двенадцатом варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную малеимидную группу, с неокисленной сульфгидрильной боковой цепью гомоцистеинового остатка молекулы, включающему взаимодействие свободной малеимидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью указанного гомоцистеинового остатка с образованием конъюгированного продукта, где указанный конъюгированный продукт имеет структуру
Figure 00000016
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу.
В тринадцатом варианте осуществления изобретение относится к способу химического конъюгирования PEG, содержащего свободную малеимидную группу, с неокисленной селенсодержащей боковой цепью селенцистеинового остатка молекулы, включающему взаимодействие свободной малеимидной группы указанного PEG с неокисленной селенсодержащей боковой цепью указанного селенцистеинового остатка с образованием конъюгированного продукта, где указанный продукт имеет структуру
Figure 00000017
где R1 представляет собой указанный PEG, и R2 представляет собой указанную молекулу.
В каждом из вышеуказанных вариантов осуществления изобретения - т.е. с десятого по тринадцатый варианты осуществления изобретения - свободная малеимидная группа присоединяется к указанному PEG посредством линкера, который может содержать в качестве функциональной группы амид, сложный эфир, сульфонамид, сульфонил, тиол, окси, алкил, алкенил, алкинил, арил, малеимид или амин или любое их сочетание.
Во всех вышеуказанных вариантах осуществления изобретения PEG может иметь линейную структуру, разветвленную структуру или сильноразветвленную структуру.
Во всех вышеуказанных вариантах осуществления изобретения PEG имеет среднюю молекулярную массу от примерно 100 Да до примерно 500 000 Да, а более предпочтительно от примерно 1 000 Да до примерно 50 000 Да.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Авторы изобретения полагают, что специалист в данной области на основании описания данного документа может использовать настоящее изобретение в полном объеме. Следующие конкретные варианты осуществления поэтому должны пониматься всего лишь в качестве иллюстративных, но не в качестве ограничивающих последующее описание каким бы то ни было образом.
Если не указано иначе, все технические и научные термины, использованные в данном документе, имеют то же значение, которое обычно понимается специалистом в данной области, для которого это изобретение предназначено. Кроме того, все публикации, патентные заявки, патенты и другие ссылки, упоминаемые в данном документе, приводятся в качестве ссылки в полном объеме.
Система наименований и аббревиатуры
Символ Значение
Ala или A аланин
Arg или R аргинин
Asn или N аспарагин
Asp или D аспарагиновая кислота
Cys или C цистеин
hCys гомоцистеин
Gln или Q глутамин
Glu или E глутаминовая кислота
Gly или G глицин
His или H гистидин
Ile или I изолейцин
Leu или L лейцин
Lys или K лизин
Met или M метионин
Nle норлейцин
N-Me-Cys или NmeCys
N-метилцистеин, который имеет структуру:
Figure 00000018
PEG полиэтиленгликоль
Pen пеницилламин
Phe или F фенилаланин
Pro или P пролин
Ser или S серин
селенCys селенцистеин
Thr или T треонин
Trp или W триптофан
Tyr или Y тирозин
Val или V валин
Некоторые другие аббревиатуры, использованные в данном документе, определяются согласно следующему:
Вос трет-бутилоксикарбонил
Bzl бензил
DCM дихлорметан
DIC N,N-диизопропилкарбодиимид
DIEA диизопропилэтиламин
Dmab 4-{N-(1-(4,4-диметил-2,6-диоксоцикло-гексилидин)-3-
метилбутил)-амино} бензил
DMAP 4-(диметиламино) пиридин
DMF диметилформамид
DNP 2,4-динитрофенил
DTT дитиотреитол
EDTA этилендиаминтетрауксусная кислота
Fmoc фторенилметилоксикарбонил
HBTU 2-(1Н-бензтриазол-1-ил)-1,1,3,3-тетраметилурониум гексафторфосфат
cHex циклогексил
HOAT орто-(7-азабензтриазол-1-ил)- 1,1,3,3-тетраметилурониум гексафторфосфат
HOBt 1-гидроксибензтриазол
Me метил
Mmt 4-метокситритил
NMP N-метилпирролидон
Pbf 2,2,4,6,7-пентаметилдигидробензофуран-5-сульфонил
tBu трет-бутил
TCEP трис(карбоксиэтил) фосфин
TIS триизопропилсилан
TOS тозил
trt тритил
TFA трифторуксусная кислота
TFFH тетраметилфторформамидиния гексафторфосфат
Z бензилоксикарбонил
Tha
1,3-тиазолидин-4-карбоновая кислота, которая имеет структуру:
Figure 00000019
Tmc
1,3-тиазолидин-3-метил-4-карбоновая кислота, которая имеет структуру:
Figure 00000020
Dma
5,5-диметил-1,3-тиазолидин-4- карбоновая кислота, которая имеет структуру:
Figure 00000021
Thc
1,3-тиазинан-4-карбоновая кислота, которая имеет структуру:
Figure 00000022
Sez
1,3-селеназолидин-4-карбоновая кислота, которая имеет структуру:
Figure 00000023
Hth
2-гидроксиметил-1,3-тиазолидин-4-карбоновая кислота, которая имеет структуру:
Figure 00000024
Hdm
2-гидроксиметил-5,5-диметил-1,3-тиазолидин-4-карбоновая кислота, которая имеет структуру:
Figure 00000025
Haz
2-гидроксиметил-1,3- тиазинан-4-карбоновая кислота, которая имеет структуру:
Figure 00000026
Hsz 2-гидроксиметил-1,3-селеназолидин-4-карбоновая кислота, которая имеет структуру:
Figure 00000027
Малеимид имеет структуру:
Figure 00000028
Prd
пирролидин-2,5-дион, который имеет структуру:
Figure 00000029
NMeCys (Prd-PEG) имеет структуру:
Figure 00000030
Pen (Prd-PEG) имеет структуру:
Figure 00000031
hCys (Prd-PEG) имeет структуру:
Figure 00000032
селенCys (Prd-PEG) имеет структуру:
Figure 00000033
PEG представляет собой хорошо известный водорастворимый полимер, который коммерчески доступен или может быть получен полимеризацией этиленгликоля с раскрытием кольца согласно способам, известным в данной области (Sandler and Karo, Polymer Synthesis, Academic Press, New York, VO13, pages 138-161). Термин «PEG» широко используют в отношении любых молекул полиэтиленгликоля вне зависимости от размера или модификации на конце молекулы PEG. PEG могут иметь линейную, разветвленную или сильноразветвленную структуру.
ПРИМЕРЫ
Пример 1) Получение H-NMeCys-Lys-Phe-NH 2 (SEQ ID NO:1)
Figure 00000034
Амидной смоле Ринка МВНА (211 мг, 0,152 ммоль) (Novabiochem, San Diego, Calif.) давали набухнуть в дихлорметане (DCM) и промывали диметилформамидом (DMF). Смолу деблокировали обработкой 25%-ным раствором пиперидин/ DMF (10 мл) 2 раза по 10 мин. Смолу трижды промывали DMF (10 мл). Первую аминокислоту присоединяли к смоле обработкой раствором, содержащим Fmoc-Phe-OH (Novabiochem, San Diego, Calif.) (235 мг, 0,606 ммоль), 1-гидроксибензтриазол (HOBt) (92,3 мг, 0,606 ммоль) и диизопропилкарбодиимид (DIC) (77 мг, 0,606 ммоль) в N-метилпирролидоне (NMP) (2 мл), в течение одного часа. Смолу фильтровали и промывали с помощью DMF (10 мл) трижды.
Защитную группу Fmoc удаляли обработкой 25%-ным раствором пиперидин/DMF (10 мл) 2 раза по 10 мин, и смолу трижды промывали DMF (10 мл). В течение одного часа к полученной смоле, содержащей свободный амин, присоединяли Fmoc-Lys(Boc)-OH (Novabiochem, San Diego, Calif.) (285 мг, 0,606 ммоль) при наличии HOBt (0,606 ммоль) и DIC (0,606 ммоль) в NMP (2 мл).
Процедуры деблокирования и промывки повторяли аналогично описанному выше. Используя HOBt (51 мг, 0,33 ммоль) и DIC (83,8 мг, 0,66 ммоль) в NMP (2 мл), к полученной смоле с пептидом в течение 12 часов присоединяли Fmoc-N-Me-Cys(Trt)-OH (Timen Chemicals, Lodz, Poland.) (100 мг, 0,167 ммоль). Используя тетраметилфторформамидинийпентафторфосфат (TFFH) (20 мг, 0,075 ммоль) и диизопропилэтиламин (DIEA) (19,4 мг, 0,150 ммоль) в NMP (2 мл), в течение одного часа воспроизводили присоединение Fmoc-N-Me-Cys(Trt)-OH (45 мг, 0,075 ммоль). Процедуры деблокирования и промывки повторяли аналогично описанному выше. Смолу трижды промывали DСМ, после чего трижды промывали метанолом. Смолу высушивали в вакууме.
Пептид отщепляли от смолы путем встряхивания смолы с 8% триспропилсилан/трифторуксусной кислотой (ТFА) (2 мл) в течение двух часов. Смолу фильтровали и промывали с помощью DCМ (2 мл). Фильтраты объединяли и концентрировали до 1 мл. Для осаждения пептида добавляли диэтиловый эфир (35 мл). После центрифугирования собирали осажденный пептид. Осадок растворяли в воде и ацетонитриле и затем лиофилизировали.
Полученный сырой продукт очищали с помощью системы обратнофазовой HPLC (колонка Luna 5 микрон С8(2) размером 100х20 мм), элюировали в течение 30 минут, начиная со 100% буфера А (0,1% ТFА в воде) и 0% буфера В (0,1% ТFА в ацетонитриле) и заканчивая 80% буфером А и 20% буфером В, осуществляя мониторинг при 235 нм. После лиофилизации получали 51,2 мг конечного продукта. С помощью масс-спектроскопии ESI определяли, что ион М+1 имеет массу 410,3 Да, что согласуется с рассчитанной молекулярной массой 409,6 Да.
Пример 2) Получение mPEG-Tmc-Lys-Phe-NH 2 (SEQ ID NO:2)
В данном документе mPEG имеет структуру СН3О(СН2СН2О)n-(СН2)2-, где n представляет собой положительное целое число.
Figure 00000035
Пептидный продукт, полученный в примере 1 (0,5 мг, 1,22 микромоль), растворяли в 1,0 мл буфера со значением рН 4 (20 ммоль NaOAc, 150 ммоль NaCl и 1 ммоль EDTA). К полученному раствору добавляли mPEG-альдегид (в количестве 1,5 эквивалента, средняя молекулярная масса 31378 Да, NOF Corp., Tokyo, Japan). По данным анализа, проведенного с использованием системы обратнофазовой аналитической HPLC (колонка для разделения пептидов/белков Vydac C18 5µ, 4,6×250 мм), реакция была завершена примерно на 90% через 27 часов при комнатной температуре. Реакционную смесь наносили на спин-колонку для обессоливания ZebaТМ объемом 5 мл (Pierce Biotechnology, Rockford, IL). После лиофилизации получали вспененное белое вещество (36,7 мг).
Пример 3) Получение H-NMeCys (Prd-PEG)-Lys-Phe-NH 2 (SEQ ID NO:3)
Figure 00000036
Пептидный продукт, полученный в примере 1 (0,5 мг, 1,22 микромоль), растворяли в 1,0 мл буфера со значением рН 7 (20 ммоль NaOAc). К полученному раствору добавляли α-(3-(3-малеимид-1-оксопропил)амино) пропил-ω-метоксиполиоксиэтилен (в количестве 1,5 эквивалентов, средняя молекулярная масса 11962 Да, NOF Corp., Tokyo, Japan) и гидрохлорид трис(2-карбоксиэтил) фосфина (ТСЕР) в количестве 2 эквивалентов. Через час при комнатной температуре реакцию завершали, основываясь на анализе, проведенном с использованием системы обратнофазовой аналитической HPLC (колонка для разделения пептидов/белков Vydac C18 5µ, 4,6×250 мм). Реакционную смесь наносили на спин-колонку для обессоливания ZebaТМ объемом 5 мл (Pierce Biotechnology, Rockford, IL). После лиофилизации получали вспененное белое вещество (15,1 мг). Продукт дополнительно очищали на катион-обменной колонке High TrapTM SPXL (GE Healthcare, Piscataway, NJ). Используя масс-спектроскопию MALDI-TOF, определяли распределение молекулярной массы очищенного продукта. Полученный экспериментально результат оказался сопоставим с рассчитанным распределением молекулярной массы.
Пример 4) Получение H-Cys-Lys-Phe-NH 2 (SEQ ID NO:4)
Figure 00000037
Названный пептид синтезировали на микроволновом пептидном синтезаторе модели LibertyTM (CEM Corp., Matthews, NC), используя амидную смолу Ринка МВНА (347 мг, 0,25 ммоль) (Novabiochem, San Diego, Calif.). Аминокислоты Fmoc-Phe-OH, Fmoc-Lys(BOC)-OH и Fmoc-Cys(Trt)-OH (Novabiochem, San Diego, CA) использовали с четырехкратным избытком, применяя активацию HBTU, и каждое присоединение повторяли.
Пептид отщепляли от смолы путем встряхивания смолы с 8% триспропилсилан/трифторуксусной кислотой (TFA) с добавлением 1% дитиотреитола (10 мл) в течение трех часов. Смолу фильтровали и промывали с помощью DCM (5 мл). Фильтраты объединяли и концентрировали до 3 мл. Для осаждения пептида добавляли диэтиловый эфир (35 мл). После центрифугирования осажденный пептид собирали. Осадок растворяли в воде и ацетонитриле и затем лиофилизировали.
Полученный сырой продукт очищали с помощью системы обратнофазовой HPLC (колонка Luna 5 микрон С8(2) размером 100×20 мм), элюировали в течение 35 минут, начиная со 100% буфера А (0,1% ТFА в воде) и 0% буфера В (0,1% ТFА в ацетонитриле) и заканчивая 70% буфером А и 30% буфером В, мониторируя при 235 нм. После лиофилизации получали 89,1 мг конечного продукта. С помощью масс-спектроскопии ESI определяли, что ион М+1 имеет массу 396,5 Да, что согласуется с рассчитанной молекулярной массой 395,5 Да.
Пример 5) Получение mPEG-Tha-Lys-Phe-NH 2 (SEQ ID NO:5)
В данном документе mPEG имеет структуру СН3О(СН2СН2О)n-(СН2)2-, где n представляет собой положительное целое число.
Figure 00000038
Пептидный продукт, полученный в примере 4 (0,5 мг, 1,26 микромоль), растворяли в 1,0 мл буфера со значением рН 4 (20 ммоль NaOAc). К полученному раствору добавляли mPEG-альдегид (в количестве 1,5 эквивалентов, средняя молекулярная масса равняется 20644 Да, NOF Corp., Tokyo, Japan) и ТСЕР (в количестве 2,0 эквивалентов). По данным анализа, проведенного с использованием системы обратнофазовой аналитической HPLC (колонка для разделения пептидов/белков Vydac C18 5µ, 4,6×250 мм), реакция была завершена примерно на 85% через три часа при комнатной температуре. Реакционную смесь наносили на спин-колонку для обессоливания ZebaТМ объемом 10 мл (Pierce Biotechnology, Rockford, IL). После лиофилизации получали вспененное белое вещество.
Пример 6) Получение H-hCys-Lys-Phe-NH 2 (SEQ ID NO:4)
Figure 00000039
Указанный пептид синтезировали на микроволновом пептидном синтезаторе модели LibertyTM (CEM Corp., Matthews, NC), используя амидную смолу Ринка МВНА (347 мг, 0,25 ммоль) (Novabiochem, San Diego, Calif.). Аминокислоты Fmoc-Phe-OH, Fmoc-Lys(BOC)-OH и Fmoc-hCys(Trt)-OH (Novabiochem, San Diego, CA) использовали в четырехкратном избытке, применяя активацию HBTU, и каждое присоединение повторяли.
Пептид отщепляли от смолы путем встряхивания смолы с 8% триспропилсилан/ трифторуксусной кислотой (TFA) с добавлением 1% дитиотреитола (10 мл) в течение трех часов. Смолу фильтровали и промывали с помощью DCM (5 мл). Фильтраты объединяли и концентрировали до 3 мл. Для осаждения пептида добавляли диэтиловый эфир (35 мл). После центрифугирования собирали осажденный пептид. Осадок растворяли в воде и ацетонитриле и затем лиофилизировали.
Полученный сырой продукт очищали с помощью системы обратнофазовой HPLC (колонка Luna 5 микрон С8(2) размером 100×20 мм), элюировали в течение 35 минут, начиная со 100% буфера А (0,1% ТFА в воде) и 0% буфера В (0,1% ТFА в ацетонитриле) и заканчивая 75% буфером А и 25% буфером В, осуществляя мониторинг при 235 нм. После лиофилизации получали 85,7 мг конечного продукта. С помощью масс-спектроскопии ESI определяли, что ион М+1 имеет массу 410,5 Да, что согласуется с рассчитанной молекулярной массой 409,6 Да.
Пример 7) Получение H-Реn-Lys-Phe-NH 2 (SEQ ID NO:6)
Figure 00000040
Указанный пептид синтезировали на микроволновом пептидном синтезаторе модели LibertyTM (CEM Corp., Matthews, NC), используя амидную смолу Ринка МВНА (347 мг, 0,25 ммоль) (Novabiochem, San Diego, Calif.). Аминокислоты Fmoc-Phe-OH, Fmoc-Lys(BOC)-OH и Fmoc-Pen(Trt)-OH (Novabiochem, San Diego, CA) использовали с четырехкратным избытком, применяя активацию HBTU, и каждое присоединение повторяли.
Пептид отщепляли от смолы путем встряхивания смолы с 8% триспропилсилан/трифторуксусной кислотой (TFA) с добавлением 1% дитиотреитола (10 мл) в течение трех часов. Смолу фильтровали и промывали с помощью DCM (5 мл). Фильтраты объединяли и концентрировали до 3 мл. Для преципитации пептида добавляли диэтиловый эфир (35 мл). После центрифугирования собирали осажденный пептид. Осадок растворяли в воде и ацетонитриле и затем лиофилизировали.
Полученный сырой продукт очищали с помощью системы обратнофазовой HPLC (колонка Luna 5 микрон С8(2) размером 100×20 мм), элюировали в течение 35 минут, начиная со 100% буфера А (0,1% ТFА в воде) и 0% буфера В (0,1% ТFА в ацетонитриле) и заканчивая 80% буфером А и 20% буфером В, мониторируя при 235 нм. После лиофилизации получали 83,9 мг конечного продукта. С помощью масс-спектроскопии ESI определяли, что ион М+1 имеет массу 424,5 Да, что согласуется с рассчитанной молекулярной массой 423,6 Да.
Пример 8) Получение mPEG-Dma-Lys-Phe-NH 2 (SEQ ID NO:7)
В данном документе mPEG имеет структуру СН3О(СН2СН2О)n-(СН2)2-, где n представляет собой положительное целое число.
Figure 00000041
Пептидный продукт, полученный в примере 7 (0,5 мг, 1,18 микромоль), растворяли в 1,0 мл буфера со значением рН 4 (20 ммоль NaOAc). К полученному раствору добавляли mPEG-альдегид (в количестве 1,5 эквивалентов, средняя молекулярная масса равняется 20644 Да, NOF Corp., Tokyo, Japan) и ТСЕР (в количестве 2,0 эквивалентов). По данным анализа, проведенного с использованием системы обратнофазовой аналитической HPLC (колонка для разделения пептидов/белков Vydac C18 5µ, 4,6Ч250 мм), реакция была завершена примерно на 80% через три часа при комнатной температуре. Реакционную смесь наносили на спин-колонку для обессоливания ZebaТМ объемом 10 мл (Pierce Biotechnology, Rockford, IL). После лиофилизации получали вспененное белое вещество.
Пример 9) Получение mPEG-Thc-Lys-Phe-NH 2 (SEQ ID NO:8)
В данном документе mPEG имеет структуру СН3О(СН2СН2О)n-(СН2)2-, где n представляет собой положительное целое число.
Figure 00000042
Пептидный продукт, полученный в примере 6 (0,5 мг, 1,22 микромоль), растворяли в 1,0 мл буфера со значением рН 4 (20 ммоль NaOAc). К полученному раствору добавляли mPEG-альдегид (в количестве 1,5 эквивалентов, средняя молекулярная масса равняется 20644 Да, NOF Corp., Tokyo, Japan) и ТСЕР (в количестве 2,0 эквивалентов). По данным анализа, проведенного с использованием системы обратнофазовой аналитической HPLC (колонка для разделения пептидов/белков Vydac C18 5µ, 4,6×250 мм), реакция была завершена примерно на 90% через три часа при комнатной температуре. Реакционную смесь наносили на спин-колонку для обессоливания ZebaТМ объемом 10 мл (Pierce Biotechnology, Rockford, IL). После лиофилизации получали вспененное белое вещество.
Пример 10) Получение селенCys-Lys-Phe-NH 2 (SEQ ID NO:9)
Figure 00000043
Указанный пептид синтезировали по существу согласно процедуре, описанной в примере 1. Для встраивания селенцистеинового остатка на N-конце использовали Fmoc-селенCys (4-MeOBzl)-OH (Novabiochem, San Diego, СА).
Пример 11) Получение mPEG-Sez-Lys-Phe-NH 2 (SEQ ID NO:10)
В данном докумете mPEG имеет структуру СН3О(СН2СН2О)n-(СН2)2-, где n представляет собой положительное целое число.
Figure 00000044
Указанный пептид синтезировали по существу согласно процедуре, описанной в примере 2. Продукт, полученный в примере 10, является исходным пептидным материалом.
Пример 12) Получение
Figure 00000045
В данном документе mPEG имеет структуру СН3О(СН2СН2О)n-(СН2)2-, где n представляет собой положительное целое число.
Цезиевая соль mPEG-С(О)ОН взаимодействует с диметилацеталем бромацетальдегида в DMF при проведении реакции в течение 2 дней при 60°С. После удаления растворителя продукт обрабатывают с помощью 40% TFA в DCM в присутствии небольшого количества воды при 0°С в течение около 30 минут.
Пример 13) Получение mPEG-Hth-Lys-Phe-NH 2 (SEQ ID NO:11)
Figure 00000046
В данном документе mPEG имеет структуру СН3О(СН2СН2О)n-(СН2)2-, где n представляет собой положительное целое число.
Указанный пептид синтезируют по существу согласно процедуре, описанной в примере 2. Исходный пептидный материал представляет собой продукт, полученный в примере 4. Исходный материал PEG-альдегида представляет собой продукт, полученный в примере 12. Перед очисткой проводится дополнительная стадия доведения рН буферного раствора: выдержав при комнатной температуре в течение 2 часов при значении рН4, рН реакционного раствора доводят до значения 7 и выдерживают при комнатной температуре в течение 3 дней.
Пример 14) Получение mPEG-Hdm-Lys-Phe-NH 2 (SEQ ID NO:12)
Figure 00000047
В данном документе mPEG имеет структуру СН3О(СН2СН2О)n-(СН2)2-, где n представляет собой положительное целое число.
Указанный пептид синтезируют по существу согласно процедуре, описанной в примере 8. Исходный пептидный материал представляет собой продукт, полученный в примере 7. Исходный материал PEG-альдегида представляет собой продукт, полученный в примере 12. Перед очисткой проводится дополнительная стадия доведения рН буферного раствора: выдержав при комнатной температуре в течение ночи, рН реакционного раствора доводят до значения 7 и выдерживают раствор при комнатной температуре в течение 3 дней.
Пример 15) Получение mPEG-Haz-Lys-Phe-NH 2 (SEQ ID NO:13)
Figure 00000048
В данном документе mPEG имеет структуру СН3О(СН2СН2О)n-(СН2)2-, где n представляет собой положительное целое число.
Указанный пептид синтезируют по существу согласно процедуре, описанной в примере 9. Исходный пептидный материал представляет собой продукт, полученный в примере 6. Исходный материал PEG-альдегида представляет собой продукт, полученный в примере 12. Перед очисткой проводится дополнительная стадия доведения рН буферного раствора: выдержав при комнатной температуре в течение ночи при значении рН 4, рН реакционного раствора доводят до значения 7 и выдерживают раствор при комнатной температуре в течение 3 дней.
Пример 16) Получение mPEG-Hsz-Lys-Phe-NH 2 (SEQ ID NO:14)
Figure 00000049
В данном документе mPEG имеет структуру СН3О(СН2СН2О)n-(СН2)2-, где n представляет собой положительное целое число.
Указанный пептид синтезируют по существу согласно процедуре, описанной в примере 11. Исходный пептидный материал представляет собой продукт, полученный в примере 10. Исходный материал PEG-альдегида представляет собой продукт, полученный в примере 12. Перед очисткой проводится дополнительная стадия доведения рН буферного раствора: выдержав при комнатной температуре в течение 2 часов при значении рН 4, рН реакционного раствора доводят до значения 7 и выдерживают раствор при комнатной температуре в течение 3 дней.
Пример 17) Получение H-Pen(Prd-PEG)-Lys-Phe-NH 2 (SEQ ID NO:15)
Figure 00000050
Указанный пептид синтезируют по существу согласно процедуре, описанной в примере 3. Исходный пептидный материал представляет собой продукт, полученный в примере 7.
Пример 18) Получение H-hCys(Prd-PEG)-Lys-Phe-NH 2 (SEQ ID NO:16)
Figure 00000051
Пептидный продукт, полученный в примере 6 (1,0 мг, 2,44 микромоль), растворяли в 1,0 мл буфера со значением рН 7 (20 ммоль NaOAc). К полученному раствору добавляли α-(3-(3-малеимид-1-оксопропил)амино) пропил-ω-метоксиполиоксиэтилен (в количестве 1,5 эквивалентов, средняя молекулярная масса 11962 Да, NOF Corp., Tokyo, Japan) и гидрохлорид трис(2-карбоксиэтил) фосфина (ТСЕР) в количестве 2 эквивалентов. По данным анализа, проведенного с использованием системы обратнофазовой аналитической HPLC (колонка для разделения пептидов/белков Vydac C18 5µ, 4,6×250 мм), реакция была завершена через один час при комнатной температуре. Реакционную смесь наносили на спин-колонку для обессоливания ZebaТМ объемом 10 мл (Pierce Biotechnology, Rockford, IL). После лиофилизации получали вспененное белое вещество.
Пример 19) Получение H-селенCys(Prd-PEG)-Lys-Phe-NH 2 (SEQ ID NO:17)
Figure 00000052
Указанный пептид синтезируют по существу согласно процедуре, описанной в примере 3. Исходный пептидный материал представляет собой продукт, полученный в примере 10.

Claims (13)

1. Способ химического конъюгирования PEG, содержащего одну или несколько свободных альдегидных групп, с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой D- или L-цистеинового остатка пептида, включающий взаимодействие свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой указанного цистеинового остатка в присутствии восстановителя с образованием в продукте 1,3-тиазолидиновой группы, где указанный продукт имеет структуру
Figure 00000053
,
где R1 представляет собой указанный PEG, и R2 представляет собой указанный пептид.
2. Способ химического конъюгирования PEG, содержащего одну или несколько свободных альдегидных групп, с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой D- или L-цистеинового остатка пептида, где указанный способ включает взаимодействие в реакционном растворе свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой указанного цистеинового остатка в присутствии восстановителя с образованием в промежуточном продукте 1,3-тиазолидиновой группы; и
доведение рН реакционного раствора до значения приблизительно 7, при котором указанный промежуточный продукт перегруппируется с образованием конечного продукта, где указанный промежуточный продукт имеет структуру
Figure 00000053
,
и указанный конечный продукт имеет структуру
Figure 00000054
,
где R1 представляет собой указанный PEG, и R2 представляет собой указанный пептид.
3. Способ химического конъюгирования PEG, содержащего одну или несколько свободных альдегидных групп, с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой D- или L-пеницилламинового остатка пептида, включающий взаимодействие свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой указанного пеницилламинового остатка в присутствии восстановителя с образованием в продукте 5,5-диметил-1,3-тиазолидиновой группы, где указанный продукт имеет структуру
Figure 00000055
,
где R1 представляет собой указанный PEG, и R2 представляет собой указанный пептид.
4. Способ химического конъюгирования PEG, содержащего одну или несколько свободных альдегидных групп, с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой D- или L-пеницилламинового остатка пептида, где указанный способ включает взаимодействие в реакционном растворе свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой указанного пеницилламинового остатка в присутствии восстановителя с образованием в промежуточном продукте 5,5-диметил-1,3-тиазолидиновой группы; и доведение рН реакционного раствора до значения приблизительно 7, при котором указанный промежуточный продукт перегруппируется с образованием конечного продукта, где указанный промежуточный продукт имеет структуру
Figure 00000056
,
и указанный конечный продукт имеет структуру
Figure 00000057
,
где R1 представляет собой указанный PEG, и R2 представляет собой указанный пептид.
5. Способ химического конъюгирования PEG, содержащего одну или несколько свободных альдегидных групп, с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой D- или L-гомоцистеинового остатка пептида, включающий взаимодействие свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой указанного гомоцистеинового остатка в присутствии восстановителя с образованием в продукте шестичленной кольцевой системы, где указанный продукт имеет структуру
Figure 00000058
,
где R1 представляет собой указанный PEG, и R2 представляет собой указанный пептид.
6. Способ химического конъюгирования PEG, содержащего одну или несколько свободных альдегидных групп, с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой D- или L-гомоцистеинового остатка пептида, где указанный способ включает взаимодействие в реакционном растворе свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-аминогруппой указанного гомоцистеинового остатка в присутствии восстановителя с образованием в промежуточном продукте шестичленной кольцевой системы; и
доведение рН реакционного раствора до значения приблизительно 7, при котором указанный промежуточный продукт перегруппируется с образованием конечного продукта, где указанный промежуточный продукт имеет структуру
Figure 00000058
,
и указанный конечный продукт имеет структуру
Figure 00000059

где R1 представляет собой указанный PEG, и R2 представляет собой указанный пептид.
7. Способ химического конъюгирования PEG, содержащего одну или несколько свободных альдегидных групп, с неокисленной свободной селеногруппой и свободной α-аминогруппой D- или L-селенцистеинового остатка пептида, включающий взаимодействие свободной альдегидной группы указанного PEG с неокисленной свободной селеногруппой и свободной α-аминогруппой указанного селенцистеинового остатка в присутствии восстановителя с образованием в продукте пятичленной кольцевой системы, где указанный продукт имеет структуру
Figure 00000060
,
где R1 представляет собой указанный PEG, и R2 представляет собой указанный пептид.
8. Способ химического конъюгирования PEG, содержащего одну или несколько свободных альдегидных групп, с неокисленной свободной селеногруппой и свободной α-аминогруппой D- или L-селенцистеинового остатка пептида, где указанный способ включает
взаимодействие в реакционном растворе свободной альдегидной группы указанного PEG с неокисленной свободной селеногруппой и свободной α-аминогруппой указанного селенцистеинового остатка в присутствии восстановителя с образованием в промежуточном продукте пятичленной кольцевой системы; и
доведение рН реакционного раствора до значения приблизительно 7, при котором указанный промежуточный продукт перегруппируется с образованием конечного продукта, где указанный промежуточный продукт имеет структуру
Figure 00000060
,
и указанный конечный продукт имеет структуру
Figure 00000061
,
где R1 представляет собой указанный PEG, и R2 представляет собой указанный пептид.
9. Способ химического конъюгирования PEG, содержащего одну или несколько свободных альдегидных групп, с неокисленной сульфгидрильной боковой цепью и свободной α-метил-аминогруппой D- или L-N-метилцистеинового остатка пептида, включающий взаимодействие свободной альдегидной группы указанного PEG с неокисленной сульфгидрильной боковой цепью и свободной α-метиламиногруппой указанного N-метилцистеинового остатка в присутствии восстановителя с образованием в продукте 3-метил-1,3-тиазолидиновой группы, где указанный продукт имеет структуру
Figure 00000062
,
где R1 представляет собой указанный PEG, и R2 представляет собой указанный пептид.
10. Способ по любому из пп.1-9, в котором свободная альдегидная группа присоединяется к указанному PEG посредством линкера, который может содержать в качестве функциональной группы амид, сложный эфир, сульфонамид, сульфонил, тиол, окси, алкил, алкенил, алкинил, арил, малеимид или амин или любое их сочетание.
11. Способ по п.10, в котором указанный PEG имеет линейную, разветвленную или сильноразветвленную структуру.
12. Способ по п.11, в котором указанный PEG имеет среднюю молекулярную массу от примерно 100 Да до примерно 500000 Да, предпочтительно от примерно 1000 Да до примерно 50000 Да.
13. Способ по любому из пп.1-9, в котором указанный восстановитель выбирают из группы, состоящей из ТСЕР, соединений, содержащих неокисленную сульфгидрильную группу, и соединений, содержащих неокисленную свободную селеногруппу.
RU2008151775/04A 2006-05-26 2007-05-25 Способы сайт-специфического пегилирования RU2424246C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US80909806P 2006-05-26 2006-05-26
US60/809,098 2006-05-26
US87349406P 2006-12-07 2006-12-07
US60/873,494 2006-12-07

Publications (2)

Publication Number Publication Date
RU2008151775A RU2008151775A (ru) 2010-07-10
RU2424246C2 true RU2424246C2 (ru) 2011-07-20

Family

ID=38779271

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008151775/04A RU2424246C2 (ru) 2006-05-26 2007-05-25 Способы сайт-специфического пегилирования

Country Status (9)

Country Link
US (1) US20100016550A1 (ru)
EP (1) EP2021397A4 (ru)
JP (1) JP2009538357A (ru)
KR (1) KR20090016727A (ru)
CN (1) CN101495536B (ru)
AU (1) AU2007267798A1 (ru)
CA (1) CA2653717A1 (ru)
RU (1) RU2424246C2 (ru)
WO (1) WO2007139997A2 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2095829A1 (en) * 2008-02-27 2009-09-02 LEK Pharmaceuticals D.D. Selenium containing modifying agents and conjugates
CA2775287A1 (en) 2009-09-25 2011-03-31 Vybion, Inc. Polypeptide modification
AR081361A1 (es) 2010-04-30 2012-08-29 Molecular Partners Ag Proteinas de union modificadas que inhiben la interaccion de receptor del factor de crecimiento endotelial vascular de glicoproteina a vegf-a
BR112013007160A2 (pt) * 2010-09-29 2016-06-14 Philogen Spa ligante tiazolidina para a conjugação de fármacos a anticorpos
JP2015512370A (ja) * 2012-03-16 2015-04-27 ベルローズ ファーマ,インコーポレーテッド C1−阻害剤のポリマーコンジュゲート
US10046058B2 (en) 2014-12-02 2018-08-14 Rezolute, Inc. Use of hydrophobic organic acids to increase hydrophobicity of proteins and protein conjugates
AU2016270302B2 (en) 2015-06-04 2020-09-17 Rezolute, Inc. Amine pegylation methods for the preparation of site-specific protein conjugates
RU2742260C2 (ru) * 2015-08-12 2021-02-04 Пфайзер Инк. Кэпированные и некэпированные цистеины антитела и их применение в конъюгации антитело-лекарственное средство
US20200262887A1 (en) 2018-11-30 2020-08-20 Opko Ireland Global Holdings, Ltd. Oxyntomodulin peptide analog formulations

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US817725A (en) 1891-11-23 1906-04-10 Ncr Co Cash-register.
US4643205A (en) 1984-02-02 1987-02-17 R. J. Reynolds Tobacco Company Smoking product
US6310180B1 (en) 1993-06-21 2001-10-30 Vanderbilt University Method for synthesis of proteins
US5589356A (en) * 1993-06-21 1996-12-31 Vanderbilt University Litigation of sidechain unprotected peptides via a masked glycoaldehyde ester and O,N-acyl rearrangement
DE69838552T2 (de) 1997-07-14 2008-05-21 Bolder Biotechnology, Inc., Louisville Derivate des wachstumshormons und verwandte proteine
US6753165B1 (en) 1999-01-14 2004-06-22 Bolder Biotechnology, Inc. Methods for making proteins containing free cysteine residues
WO2001062827A2 (en) * 2000-02-22 2001-08-30 Shearwater Corporation N-maleimidyl polymer derivatives
JP4954426B2 (ja) * 2000-06-16 2012-06-13 キュリス,インコーポレイテッド 血管形成調節組成物及び利用
US7122189B2 (en) * 2002-08-13 2006-10-17 Enzon, Inc. Releasable polymeric conjugates based on aliphatic biodegradable linkers
US20040142870A1 (en) * 2002-11-20 2004-07-22 Finn Rory F. N-terminally monopegylated human growth hormone conjugates, process for their preparation, and methods of use thereof
US7217845B2 (en) * 2002-11-25 2007-05-15 Sun Bio, Inc. Bifunctional polyethylene glycol derivatives
ATE399185T1 (de) * 2002-12-31 2008-07-15 Nektar Therapeutics Al Corp Maleinsäureamid polymerderivate und ihre biokonjugate
WO2005074650A2 (en) * 2004-02-02 2005-08-18 Ambrx, Inc. Modified human four helical bundle polypeptides and their uses
AU2005265163B2 (en) * 2004-06-18 2009-10-01 Ambrx, Inc. Novel antigen-binding polypeptides and their uses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NATARAJAN A. ET AL.: «CHARACTERIZATION OF SITE-SPECIFIC SCFV PEGYLATION FOR TUMOR-TARGETING PHARMACEUTICALS» BIOCONJUGATE CHEM. vol.16, no.1, 01 January 2005, pages 113-121. *

Also Published As

Publication number Publication date
CN101495536A (zh) 2009-07-29
WO2007139997A2 (en) 2007-12-06
US20100016550A1 (en) 2010-01-21
AU2007267798A1 (en) 2007-12-06
EP2021397A2 (en) 2009-02-11
RU2008151775A (ru) 2010-07-10
EP2021397A4 (en) 2012-01-04
CN101495536B (zh) 2012-03-07
CA2653717A1 (en) 2007-12-06
KR20090016727A (ko) 2009-02-17
WO2007139997A3 (en) 2008-10-23
JP2009538357A (ja) 2009-11-05

Similar Documents

Publication Publication Date Title
RU2424246C2 (ru) Способы сайт-специфического пегилирования
ES2736106T3 (es) Anticuerpos que se pueden conjugar mediante la transglutaminasa y conjugados producidos a partir de ellos
ES2558155T3 (es) Compuestos que muestran actividad antagonista de glucacón y agonista de GLP-1
AU2011208625B2 (en) Growth hormones with prolonged in-vivo efficacy
CZ2003678A3 (cs) Syntetické proteiny stimulující erytropoézu
AU2006259080A1 (en) Transglutaminase mediated conjugation of growth hormone
CA2552043A1 (en) Transglutaminase mediated conjugation of peptides
BRPI0707599A2 (pt) sÍntese de peptÍdeo semelhante a glucagon
ES2624626T3 (es) Ligadores basados en tirosina para la conexión desprendible de péptidos
CA3220871A1 (en) Hepcidin mimetics for treatment of hereditary hemochromatosis
US20220411461A1 (en) Methods of making incretin analogs
CN101072791B (zh) 固相合成中的s-烷基-硫基保护基团
ES2546282T3 (es) Acoplamiento de polipéptidos en el extremo C-terminal
KR100360975B1 (ko) 위장운동자극활성을가지는폴리펩티드
CN117229420A (zh) 一种二聚体硫醚环多肽的合成工艺
JP4927746B2 (ja) 樹脂上ペプチド環化
JP7123399B2 (ja) タクロリムスのコンジュゲート、その組成物およびその使用
Bonora et al. Reactive PEGs for protein conjugation
KR20240046872A (ko) Peg화 아드레노메둘린의 제조 방법, 그의 중간체 및 그의 용도
US20090099307A1 (en) Inverse solid phase peptide synthesis with additional capping step
Balan Disulfide bridging poly (ethylene glycol) reagents for site-specific protein conjugation

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130526