RU2423214C1 - Способ восстановления прецизионных деталей - Google Patents

Способ восстановления прецизионных деталей Download PDF

Info

Publication number
RU2423214C1
RU2423214C1 RU2009147528/02A RU2009147528A RU2423214C1 RU 2423214 C1 RU2423214 C1 RU 2423214C1 RU 2009147528/02 A RU2009147528/02 A RU 2009147528/02A RU 2009147528 A RU2009147528 A RU 2009147528A RU 2423214 C1 RU2423214 C1 RU 2423214C1
Authority
RU
Russia
Prior art keywords
layer
roughness
wear
microns
gpa
Prior art date
Application number
RU2009147528/02A
Other languages
English (en)
Inventor
Анатолий Тимофеевич Лебедев (RU)
Анатолий Тимофеевич Лебедев
Рабазан Алиевич Магомедов (RU)
Рабазан Алиевич Магомедов
Павел Анатольевич Лебедев (RU)
Павел Анатольевич Лебедев
Дмитрий Васильевич Прокопов (RU)
Дмитрий Васильевич Прокопов
Дмитрий Иванович Макаренко (RU)
Дмитрий Иванович Макаренко
Вадим Анатольевич Васин (RU)
Вадим Анатольевич Васин
Original Assignee
Федеральное государственное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" filed Critical Федеральное государственное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет"
Priority to RU2009147528/02A priority Critical patent/RU2423214C1/ru
Application granted granted Critical
Publication of RU2423214C1 publication Critical patent/RU2423214C1/ru

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Изобретение относится к области машиностроения, в частности к способам восстановления прецизионных деталей, и может быть использовано при ремонте машин для восстановления работоспособности прецизионных деталей, как локальных мест, так и всей поверхности детали. Способ включает нанесение износостойкого покрытия методом электроискровой обработки с нанесением слоя толщиной, компенсирующей износ, и припуском на последующую обработку, с последующими механической обработкой до получения шероховатости восстанавливаемой поверхности Ra=0,8…1,5 мкм, безабразивной ультразвуковой финишной обработкой до получения шероховатости поверхности Ra=0,025…0,036 мкм и нанесением алмазоподобного тонкослойного покрытия 0,5-3 мкм на основе оксикарбида кремния на всей поверхности. Технический результат: создание новой рабочей поверхности и повышение износостойкости. 4 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к области машиностроения, в частности к способам восстановления прецизионных деталей, и может быть использовано при ремонте машин для восстановления работоспособности прецизионных деталей, как локальных мест, так и всей поверхности детали.
Уровень техники
Известны способы гальванического восстановления деталей (хромирование, никелирование, борирование и т.д.). Эти способы по технологии восстановления деталей во многом схожи и заключаются в следующем. Рабочая поверхность плунжера снимается на величину износа механической обработкой. После чего поверхность детали подвергается ряду операций, одной из которых является помещение плунжера в электролит и пропускание через него электрического тока, где на поверхность детали оседают химические элементы. После осаждения химических веществ на поверхность восстанавливаемой детали производят шлифование, доводку и полировку (см. Молодык Н.В. Восстановление деталей машин: Справочник / Н.В.Молодык, А.С.Зенкин. - М.: Машиностроение, 1989. - 480 с.; Вишенков С.А. Химические и электрохимические способы осаждения металлопокрытий. / С.А.Вишенков. - М.: Машиностроение, 1975. - 312 с.; Гальванические покрытия в машиностроении: справочник в 2 т. / Под ред. М.А.Шлугера - М.: Машиностроение, 1985. - T.1. - 240 с.; Макарова Н.А. Металлопокрытия в автомобилестроении. / Н.А.Макарова. - М.: Машиностроение, 1977. - 294 с.)
К недостаткам этих способов относится то, что, применяя эти методы, необходимо снимать всю поверхность детали на величину износа, большое количество технологических операций, возникновение мелких трещин, вследствие обработки детали после оседания химических веществ происходит отслаивание нанесенного слоя.
Известен способ восстановления втулки плунжерной пары топливного насоса высокого давления. Способ заключается в нагреве токами высокой частоты и закалки втулки плунжерной пары в охлаждаемой разъемно-подпружиненной матрице, выполненной с углом конуса наружной поверхности 10-30°. На внутренней цилиндрической поверхности матрицы образована канавка на уровне посадочного места плунжерной втулки, равная по высоте размеру посадочного места (см. патент RU 2129941 С1, МПК6 В23Р 6/02, C21D 1/78, опубликовано 10.05.1999).
К недостаткам этого способа относится то, что деталь перегревается, высокая себестоимость восстановления. На поверхности восстанавливаемой детали образуются растягивающие остаточные напряжения.
Наиболее близким по технической сущности является способ восстановления плунжерной пары. Сущность способа заключается в следующем: на изношенном плунжере формируют опорные поверхности в виде цилиндрических поясков, расположенных равномерно вдоль оси плунжера, и замкнутых полос по периметрам отсечных канавок. Ширину полос и поясков выбирают в пределах 3-4 мм при их суммарной площади в 46-56% от площади плунжера. Опорные поверхности формируют путем электроэрозионного нанесения двухслойного покрытия с пластическим деформированием поверхности первого слоя покрытия, из ВК 8, перед нанесением второго слоя антифрикционного материала, осуществляемым медно-графитовым электродом, после нанесения покрытия плунжер притирают в чугунном притире с добавлением абразивной пасты (см. патент RU 2064380 С1, МПК6 В23Н 9/00, опубликовано 27.07.1996).
Недостатками этого способа являются микротрещины первого и второго слоев, возникающие после доработки каждого слоя, микротвердость наносимого слоя ниже микротвердости мелких частиц, находящихся в топливе.
Раскрытие изобретения
Технический результат, который может быть достигнут с помощью предлагаемого способа восстановления прецизионных деталей, сводится к созданию новой рабочей поверхности и повышению износостойкости.
Технический результат достигается с помощью способа восстановления прецизионных деталей, включающего нанесение износостойкого покрытия с проведением электроискровой обработки с нанесением слоя толщиной, компенсирующей износ, и припуском на последующую обработку, с последующими механической обработкой до получения шероховатости восстанавливаемой поверхности Ra=0,8…1,5 мкм, безабразивной ультразвуковой финишной обработкой до получения шероховатости поверхности Ra=0,025…0,036 мкм и нанесением алмазоподобного тонкослойного покрытия 0,5-3 мкм на основе оксикарбида кремния на всей поверхности.
На восстанавливаемую деталь наносят слой электроискровой установкой с применением медно-графитового электрода, при следующих значениях: зарядный ток 3,8 А; амплитуда импульсов напряжения на накопительных конденсаторах 96 В; энергия разряда 1,66 Дж; емкость накопительных конденсатов 360±120 мкФ; частота импульсного тока 100 Гц. Толщина наносимого слоя компенсирует величину износа, а также имеет припуск на механическую обработку. Применяя электроискровую установку, получают слой толщиной 10…100 мкм с поверхностью, которая имеет шероховатость Ra=2,36…2,57 мкм, твердость поверхности нового слоя HRV=4…6 ГПа (на глубине до 25 мкм), на глубине 25...50 мкм HRV=2…3 ГПа, остаточное напряжение на поверхности σ=+112…+175МПа. Шероховатость полученной поверхности характеризуется нестабильной геометрией высокими пиками и впадинами, за счет этого поверхность имеет небольшую площадь фактического контакта и высокие удельные давления в зоне контакта. В целях получения лучшей шероховатости и микрогеометрии производят механическую обработку поверхности, после которой получают поверхность с шероховатостью в пределах Ra=0,8…1,5 мкм. Затем поверхность подвергают безабразивной ультразвуковой обработке с частотой ультразвука в диапазоне 20-24 кГц и подачей 0,16 мм/об, получая поверхность с шероховатостью Ra=0,025…0,036 мкм. Такая шероховатость получается за счет деформации вершин микронеровностей без снятия материала и создает упрочненный поверхностный слой ударным воздействием рабочей головки установки. Твердость слоя на глубине до 25 мкм составит HRV=8…9 ГПа, на глубине 25…50 мкм - HRV=5…7 ГПа. За счет безабразивной ультразвуковой обработки поверхностный слой дополнительно упрочняется на глубину до 25 мкм, а это является зоной максимального износа плунжера. Для придания особых физико-механических свойств поверхностного слоя и сохранения тех, которые были созданы предыдущими операциями, производят формирование прочного пленочного покрытия при помощи финишного плазменного упрочнения толщиной 0,5…3 мкм. Наносимое при финишном плазменном упрочнении конденсацией из дуговой или высокочастотной плазмы кремнийсодержащее покрытие базового состава SiC - SiO2, являясь диэлектриком, образует пленочное покрытие, препятствующее схватыванию контактируемых поверхностей. Финишное плазменное упрочнение производят при следующих параметрах: скорость перемещения - 110 мм/с, расстояние между плазматроном и изделием - 10…15 мм, рабочий ток 100 А, номинальное рабочее напряжение 40 В, ток дежурной дуги не более 25 А. После данной операции получают покрытие с толщиной 0,5…3 мкм и микротвердостью 50…52 ГПа, коэффициентом трения 0,03…0,08, остаточным напряжением на поверхности σ=-45МПа и повышенной износостойкостью и не требующего дальнейшей обработки.
Краткое описание чертежей
Фиг.1 - слой, получаемый при электроискровой обработке поверхности.
Фиг.2 - поверхность образованная после механической обработки.
Фиг.3 - поверхность, получаемая после безабразивной ультразвуковой финишной обработки.
Фиг.4 - поверхность, полученная после нанесения алмазоподобного тонкослойного покрытия на основе карбида кремния.
Осуществление изобретения
Примеры конкретного выполнения способа восстановления прецизионных деталей
Пример 1. Восстановление прецизионных деталей.
На восстанавливаемую деталь 1 наносится слой 2 электроискровой установкой с применением медно-графитового электрода, при следующих значениях: зарядный ток 0,3 А; амплитуда импульсов напряжения на накопительных конденсаторах 45 В; энергия разряда 0,06 Дж; емкость накопительных конденсатов 60±20 мкФ; частота импульсного тока 100 Гц. Толщина наносимого слоя 2 компенсирует величину износа, а также имеет припуск на механическую обработку. Применяя электроискровую установку, получают слой 2 толщиной 10…100 мкм с поверхностью 3, которая имеет шероховатость Ra=12,3…12,5 мкм, твердость поверхности нового слоя HRV=4…6 ГПа (на глубине до 25 мкм), на глубине 25…50 мкм HRV=2…3 ГПа, остаточное напряжение на поверхности 3 σ=+112…+175МПа. Шероховатость полученной поверхности 3 характеризуется нестабильной геометрией высокими пиками (на фиг 1. не отмечено) и впадинами (на фиг 1. не отмечено), за счет этого поверхность 3 имеет небольшую площадь фактического контакта и высокие удельные давления в зоне контакта. В целях получения лучшей шероховатости и микрогеометрии производят механическую обработку поверхности 3, после которой получается поверхность 4 с шероховатостью в пределах Ra=5,8…6,3 мкм. Затем поверхность 4 подвергают безабразивной ультразвуковой обработке с частотой ультразвука в диапазоне 20-24 кГц и подачей 0,32 мм/об, получая поверхность 5 с шероховатостью Ra=0,95…1,25 мкм. Такую шероховатость получают за счет деформации вершин микронеровностей без снятия материала и создают упрочненный поверхностный слой 6 ударным воздействием рабочей головки установки. Твердость слоя 6 на глубине до 25 мкм составит HRV=6…7 ГПа, на глубине 25…50 мкм - HRV=3…4 ГПа. За счет безабразивной ультразвуковой обработки поверхностный слой 6 дополнительно упрочняется на глубину до 25 мкм, а это является зоной максимального износа плунжера. Для придания особых физико-механических свойств поверхностного слоя 6 и сохранения тех, которые были созданы предыдущими операциями, производится формирование прочного пленочного покрытия 7 при помощи финишного плазменного упрочнения толщиной 0,5…3 мкм. Наносимое при финишном плазменном упрочнении конденсацией из дуговой или высокочастотной плазмы кремнийсодержащее покрытие базового состава SiC - SiO2, являясь диэлектриком, образует пленочное покрытие 7, препятствующее схватыванию контактируемых поверхностей. Финишное плазменное упрочнение производят при следующих параметрах: скорость перемещения - 230 мм/с, расстояние между плазматроном и изделием - 10…15 мм, рабочий ток 100 А, номинальное рабочее напряжение 40 В, ток дежурной дуги не более 25 А. После данной операции получают покрытие 7 с толщиной 0,1…0,8 мкм и микротвердостью 32…40 ГПа, коэффициентом трения 0, 11…0,12, остаточным напряжением на поверхности σ=-45МПа и повышенной износостойкостью и не требующее дальнейшей обработки.
Полученная рабочая поверхность не удовлетворяет по следующим показателям:
- при выбранных энергетических характеристиках одним проходом электрода наносится слой толщиной 5-7 мкм, для восстановления износа с учетом последующей обработки необходимо 7-9 проходов;
- из-за большого количества проходов электроискровой обработки происходит перегрев плунжера, увеличивается время нанесения слоя, уменьшается качество сцепления слоев;
- из-за большого количества проходов возникает большая шероховатость в пределах Ra=12,3…12,5 мкм, вследствие чего механическая обработка снижает шероховатость до Ra=5,8…6,3 мкм;
- из-за подачи 0,32 мм/об при безабразивной ультразвуковой финишной обработке образовывается слишком большая шероховатость Ra 1,25;
- из-за высокой скорости 230 мм/с перемещения плунжера получаемое алмазоподобное покрытие на основе оксикарбида кремния имеет высокий коэффициент трения 0,11…0,12, низкую микротвердость 32…40 ГПа.
Пример 2. Восстановление прецизионных деталей.
Последовательность операций повторяют в соответствии с примером 1, изменяя лишь режимы обработки:
- электроискровая установка применяется при следующих значениях, с медно-графитовым электродом: зарядный ток 0,6 А; амплитуда импульсов напряжения на накопительных конденсаторах 67 В; энергия разряда 0,28 Дж; емкость накопительных конденсатов 60±20 мкФ; частота импульсного тока 100 Гц.
- безабразивное ультразвуковое финишное упрочнение производят с подачей 0,05 мм/об с образованием шероховатости Ra 0,063 мкм;
- при финишном плазменном упрочнении устанавливаем скорость перемещения плунжера 50 мм/с.
Полученная рабочая поверхность не удовлетворяет по следующим показателям:
- из-за изменения параметров электроискровой обработки количество проходов уменьшилось до 5, но сцепление наносимых слоев не улучшилось, шероховатость снизилась до Ra=5,8…6,3 мкм;
- из-за подачи 0,05 мм/об при безабразивной ультразвуковой финишной обработке значительно возрастает время обработки;
- из-за низкой скорости перемещения плунжера происходит перенагрев детали.
Пример 3. Восстановление прецизионных деталей проводят аналогично примеру 1, но меняя режимы обработки.
На восстанавливаемую деталь 1 наносят слой 2 электроискровой установкой с применением медно-графитового электрода, при следующих значениях: зарядный ток 3,8 А; амплитуда импульсов напряжения на накопительных конденсаторах 96 В; энергия разряда 1,66 Дж; емкость накопительных конденсатов 360±120 мкФ; частота импульсного тока 100 Гц. Толщина наносимого слоя 2 компенсирует величину износа, а также имеет припуск на механическую обработку. Применяя электроискровую установку, получают слой 2 толщиной 10... 100 мкм с поверхностью 3, которая имеет шероховатость Ra=2,36…2,57 мкм, твердость поверхности нового слоя HRV=4…6 ГПа (на глубине до 25 мкм), на глубине 25…50 мкм HRV=2…3 ГПа, остаточное напряжение на поверхности 3 σ=+112…+175МПа. Шероховатость полученной поверхности 3 характеризуется нестабильной геометрией высокими пиками (на фиг.1 не отмечено) и впадинами (на фиг.1 не отмечено), за счет этого поверхность 3 имеет небольшую площадь фактического контакта и высокие удельные давления в зоне контакта. В целях получения лучшей шероховатости и микрогеометрии производят механическую обработку поверхности 3, после которой получают поверхность 4 с шероховатостью в пределах Ra=0,8…1,5 мкм. Затем поверхность 4 подвергают безабразивной ультразвуковой обработке с частотой ультразвука в диапазоне 20-24 кГц и подачей 0,16 мм/об, получая поверхность 5 с шероховатостью Ra=0,025…0,036 мкм. Такая шероховатость получается за счет деформации вершин микронеровностей без снятия материала и создает упрочненный поверхностный слой 6 ударным воздействием рабочей головки установки. Твердость слоя 6 на глубине до 25 мкм составит HRV=8…9 ГПа, на глубине 25…50 мкм - HRV=5…7 ГПа. За счет безабразивной ультразвуковой обработки поверхностный слой 6 дополнительно упрочняется на глубину до 25 мкм, а это является зоной максимального износа плунжера. Для придания особых физико-механических свойств поверхностного слоя 6 и сохранения тех, которые были созданы предыдущими операциями производят формирование прочного пленочного покрытия 7 при помощи финишного плазменного упрочнения толщиной 0,5…3 мкм. Наносимое при финишном плазменном упрочнении конденсацией из дуговой или высокочастотной плазмы кремнийсодержащее покрытие базового состава SiC - SiO2, являясь диэлектриком, образует пленочное покрытие 7, препятствующее схватыванию контактируемых поверхностей. Финишное плазменное упрочнение производят при следующих параметрах: скорость перемещения - 110 мм/с, расстояние между плазматроном и изделием - 10…15 мм, рабочий ток 100 А, номинальное рабочее напряжение 40 В, ток дежурной дуги не более 25 А. После данной операции получают покрытие 7 с толщиной 0,5…3 мкм и микротвердостью 50…52 ГПа, коэффициентом трения 0,03…0,08, остаточным напряжением на поверхности σ=-45МПа и повышенной износостойкостью и не требующее дальнейшей обработки.
Полученная поверхность удовлетворяет по следующим показателям:
- выбранные режимы электроискровой обработки позволяют восстанавливать поверхность за один проход;
- шероховатость после механической обработки составляет Ra=0,8…1,5 мкм;
- при подаче 0,16 мм/об получается поверхность с шероховатостью Ra=0,025…0,036 мкм, твердость слоя на глубине до 25 мкм составит HRV=8…9 ГПа, на глубине 25…50 мкм - HRV=5…7 ГПа;
- при скорости перемещения плунжера 110 мм/с образуется поверхность с толщиной 0,5…3 мкм и микротвердостью 50…52 ГПа, коэффициентом трения 0,03…0,08.
Пример 4. Восстановление прецизионных деталей.
Последовательность операций повторяют в соответствии с примером 1, изменяя лишь режимы обработки:
- электроискровая установка применяется при следующих значениях, с медно-графитовым электродом: зарядный ток 3,8 А; амплитуда импульсов напряжения на накопительных конденсаторах 96 В; энергия разряда 1,66 Дж; емкость накопительных конденсатов 360±120 мкФ; частота импульсного тока 100 Гц; выбранные режимы электроискровой обработки позволяют восстанавливать поверхность за один проход;
- безабразивное ультразвуковое финишное упрочнение производят с подачей 0,1 мм/об с образованием шероховатости Ra=0,025…0,036 мкм;
- при финишном плазменном упрочнении устанавливаем скорость перемещения плунжера 110 мм/с.
Полученная рабочая поверхность удовлетворяет по следующим показателям:
- выбранные параметры незначительно увеличивают расход электрода, а также время на механическую обработку;
- подача 0,1 мм/об при безабразивной ультразвуковой финишной обработке незначительно увеличила время обработки с получением оптимальной шероховатости Ra=0,025…0,036 мкм, твердость слоя на глубине до 25 мкм - НRV=8…9 ГПа, на глубине 25…50 мкм - НRV=5…7 ГПа;
- при скорости перемещения плунжера 110 мм/с образуется поверхность с толщиной 0,5…3 мкм и микротвердостью 50…52 ГПа, коэффициентом трения 0,03…0,08.
Последовательность технологических операций по восстановлению плунжерных пар подобрана таким образом, чтобы каждая последующая операция улучшала свойства предыдущей операции и в конечном итоге способствовала приданию поверхности совершенно новых качественных свойств, которых не имеют другие способы. Изменение порядка предлагаемых технологических операций не приведет к необходимому результату.
Предлагаемый способ по сравнению с прототипом и другими известными техническими решениями имеет следующие преимущества:
- универсальность;
- простота реализации;
- улучшение физико-механических свойств;
- повышенная износостойкость получаемого покрытия;
- антикоррозионные свойства;
- возможность неоднократного применения для одной и той же восстанавливаемой детали.

Claims (1)

  1. Способ восстановления прецизионных деталей, включающий нанесение износостойкого покрытия, отличающийся тем, что износостойкое покрытие наносят электроискровой обработкой с нанесением слоя толщиной, компенсирующей износ, и припуском на последующую обработку, с последующими механической обработкой до получения шероховатости восстанавливаемой поверхности Ra=0,8…1,5 мкм, безабразивной ультразвуковой финишной обработкой до получения шероховатости поверхности Ra=0,025…0,036 мкм и нанесением алмазоподобного тонкослойного покрытия 0,5-3 мкм на основе оксикарбида кремния на всей поверхности.
RU2009147528/02A 2009-12-21 2009-12-21 Способ восстановления прецизионных деталей RU2423214C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009147528/02A RU2423214C1 (ru) 2009-12-21 2009-12-21 Способ восстановления прецизионных деталей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009147528/02A RU2423214C1 (ru) 2009-12-21 2009-12-21 Способ восстановления прецизионных деталей

Publications (1)

Publication Number Publication Date
RU2423214C1 true RU2423214C1 (ru) 2011-07-10

Family

ID=44740193

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009147528/02A RU2423214C1 (ru) 2009-12-21 2009-12-21 Способ восстановления прецизионных деталей

Country Status (1)

Country Link
RU (1) RU2423214C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2510319C2 (ru) * 2012-07-13 2014-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" Способ формирования износостойкого покрытия деталей
RU2510318C2 (ru) * 2012-05-29 2014-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" Способ восстановления высевающего диска для пневматического высевающего аппарата
RU2510433C1 (ru) * 2013-02-14 2014-03-27 Открытое Акционерное Общество "Российские Железные Дороги" Способ нанесения антифрикционных покрытий на боковую поверхность рельса
WO2016024882A1 (ru) * 2014-08-12 2016-02-18 Ооо "Фармасапфир" СПОСОБ ОБРАБОТКИ ТРУЩИХСЯ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ МОНОКРИСТАЛЛА НА ОСНОВЕ α-Аl2Оз
RU2740935C1 (ru) * 2020-07-14 2021-01-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный аграрный университет имени В.Я. Горина" Способ восстановления плунжера комбинированной обработкой

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2510318C2 (ru) * 2012-05-29 2014-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" Способ восстановления высевающего диска для пневматического высевающего аппарата
RU2510319C2 (ru) * 2012-07-13 2014-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" Способ формирования износостойкого покрытия деталей
RU2510433C1 (ru) * 2013-02-14 2014-03-27 Открытое Акционерное Общество "Российские Железные Дороги" Способ нанесения антифрикционных покрытий на боковую поверхность рельса
WO2016024882A1 (ru) * 2014-08-12 2016-02-18 Ооо "Фармасапфир" СПОСОБ ОБРАБОТКИ ТРУЩИХСЯ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ МОНОКРИСТАЛЛА НА ОСНОВЕ α-Аl2Оз
RU2585885C2 (ru) * 2014-08-12 2016-06-10 Общество с Ограниченной Ответственностью "ФармаСапфир" СПОСОБ ОБРАБОТКИ ТРУЩИХСЯ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ ИСКУССТВЕННО ВЫРАЩЕННОГО МОНОКРИСТАЛЛА НА ОСНОВЕ АЛЬФА-Al2O3
EA029195B1 (ru) * 2014-08-12 2018-02-28 Ооо "Фармасапфир" СПОСОБ ОБРАБОТКИ ТРУЩИХСЯ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ ИСКУССТВЕННО ВЫРАЩЕННОГО МОНОКРИСТАЛЛА НА ОСНОВЕ ALPHA-AlO
RU2740935C1 (ru) * 2020-07-14 2021-01-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный аграрный университет имени В.Я. Горина" Способ восстановления плунжера комбинированной обработкой

Similar Documents

Publication Publication Date Title
RU2423214C1 (ru) Способ восстановления прецизионных деталей
FR2645780A1 (fr) Procede de rectification par abrasion par electro-erosion
RU2524470C2 (ru) Способ восстановления изношенных поверхностей металлических деталей
KR20070120981A (ko) 지그
US20070137037A1 (en) Controlled surface modification as an intermediate step in the surface texturing of work rolls
JPH0327328B2 (ru)
US5759641A (en) Method of applying strengthening coatings to metallic or metal-containing surfaces
US3616289A (en) Electroplate honing method
RU2637860C1 (ru) Способ получения износостойкого покрытия для режущего инструмента
US20070137038A1 (en) Work rolls having an engineered surface texture prepared by controlled surface modification after chrome coating
RU2427457C1 (ru) Способ восстановления деталей из алюминия и его сплавов
RU2657670C2 (ru) Способ восстановления изношенных поверхностей металлических деталей
RU186707U1 (ru) Инструмент для комбинированной обработки
RU2698001C1 (ru) Способ восстановления изношенных поверхностей деталей машин из нержавеющей стали
RU2510318C2 (ru) Способ восстановления высевающего диска для пневматического высевающего аппарата
Gupta et al. Electrochemical hybrid machining processes
RU2643740C1 (ru) Способ получения износостойкого покрытия для режущего инструмента
RU2230645C2 (ru) Способ восстановления плоских золотниковых пар
CN113068437B (zh) 一种飞机金属件表面电火花镀青铜方法及其装置
JP2002045906A (ja) 亜鉛めっき鋼板用調質圧延ロールの加工方法
RU2440873C1 (ru) Способ электроискрового упрочнения и восстановления изношенных стальных поверхностей
RU2805739C1 (ru) Способ ремонта объемного гидропривода Eaton серии 6423-618/6433-113
RU2256725C2 (ru) Способ финишной антифрикционной обработки
SU1532264A1 (ru) Способ восстановлени деталей машин
RU2771398C1 (ru) Способ ремонта объемного гидропривода

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20111222

NF4A Reinstatement of patent

Effective date: 20150127

MM4A The patent is invalid due to non-payment of fees

Effective date: 20161222