RU2416837C2 - Конденсатор - Google Patents
Конденсатор Download PDFInfo
- Publication number
- RU2416837C2 RU2416837C2 RU2007148701/07A RU2007148701A RU2416837C2 RU 2416837 C2 RU2416837 C2 RU 2416837C2 RU 2007148701/07 A RU2007148701/07 A RU 2007148701/07A RU 2007148701 A RU2007148701 A RU 2007148701A RU 2416837 C2 RU2416837 C2 RU 2416837C2
- Authority
- RU
- Russia
- Prior art keywords
- anode
- porous body
- niobium
- ppm
- powder
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 44
- 239000010955 niobium Substances 0.000 claims abstract description 78
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 62
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 60
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 47
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 24
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 238000002485 combustion reaction Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 239000011164 primary particle Substances 0.000 claims description 8
- 238000005245 sintering Methods 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 238000004846 x-ray emission Methods 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000005611 electricity Effects 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 23
- 239000002184 metal Substances 0.000 description 23
- 239000002243 precursor Substances 0.000 description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 239000011777 magnesium Substances 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000000395 magnesium oxide Substances 0.000 description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 6
- 229910052715 tantalum Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000007323 disproportionation reaction Methods 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910000484 niobium oxide Inorganic materials 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000002411 thermogravimetry Methods 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- HFLAMWCKUFHSAZ-UHFFFAOYSA-N niobium dioxide Chemical compound O=[Nb]=O HFLAMWCKUFHSAZ-UHFFFAOYSA-N 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- WPCMRGJTLPITMF-UHFFFAOYSA-I niobium(5+);pentahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[Nb+5] WPCMRGJTLPITMF-UHFFFAOYSA-I 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000012255 powdered metal Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- WTKKCYNZRWIVKL-UHFFFAOYSA-N tantalum Chemical compound [Ta+5] WTKKCYNZRWIVKL-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/052—Sintered electrodes
- H01G9/0525—Powder therefor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/20—Obtaining niobium, tantalum or vanadium
- C22B34/24—Obtaining niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12819—Group VB metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Powder Metallurgy (AREA)
- Saccharide Compounds (AREA)
- Catalysts (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Valve Device For Special Equipments (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Abstract
Изобретение относится к твердотельному конденсатору. Техническим результатом изобретения является увеличение срока службы конденсатора. Согласно изобретению конденсатор изготовлен из порошкообразного субоксида ниобия, легированного азотом, который, по меньшей мере, частично содержится в виде равномерно распределенных, обнаруживаемых с помощью рентгеноструктурного анализа кристаллических доменов Nb2N. 3 н. и 15 з.п. ф-лы, 13 ил., 1 табл.
Description
Настоящее изобретение относится к конденсатору с твердым электролитом, включающему содержащий азот порошкообразный субоксид ниобия, который обладает более высоким напряжением пробоя, более высокой рабочей температурой и увеличенным сроком службы.
Оксидные полупроводниковые конденсаторы, применяющиеся в мобильных коммуникационных устройствах, обычно содержат электропроводящий носитель, обладающий большой удельной площадью поверхности, покрытый непроводящим слоем пентаоксида ниобия или тантала, использующий высокую стабильность и большую диэлектрическую постоянную вентильного оксида металла, где изолирующий слой пентаоксида может быть образован при постоянной толщине путем электролитического осаждения. В качестве материала носителя используют вентильный металл или проводящие низшие оксиды (субоксиды, NbOx) вентильных металлов. Носитель, который образует один из электродов (анод) конденсатора, обычно обладает губчатой структурой, которая образуется спеканием очень мелких первичных частиц или губчатых вторичных структур. Поверхность структуры проводящего носителя подвергают электролитическому окислению ("формованию") и толщина изолирующего слоя пентаоксида определяется максимальным напряжением электролитического окисления ("напряжением формования"). Противоэлектрод формируют путем пропитывания губчатой структуры с окисленной поверхностью нитратом марганца, который термически превращают в диоксид марганца, или путем пропитывания жидким предшественником полимерного электролита (например, полиэтилендиокситиофена, полипиррола) и его полимеризации. Электрическими выводами являются танталовая и ниобиевая проволока, спеченная с губчатой структурой со стороны анода и металлическим кожухом конденсатора, который изолирован от проволоки со стороны катода.
Емкость С конденсатора рассчитывают по формуле
C=(F·ε)/(d·VF),
в которой F - активная поверхность конденсатора, ε -диэлектрическая постоянная слоя пентаоксида, d - толщина изолирующего слоя пентаоксида на 1 В формующего напряжения и VF - формующее напряжение. Отношения ε/d для пентаоксида тантала и пентаоксида ниобия являются почти одинаковыми (1,64 и 1,69 соответственно), хотя значения ε (27,6 и 41 соответственно) и d (16,6 и 25 А/В соответственно) существенно различны. В соответствии с этим конденсаторы на основе обоих пентаоксидов и обладающие одинаковой геометрической структурой обладают одинаковой емкостью. Удельные емкости в пересчете на массу различны вследствие различной плотности Nb, NbOx и Та. В связи с этим структуры носителя (анода) из Nb или NbOx имеют преимущества в экономии веса при использовании для мобильных телефонов, для которых одной из задач является снижение массы. С точки зрения экономичности, NbOx является более привлекательным, чем Nb, поскольку часть объема структуры анода занимает кислород.
Важным критерием качества является срок службы конденсатора, который зависит от его рабочего напряжения и уменьшается при повышении напряжения. Для расширения диапазона применения желательно увеличение срока службы, в особенности при высоких значениях рабочего напряжения.
Кроме того, желательно повысить рабочую температуру. В настоящее время рабочая температура конденсаторов на основе NbO ограничена значением, равным примерно 125°С. Более высокая допустимая рабочая температура позволит использовать конденсаторы на основе NbO в автомобильной промышленности.
Кроме того, с точки зрения безопасности, желательно повысить напряжение пробоя и уменьшить скорость сгорания, а также уменьшить выделение тепла при сгорании после зажигания спеченными анодными структурами и конденсаторами.
Объектом настоящего изобретения является конденсатор, изготовленный из субоксида ниобия, обладающий улучшенными характеристиками, обеспечивающими эксплуатацию при более высокой температуре.
Другим объектом настоящего изобретения является конденсатор, изготовленный из субоксида ниобия, обладающий повышенным напряжением пробоя.
Другим объектом настоящего изобретения является анодная структура, изготовленная из порошкообразного субоксида ниобия, и конденсатор, включающий указанную анодную структуру с уменьшенной скоростью сгорания и уменьшенным выделением тепла после зажигания.
Настоящее изобретение обеспечивает осуществление этого и других объектов.
Таким образом, настоящее изобретение относится к пористому телу анода, предназначенному для применения в полупроводниковом конденсаторе, получаемом из порошкообразного субоксида ниобия, содержащего частицы субоксида ниобия, обладающие объемным содержанием азота, равным от 500 до 20000 частей на миллион (чнм), предпочтительно - от 1000 до 8000 чнм, более предпочтительно - от 3000 до 5000 чнм, указанный порошок агломерирован и коалесцирован с образованием единого пористого тела анода.
В пористом теле анода настоящего изобретения азот, по меньшей мере, частично содержится в форме кристаллов Nb2N или кристаллов оксинитрида ниобия NbOxNy.
В пористом теле анода настоящего изобретения кристаллы NbzN обладают размером, достаточным для проявления пика рентгеновского излучения СuKα при угле 2Θ, равном примерно 38,5°.
В теле анода настоящего изобретения высота пика Nb2N примерно при 2Θ=38,5° составляет от 2 до 25% от высоты пика NbO при 2Θ=30°.
В пористом теле анода настоящего изобретения пик СuKα1, расположенный примерно при 2Θ=38,5°, обладает полушириной, равной от 0,05 до 0,2°.
Пористое тело анода, соответствующее настоящему изобретению, включает порошкообразный субоксид ниобия, в котором частицы являются агломератами первичных частиц, обладающих средним диаметром, равным от 0,1 до 1,5 мкм, предпочтительно - от 0,3 до 1,0 мкм. Субоксид ниобия обладает составом NbOx при 0,7<х<1,3, предпочтительно - 1<х<1,033. Содержание кислорода равно от 14,5 до 15,1 мас.%.
Пористое тело анода настоящего изобретения можно получить из порошкообразного субоксида ниобия, обладающего указанными выше характеристиками, такими что время сгорания равно более 5 мин, когда 50 г порошка помещают на участке размером 150 х 30 мм на лист ниобия толщиной 0,1 мм и поджигают с одного конца.
Пористое тело анода, соответствующее настоящему изобретению, пригодно для изготовления электролитических конденсаторов.
Пористое тело анода настоящего изобретения включает порошкообразный субоксид ниобия, агломерированный и коалесцированный с образованием единого пористого тела анода, в котором субоксид ниобия, содержащийся в теле, обладает объемным содержанием азота, равным от 500 до 20000 чнм1. Пористое тело анода предпочтительно формовать путем прессования и спекания указанного порошка.
Настоящее изобретение также относится к полупроводниковому конденсатору, включающему пористое тело анода, описанное выше.
Полупроводниковый конденсатор настоящего изобретения обычно также включает диэлектрический слой, сформированный на поверхностях указанного пористого тела анода, и проводящий катодный слой, сформированный на указанном диэлектрическом слое.
В конденсаторе настоящего изобретения тело анода и катодный слой электрически соединены с соответствующими выводами анода и катода конденсатора. Обычно такой конденсатор можно заключить в изолирующий материал, кроме наружных поверхностей выводов анода и катода.
Конденсатор настоящего изобретения с успехом можно использовать в электрических или электронных устройствах. Примерами таких устройств являются электрические или электронные устройства, выбранные из группы, включающей телефоны, радиоприемники, телевизоры, компьютеры и устройства перезарядки аккумуляторов.
Тело анода, содержащее субоксид ниобия, включает частицы субоксида ниобия, обладающие объемным содержанием азота, равным от 500 до 20000 чнм, предпочтительно - от 1000 до 10000 чнм. Более предпочтительным является содержание азота, равное от 2000 до 8000 чнм, особенно предпочтительно - от 3000 до 5000 чнм.
Предпочтительно, азот содержится в порошкообразном субоксиде ниобия настоящего изобретения, по меньшей мере частично, в виде кристаллов Nb2N или кристаллов оксинитрида ниобия NbOxNv.
В технологии танталовых конденсаторов хорошо известно, что поверхностный азот оказывает благоприятное влияние на спекание порошкообразного тантала, а также уменьшает ток утечки для танталовых конденсаторов. В отличие от этого важной особенностью настоящего изобретения является то, что азот квазиравномерно распределен по объему порошкообразных частиц, по меньшей мере, частично в виде очень небольших кристаллических доменов Nb2N, количество и размер которых являются достаточно большими, чтобы при исследовании с помощью рентгенографии с использованием излучения СuKα можно было зарегистрировать пик при угле 2Θ, равном примерно 38,5° (101-отражение для Nb2N).
Предпочтительно, высота пика Nb2N примерно при 2Θ=38,5° составляет менее 25% от высоты пика NbO при 2Θ=30° (110-отражение для NbO), более предпочтительно - менее 15% от высоты пика NbO при 2Θ=30°.
Кроме того, предпочтительные порошкообразные вещества при исследовании с помощью рентгенографии с использованием излучения СuKα обладают пиком при 2Θ=38,5°, высота которого составляет не менее 2%, предпочтительно - не менее 5% от высоты пика NbO при 2Θ=30°.
В более широком диапазоне содержания азота можно зарегистрировать дополнительные фазы кристаллического нитрида. Точнее, можно зарегистрировать Nb4N3, NbN0,77, Nb0,77N0,091, NbN0,64, NbN0,9, NbN0,95, Nb4,62N2,14, Nb4N3,92, Nb4N5, Nb5N6, NbN0,801, NbN и т.п. или их смеси, или оксинитриды ниобия, такие как NbN0,6O0,3, NbN0,6O0,2, NbN0,9O0,1, Nb(N,O) и т.п. или их смеси друг с другом или с нитридами ниобия. В частности, можно зарегистрировать NbN0,77, NbN0,95, NbN и т.п. или оксинитрид ниобия.
Полуширина пика, полученного с использованием излучения СuKα1 примерно при 2Θ=38,5° ((101)-пик для Nb2N), предпочтительно составляет от 0,05 до 0,2°, более предпочтительно - от 0,07 до 0,15°, при исследовании с использованием гониометра Panalytical X'Pert MPD PW 3050, анода Сu при 50 кВ и 40 мА, обладающего щелью расхождения и щелью, препятствующей рассеянию, равными 1/2°2Θ, приемной щелью шириной 0,2 мм, щелью Соллера с углом 0,04 рад, диафрагмой луча шириной 20 мм, причем детектор пропорционален заполненному Хе. В программе сканирования шаг равен 0,01°2Θ, скорость сканирования равна 0,001°2Θ/с в диапазоне от 37,7 до 39,5°2Θ. Отражение СuKα2 удалено.
Предпочтительно тело анода настоящего изобретения получено из субоксида ниобия, обладающего распределением зерен по размеру, характеризующимся значением D10, равным от 50 до 90 мкм, значением D50, равным от 150 до 210 мкм, и значением D90, равным от 250 до 350 мкм, определенным в соответствии со стандартом ASTM В 822 ("Mastersizer", смачивающий реагент Daxad 11). Особенно предпочтительными являются порошки, обладающие сферическими или эллиптическими зернами, характеризующиеся хорошей сыпучестью, составляющей менее 80 с/25 г, предпочтительно - 60 с/25 г, особенно предпочтительно - 40 с/25 г, определенной в соответствии со стандартом ASTM В 213 ("Сыпучесть по Холлу"). Объемная плотность таких порошков обычно равна от 0,5 до 2 г/см3, предпочтительно - от 0,9 до 1,2 г/см3 (от 14,8 до 19,7 г/дюйм3), определенная в соответствии со стандартом ASTM В 329 ("Плотность по Скотту").
Тело анода настоящего изобретения можно получить из отдельных зерен или частиц порошкообразного субоксида ниобия, которые являются высокопористыми агломератами плотных первичных частиц среднего размера, обладающих наименьшим диаметром сечения, равным от 0,1 до 1,5 мкм, предпочтительно - от 0,3 до 1,0 мкм. Первичные частицы могут обладать сферической, чешуйчатой или волокнистой структурой. Предпочтительно, наименьший диаметр сечения первичных частиц равен от 0,4 до 1 мкм.
Пористость анодов, спеченных из порошка согласно настоящему изобретению, определенная с помощью ртутного порозиметра, предпочтительно составляет от 50 до 70 об.%, особенно предпочтительно - от 53 до 65 об.%. Более 90% объема пор составляют поры, обладающие диаметром, равным от 0,2 до 2 мкм. Широкая кривая распределения пор по размерам с обеих сторон обладает крутыми участками и минимумом в области двоенного диаметра первичных частиц.
Обычно удельная площадь поверхности порошков, которые используются для производства пористого тела анода настоящего изобретения, равна от 0,5 до 12,0 м2/г, предпочтительно - от 0,6 до 6 м2/г, более предпочтительно - от 0,7 до 2,5 м2/г, определенная в соответствии со стандартом ASTM D 3663 ("Площадь поверхности, определенная по методике БЭТ (по изотерме Брунауэра-Эметта-Теллера"), особенно предпочтительно, если удельная площадь поверхности равна от 0,8 до 1,3 м2/г или от 0,8 до 1,2 м2/г.
Конденсаторы, изготовленные из пористого тела анода согласно настоящему изобретению, могут обладать удельной емкостью, равной от 40000 до 300000 мкФВ/г, обычно - от 60000 до 200000 мкФВ/г.
Предпочтительно, порошкообразные оксиды ниобия настоящего изобретения обладают составом, соответствующим формуле NbOx при 0,7<х<1,3, что соответствует содержанию кислорода, равному от 10,8 до 18,3 мас.%, особенно предпочтительны порошки с 1,0<х<1,033 или порошки, обладающие содержанием кислорода, равным от 14,5 до 15,1 мас.%.
Обычно примесей в пористом теле анода согласно настоящему изобретению должно быть как можно меньше, особенно вредные примеси в материалах, применяющихся в конденсаторах, такие как Fe, Cr, Ni, Сu, Na, К и Сl, содержатся в количестве, составляющем для каждой их них менее 15 чнм. Предпочтительно, сумма содержаний этих вредных примесей составляет менее 35 чнм. Содержание углерода предпочтительно составляет менее 40 чнм. Другие менее вредные примеси, такие как Аl, В, Са, Мn и Ti, предпочтительно содержатся в количестве, составляющем менее 10 чнм, Si - менее 20 чнм. Содержание Mg может составлять до 500 чнм.
Фосфор обычно не является вредным. В порошкообразных металлическом ниобии и металлическом тантале, предназначенных для конденсаторов, легирование фосфором используют для уменьшения способности порошков к спеканию. Уменьшение способности к спеканию порошкообразных субоксидов ниобия согласно настоящему изобретению обычно нежелательно. Предпочтительно содержание фосфора составляет менее 10 чнм. При необходимости порошки, в основном не содержащие фосфора, до спекания можно обработать фосфорной кислотой, раствором гидрофосфата аммония или фосфата аммония.
Тантал может содержаться в качестве легирующего компонента, заменяющего ниобий, в соответствии с формулой (Nb,Ta)Ox.
Содержащий азот порошкообразный субоксид ниобия, пригодный для изготовления пористого тела анода, соответствующего настоящему изобретению, можно получить по методике, в которой порошкообразный металлический ниобий является предшественником, где порошкообразный металлический ниобий в качестве предшественника азотируют перед превращением в оксид ниобия, что можно выполнить различными известными методиками превращения порошкообразного металлического ниобия в NbO. Одной известной методикой является методика твердофазного диспропорционирования: порошкообразный металлический ниобий смешивают со стехиометрическим количеством оксида ниобия, в котором ниобий находится в более высокой степени окисления, чем в искомом продукте, таком как Nb2O5 или NbO2, и затем смесь нагревают до температуры, достаточной для того, чтобы инициировать диспропорционирование в неокислительной атмосфере (например, в восстановительной атмосфере, содержащей инертный газ, такой как водород или смеси аргон/водород) в течение времени, достаточного для обеспечения равномерного распределения кислорода, например в течение нескольких часов. Предпочтительно, металл, так же как оксид, в качестве предшественника состоит из первичных частиц, обладающих диаметром, равным примерно 1 мкм или менее (для наименьшего сечения, если частицы несферические).
Для азотирования порошкообразного металлического ниобия в качестве предшественника (легирования металла азотом) порошкообразный металл смешивают с твердым соединением, содержащим азот, таким как Mg(N3)2 или NH4Cl, или его обрабатывают водным раствором этих соединений и нагревают в инертной атмосфере или вводят во взаимодействие с газообразным реагентом, содержащим азот, таким как N2 или МН3, при температуре, равной от 400 до 750°С. Газообразный реагент вводят в атмосфере инертного газа, такого как аргон, при содержании от 15 до 30%. Количество легирующего азота регулируют путем соответствующего подбора длительности и температуры термической обработки.
По другой технологии нанокристаллический нитрид ниобия можно в необходимом соотношении смешать с порошкообразным металлическим ниобием и подвергнуть термической обработке при температуре, равной от 400 до 900°С, в атмосфере инертного газа, использующейся для азотирования порошкообразного металла.
Порошкообразный металлический ниобий и оксид, находящийся в высокой степени окисления, в качестве предшественников можно смешать до азотирования, что позволяет упростить методику. В этом случае по окончании азотирования атмосферу меняют и смесь дополнительно нагревают при температуре, при которой происходит твердофазное диспропорционирование.
Особо чистый Nb2О5, который можно использовать в качестве оксида, являющегося предшественником, согласно настоящему изобретению можно получить путем осаждения гидроксида ниобия из водного раствора H2NbF7, проводимого путем прибавления водного раствора NH4OH, и прокаливания гидроксида ниобия, выделенного из раствора.
Металлический ниобий в качестве предшественника предпочтительно получать из особо чистого Nb2O5 путем восстановления. Это можно осуществить путем алюминотермического восстановления, т.е. сжигания смеси Nb2O5/Al, вымывания из нее оксида алюминия и очистки металлического ниобия путем нагревания электронным пучком. Полученный таким образом слиток металлического ниобия можно сделать хрупким за счет диффузии водорода, проводимой известным образом, и размолоть с получением порошка, содержащего чешуйчатые частицы.
Предпочтительной методикой восстановления пентаоксида до металла является двустадийная методика, описанная в WO 00/67936. По этой методике пентаоксид сначала восстанавливают примерно до диоксида ниобия, и на второй стадии - до металлического ниобия с помощью паров магния при температуре, равной примерно от 900 до 1100°С. Оксид магния, образующийся при восстановлении, можно удалить путем промывки кислотой. Однако не требуется удалять оксид магния до азотирования и превращения металлического ниобия в NbOx. Напротив, наличие оксида магния во время превращения в NbOx благоприятно влияет на пористость порошкообразного NbOx.
Размер зерен (размер вторичных частиц) порошка можно регулировать путем надлежащего подбора температуры, при которой проводят твердофазное диспропорционирование, или позднее путем термообработки спекания в атмосфере аргона, предпочтительно содержащей до 10% водорода, и просеивания.
Настоящее изобретение подробнее разъясняется с помощью приведенных ниже примеров:
Предшественники: Используют следующие предшественники:
A1: Nb2O5 со следующими аналитическими данными:
Аl: | 1 чнм |
Сr: | <0,3 чнм |
С: | <10 чнм |
Fe: | <0,5 чнм |
К: | 0,6 чнм |
Mg: | <1 чнм |
Mn: | <0,1 чнм |
Mo: | <0,3 чнм |
Na: | 3 чнм |
Ni: | <0,2 чнм |
Si: | 14 чнм |
Плотность по Скотту: 12,2 г/дюйм3.
А2: NbO2 получен восстановлением предшественника Аl (NO2O5) со следующими аналитическими данными:
Аl: | 2 чнм |
Сr: | <2 чнм |
С: | 12 чнм |
Fe: | <2 чнм |
К: | 1 чнм |
Mo: | 54 чнм |
Na: | 4 чнм |
Ni: | <2 чнм |
N: | <300 чнм |
О: | 26,79% |
Si: | 14 чнм |
БЭТ: | 0,17 м2/г |
Плотность по Скотту: | 23,6 г/дюйм3 |
A3: Металлический ниобий: Предшественник А2 (NbO2) взаимодействует с парами магния, как описано в WO 00/67936, с получением поверхности металлического ниобия со следующими аналитическими данными:
Аl: | 2 чнм |
Сr: | <2 чнм |
С: | <10 чнм |
Fe: | <2 чнм |
К: | 1 чнм |
Mg: | 28,14% |
Mo: | 41 чнм |
Na: | 2 чнм |
Ni: | <2 чнм |
N: | <300 чнм |
О: | 18,74% |
Si: | 7 чнм |
А4: Металлический ниобий, полученный промывкой предшественника A3 (металлического ниобия, содержащего оксид магния) серной кислотой и промытый водой до нейтральной реакции. Аналитические данные:
Аl: | 3 чнм |
Сr: | <2 чнм |
С | <10 чнм |
Fe: | <2 чнм |
К: | 1 чнм |
Н: | 344 чнм |
Mg: | 750 чнм |
Mo: | 75 чнм |
Na: | 3 чнм |
Ni: | <2 чнм |
N: | <300 чнм |
О: | 1,65% |
Si: | 8 чнм |
БЭТ: | 4,52 м2/г |
Если содержится символ "<", то соответствующее количество меньше предела обнаружения и последующее число представляет собой предел обнаружения.
Примеры получения порошков
Пример 1 (сравнительный)
53,98 мас.% Предшественника А4(Nb) и 46,02 мас.% предшественника Аl(Nb2О5) перемешивают до однородного состояния и нагревают в атмосфере водорода при 1400°С. Характеристики продукта приведены в таблице 1.
Пример 2
Предшественник А4(Nb) перемешивают до однородного состояния с умноженным на 1,5 стехиометрическим количеством магния (соответствующим содержанию кислорода) и 5,4 мас.частей NH4Cl (на 100 частей Nb) и помещают в реактор. Затем реактор промывают аргоном и нагревают при 700°С в течение 90 мин. После охлаждения реактор медленно заполняют воздухом для пассивации. После промывки серной кислотой и ополаскивания получают металлический ниобий, легированный азотом, содержащий от 9600 до 10500 чнм азота (в среднем 9871 чнм). Содержание кислорода равно 6724 чнм.
Ниобий, легированный азотом, превращают в NbO таким же образом, как в примере 1. Характеристики продукта приведены в таблице 1. Порошковая рентгенограмма приведена на фиг.1. Можно ясно видеть Nb2N (101)-пик при 2Θ=38,5°, отмеченный стрелкой. В соответствии с этим, по меньшей мере, часть легирующего N присутствует в виде кристаллической фазы Nb2N.
Пример 3
Повторяют процедуру примера 2 с тем отличием, что количество прибавляемого NH4Cl увеличивают до 8,2 мас.частей. Порошкообразный ниобий обладает средним содержанием азота, равным 14730 чнм. Содержание кислорода равно 6538 чнм. Характеристики образовавшегося субоксида приведены в таблице 1.
Пример 4
53,95 мас.частей предшественника А4(Nb) и 46,05 мас.частей предшественника Аl(Nb2O5) перемешивают до однородного состояния и помещают в реактор. Реактор промывают аргоном и нагревают при 500°С. Затем реактор трижды обрабатывают смесью 80%Ar/20%N каждый раз в течение 30 мин. Затем порошкообразную смесь нагревают до 1450°С в атмосфере водорода. Характеристики продукта приведены в таблице 1. Порошковая рентгенограмма приведена на фиг.2. Можно ясно видеть Nb2N (101)-пик при 2Θ=38,5°, отмеченный стрелкой.
Пример 5
Предшественник A3 (Nb, содержащий MgO) азотируют газообразным азотом при 630°С и затем оксид магния и оставшийся металлический магний удаляют путем промывки 15% серной кислотой. Содержание кислорода в полученном металлическом ниобии равно 1,6 мас.%; содержание азота равно 8515 чнм.
56,03 мас.частей легированного N металлического ниобия и 43,97 мас.частей предшественника А1 (Nb2O5) перемешивают до однородного состояния и нагревают до 1100°С в атмосфере водорода. Характеристики продукта приведены в таблице 1. Порошковая рентгенограмма приведена на фиг.3. Можно ясно видеть Nb2N (101)-пик при 2Θ=38,5°, отмеченный стрелкой.
Таблица 1 | ||||||||
Характеристики порошкообразного NbOx | ||||||||
Пример № | БЭТ | Mastersizer | Плотность по Скотту | Сыпучесть по Холлу | Результаты анализа | |||
D10 | D50 | D90 | O | N | ||||
м2/г | мкм | мкм | мкм | г/дюйм3 | с | мас.% | чнм | |
1 (сравнительный) | 1,02 | 60,52 | 190,63 | 295,4 | 15,8 | 48 | 14,97 | <300 |
2 | 1,04 | 62,06 | 170,67 | 290,05 | 17,2 | 43 | 14,9 | 5848 |
3 | 1,03 | 59,73 | 185,54 | 270,76 | 16,7 | 54 | 14,93 | 8115 |
4 | 1,0 | 58,73 | 191,04 | 299,93 | 14,7 | 45 | 14,98 | 6281 |
5 | 2,31 | 52,76 | 150,46 | 268,37 | 15,2 | 61 | 14,94 | 5062 |
Пример 6
Предшественник А2(NbO2) помещают в реактор на сито, изготовленное из ниобиевой проволоки. Под ситом находится тигель, содержащий умноженное на 1,05 стехиометрическое количество магния, соответствующее содержанию кислорода в NbO2. На дно реактора непрерывно подают аргон и его отбирают из верхней части реактора. Затем реактор нагревают примерно до 950°С. После израсходования магния реактор охлаждают до 575°С и в течение 3 ч подают азот. После охлаждения, пассивации и удаления оксида магния получают легированный азотом металлический ниобий, который можно использовать для превращения в NbO.
Исследование скорости горения
По 50 г порошков, полученных в примерах 1 (сравнительном), 2 и 3, помещают на лист ниобия толщиной 0,1 мм в виде полоски 150×30 мм. Полоски поджигают с одного конца и измеряют время полного сгорания (на воздухе).
порошок примера 1 (сравнительного): время сгорания 3 мин 35 с,
порошок примера 2 время сгорания 6 мин 25 с,
порошок примера 3 время сгорания 8 мин 10 с.
Исследование ДСК/ТГА:
Образец примера 1 и примера 2 нагревают на воздухе от 25 до 600°С и с помощью термогравиметрического анализа (ТТА) определяют увеличение массы. Одновременно с помощью ДСК измеряют сопутствующий тепловой поток. На фиг.4 приведены соответствующие зависимости для порошка примера 1 (сравнительного) и на фиг.5 приведены соответствующие зависимости для порошка примера 2. На этих чертежах кривая А характеризует температуру (левая внутренняя шкала от 0 до 600°С), кривая В характеризует содержание в мас.% (левая наружная шкала от 95 до 125%) и кривая С характеризует тепловой поток с поправкой на массу (правая шкала от 0 до 120 Вт/г) в зависимости от времени (горизонтальная шкала от 0 до 50 соответственно 60 с.). Для обоих образцов обнаруживается увеличение массы при температуре выше примерно 200°С с небольшим выделением тепла. До примерно 450°С увеличение массы и выделение тепла для обоих образцов очень близки друг к другу. Выше примерно 450°С для не содержащего азот образца наблюдается резкое увеличение массы и соответствующее значительное выделение тепла (фиг.5), тогда как для содержащего азот образца выделение тепла и скорость увеличения массы остаются умеренными также и выше 450°С при отсутствии экзотермического пика.
Изготовление анодов
Порошки NbOx примера 1 (сравнительного) и примера 2 помещают в цилиндрические пресс-формы диаметром 4,1 мм и длиной 4,2 мм вокруг расположенной по оси танталовой проволоки. Порошки прессуют в брикеты, обладающие плотностью, равной 2,8 г/см3. Брикеты помещают на пластинку из ниобия и нагревают до 1460°С в вакууме, составляющем 10-8 бар, в течение 20 мин.
Исследование напряжения пробоя анодов
Аноды погружают в 0,1% водный раствор фосфорной кислоты (электропроводность равна 8600 мкСм/см) при температуре, равной 85°С, и для формования подают постоянный ток силой 150 мА, пока не происходит резкого падения напряжения (напряжение пробоя). Для анодов, изготовленных из порошка примера 1 (сравнительного), резкое падение напряжения происходит при 96 В, а для анодов, изготовленных из порошка примера 1, резкое падение напряжения происходит при 104 В.
Исследование конденсаторов
На промышленной производственной линии из порошка примера 1 (сравнительного), а также из порошков примера 2 изготавливают конденсаторы. Порошки прессуют в пресс-формах диаметром 4,2 мм и длиной 4,1 мм вокруг расположенной по оси танталовой проволоки до плотности, равной 2,8 г/см3. Брикеты спекают в вакууме, составляющем 10-8 бар. Анодные структуры анодируют до формующего напряжения, равного 16 В, и снабжают катодами из МnO2. Аноды эксплуатируют при постоянной температуре при переменном токе с рабочим напряжением, указанным ниже. В каждом из указанных испытаний одновременно используют 50 конденсаторов.
На фиг.6а и 6b приведен ток утечки относительно емкости конденсатора, изготовленного из порошка примера 1 (сравнительного), при температуре 125°С и рабочем напряжении 4 В в течение 5000 ч эксплуатации.
На фиг.7а и 7b приведен ток утечки относительно емкости конденсатора, изготовленного из порошка примера 2 (легированного N), при температуре 125°С и рабочем напряжении 4 В в течение 9000 ч эксплуатации.
На фиг.8а и 8b приведен ток утечки относительно емкости конденсатора, изготовленного из порошка примера 1 (сравнительного) при температуре 140°С и рабочем напряжении 2 В в течение 5000 ч эксплуатации.
На фиг.9а и 9b приведен ток утечки относительно емкости конденсатора, изготовленного из порошка примера 2 (легированного N), при температуре 140°С и рабочем напряжении 2 В в течение 5000 ч эксплуатации.
Claims (18)
1. Пористое тело анода, предназначенное для применения в твердотельном конденсаторе, получаемое из порошкообразного субоксида ниобия, включающее частицы субоксида ниобия, обладающее объемным содержанием азота, равным от 500 до 20000 млн-1, указанный порошок агломерирован и коалесцирован с образованием единого пористого тела анода.
2. Пористое тело анода по п.1, в котором содержание азота в порошкообразном субоксиде ниобия составляет от 1000 до 8000 млн-1, предпочтительно - от 3000 до 5000 млн-1.
3. Пористое тело анода по п.1, в котором азот, по меньшей мере, частично содержится в форме кристаллов Nb2N или кристаллов оксинитрида ниобия.
4. Пористое тело анода по п.3, в котором кристаллы Nb2N обладают размером, достаточным для проявления пика рентгеновского излучения CuKα при угле 2Θ, равном примерно 38,5°.
5. Пористое тело анода по п.4, в котором высота пика Nb2N примерно при 2Θ=38,5° составляет от 2 до 25% от высоты пика NbO при 2Θ=30°.
6. Пористое тело анода по п.1, в котором пик CuKα1 примерно при 2Θ=38,5°, обладает полушириной, равной от 0,05 до 0,2°.
7. Пористое тело анода по п.1, в котором частицы порошкообразного субоксида ниобия являются агломератами первичных частиц, обладающих средним диаметром, равным от 0,1 до 1,5 мкм, предпочтительно - от 0,3 до 1,0 мкм.
8. Пористое тело анода по п.1, в котором субоксид ниобия обладает составом NbOx при 0,7<x<1,3.
9. Пористое тело анода по п.8, в котором 1<x<1,033.
10. Пористое тело анода по п.1, в котором содержание кислорода равно от 14,5 до 15,1 мас.%.
11. Пористое тело анода по п.1, в котором порошкообразный субоксид ниобия, из которого можно получить тело анода, обладает временем сгорания, равным более 5 мин, когда 50 г порошка помещают на участке размером 150×30 мм на лист ниобия толщиной 0,1 мм и поджигают с одного конца.
12. Пористое тело анода по любому из пп.1-11, которое сформовано путем прессования и спекания указанного порошка.
13. Твердотельный конденсатор, включающий пористое тело анода по любому из пп.1-12.
14. Твердотельный конденсатор по п.13, отличающийся тем, что включает:
a) диэлектрический слой, сформированный на поверхностях указанного пористого тела анода, и
b) проводящий катодный слой, сформированный на указанном диэлектрическом слое.
a) диэлектрический слой, сформированный на поверхностях указанного пористого тела анода, и
b) проводящий катодный слой, сформированный на указанном диэлектрическом слое.
15. Твердотельный конденсатор по п.13, отличающийся тем, что тело анода и катодный слой электрически соединены с соответствующими выводами анода и катода конденсатора.
16. Твердотельный конденсатор по любому из пп.13-15, отличающийся тем, что он заключен в изолирующий материал, кроме наружных поверхностей выводов анода и катода.
17. Электрическое или электронное устройство, включающее твердотельный конденсатор по любому из пп.13-16.
18. Электрическое или электронное устройство по п.17, выбранное из группы, включающей телефоны, радиоприемники, телевизоры, компьютеры и устройства перезарядки аккумуляторов.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0511321A GB0511321D0 (en) | 2005-06-03 | 2005-06-03 | Inorganic compounds |
GB0511321.2 | 2005-06-03 | ||
GB0602330.3 | 2006-02-06 | ||
GB0602330A GB0602330D0 (en) | 2006-02-06 | 2006-02-06 | Inorganic compounds |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2007148701A RU2007148701A (ru) | 2009-08-20 |
RU2416837C2 true RU2416837C2 (ru) | 2011-04-20 |
RU2416837C9 RU2416837C9 (ru) | 2012-04-27 |
Family
ID=37106456
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007148700/05A RU2424982C2 (ru) | 2005-06-03 | 2006-05-31 | Субоксиды ниобия |
RU2007148701/07A RU2416837C9 (ru) | 2005-06-03 | 2006-06-01 | Конденсатор |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007148700/05A RU2424982C2 (ru) | 2005-06-03 | 2006-05-31 | Субоксиды ниобия |
Country Status (15)
Country | Link |
---|---|
US (3) | US8187567B2 (ru) |
EP (3) | EP1890967B1 (ru) |
JP (2) | JP5069226B2 (ru) |
KR (2) | KR101340116B1 (ru) |
AT (1) | ATE424371T1 (ru) |
AU (2) | AU2006254330B2 (ru) |
BR (2) | BRPI0611507B1 (ru) |
CA (2) | CA2609231C (ru) |
DE (1) | DE602006005483D1 (ru) |
IL (2) | IL187337A (ru) |
MX (2) | MX2007016540A (ru) |
PT (2) | PT1890967E (ru) |
RU (2) | RU2424982C2 (ru) |
TW (1) | TWI423931B (ru) |
WO (2) | WO2006128687A2 (ru) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009012124A2 (en) * | 2007-07-18 | 2009-01-22 | Cabot Corporation | Niobium suboxide- and niobium-tantalum-oxide-powders and capacitor anodes produced thereof |
US8824122B2 (en) * | 2010-11-01 | 2014-09-02 | Avx Corporation | Solid electrolytic capacitor for use in high voltage and high temperature applications |
CN104495929B (zh) * | 2014-12-26 | 2020-03-31 | 宁夏东方钽业股份有限公司 | 低价氧化铌粉末及其制备方法 |
KR101968403B1 (ko) * | 2016-05-31 | 2019-04-11 | 한양대학교 에리카산학협력단 | 열처리 방법, 및 질소 도핑된 금속 산화물 구조체 |
IL277273B2 (en) * | 2018-03-12 | 2024-10-01 | Omega Energy Systems Llc | A solid-state energy harvester from a hypoxic transition metal |
WO2020112954A1 (en) * | 2018-11-29 | 2020-06-04 | Avx Corporation | Solid electrolytic capacitor containing a sequential vapor-deposited dielectric film |
WO2021097051A1 (en) | 2019-11-13 | 2021-05-20 | Omega Energy Systems, Llc | Three-electrode solid-state energy harvester of transition metal suboxides |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3401890A1 (de) | 1984-01-20 | 1985-07-25 | Hoechst Ag, 6230 Frankfurt | Verwendung einer gerafften schlauchhuelle |
JP3254163B2 (ja) * | 1997-02-28 | 2002-02-04 | 昭和電工株式会社 | コンデンサ |
WO2000067936A1 (en) | 1998-05-06 | 2000-11-16 | H.C. Starck, Inc. | Metal powders produced by the reduction of the oxides with gaseous magnesium |
US6391275B1 (en) * | 1998-09-16 | 2002-05-21 | Cabot Corporation | Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides |
US6416730B1 (en) * | 1998-09-16 | 2002-07-09 | Cabot Corporation | Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides |
TW460883B (en) | 1999-02-16 | 2001-10-21 | Showa Denko Kk | Niobium powder, niobium sintered body, capacitor comprised of the sintered body, and method for manufacturing the capacitor |
WO2000049633A1 (fr) | 1999-02-16 | 2000-08-24 | Showa Denko K.K. | Poudre de niobium, element fritte a base de niobium, condensateur renfermant cet element et procede de fabrication de ce condensateur |
KR20020091147A (ko) * | 2000-03-23 | 2002-12-05 | 캐보트 코포레이션 | 산소 환원된 니오븀 산화물 |
ATE443919T1 (de) | 2000-03-23 | 2009-10-15 | Cabot Corp | Anode beinhaltend nioboxidpulver und verfahren zu ihrer herstellung |
JP4986272B2 (ja) | 2000-04-24 | 2012-07-25 | 昭和電工株式会社 | ニオブ粉、その焼結体及びコンデンサ |
DE10041901A1 (de) * | 2000-08-25 | 2002-03-07 | Starck H C Gmbh | Kondensatoranode auf Basis Niob |
JP5020433B2 (ja) * | 2000-11-30 | 2012-09-05 | 昭和電工株式会社 | コンデンサ用ニオブ粉、焼結体及びその焼結体を用いたコンデンサ |
KR100812689B1 (ko) | 2000-12-01 | 2008-03-13 | 쇼와 덴코 가부시키가이샤 | 커패시터용 니오브 분말, 그 소결체 및 소결체를 이용한커패시터 |
US20030104923A1 (en) * | 2001-05-15 | 2003-06-05 | Showa Denko K.K. | Niobium oxide powder, niobium oxide sintered body and capacitor using the sintered body |
KR100524166B1 (ko) * | 2001-05-15 | 2005-10-25 | 쇼와 덴코 가부시키가이샤 | 일산화 니오브분말, 일산화 니오브 소결체 및 일산화니오브 소결체를 사용한 콘덴서 |
JP4275106B2 (ja) * | 2001-12-27 | 2009-06-10 | 三井金属鉱業株式会社 | 酸化タンタル又は酸化ニオブ粉末 |
US7655214B2 (en) | 2003-02-26 | 2010-02-02 | Cabot Corporation | Phase formation of oxygen reduced valve metal oxides and granulation methods |
EP2455340A1 (en) | 2003-05-19 | 2012-05-23 | Cabot Corporation | Valve metal sub-oxide powders and capacitors and sintered anode bodies made therefrom |
DE502004011120D1 (de) * | 2003-07-15 | 2010-06-17 | Starck H C Gmbh | Niobsuboxidpulver |
PT1505611E (pt) * | 2003-07-22 | 2012-01-12 | Starck H C Gmbh | Método para a produção de condensadores |
BR0304252B1 (pt) * | 2003-09-25 | 2013-05-14 | processo de produÇço de pà de monàxido de niàbio, monàxido de niàbio, e, capacitor. |
-
2006
- 2006-05-31 MX MX2007016540A patent/MX2007016540A/es active IP Right Grant
- 2006-05-31 BR BRPI0611507A patent/BRPI0611507B1/pt active IP Right Grant
- 2006-05-31 RU RU2007148700/05A patent/RU2424982C2/ru active
- 2006-05-31 WO PCT/EP2006/005184 patent/WO2006128687A2/en active Application Filing
- 2006-05-31 DE DE602006005483T patent/DE602006005483D1/de active Active
- 2006-05-31 AT AT06743090T patent/ATE424371T1/de active
- 2006-05-31 AU AU2006254330A patent/AU2006254330B2/en not_active Ceased
- 2006-05-31 EP EP06743090A patent/EP1890967B1/en active Active
- 2006-05-31 JP JP2008514010A patent/JP5069226B2/ja active Active
- 2006-05-31 US US11/916,125 patent/US8187567B2/en not_active Expired - Fee Related
- 2006-05-31 EP EP08167554A patent/EP2022759A1/en not_active Withdrawn
- 2006-05-31 KR KR1020077027981A patent/KR101340116B1/ko active IP Right Grant
- 2006-05-31 PT PT06743090T patent/PT1890967E/pt unknown
- 2006-05-31 CA CA2609231A patent/CA2609231C/en active Active
- 2006-06-01 WO PCT/EP2006/005220 patent/WO2006128698A2/en active Application Filing
- 2006-06-01 US US11/916,361 patent/US8029762B2/en active Active
- 2006-06-01 JP JP2008514016A patent/JP4988722B2/ja active Active
- 2006-06-01 PT PT67430983T patent/PT1891651T/pt unknown
- 2006-06-01 MX MX2007015004A patent/MX2007015004A/es active IP Right Grant
- 2006-06-01 AU AU2006254341A patent/AU2006254341B2/en not_active Ceased
- 2006-06-01 RU RU2007148701/07A patent/RU2416837C9/ru not_active IP Right Cessation
- 2006-06-01 EP EP06743098.3A patent/EP1891651B1/en active Active
- 2006-06-01 BR BRPI0613544-7A patent/BRPI0613544A2/pt not_active IP Right Cessation
- 2006-06-01 KR KR1020077027976A patent/KR101389201B1/ko active IP Right Grant
- 2006-06-01 CA CA2609237A patent/CA2609237C/en not_active Expired - Fee Related
- 2006-06-02 TW TW095119488A patent/TWI423931B/zh active
-
2007
- 2007-11-13 IL IL187337A patent/IL187337A/en active IP Right Grant
- 2007-11-13 IL IL187338A patent/IL187338A0/en not_active IP Right Cessation
-
2012
- 2012-05-09 US US13/467,070 patent/US9085468B2/en active Active
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100441515C (zh) | 铌低价氧化物粉末 | |
CN102294472B (zh) | 制备电子管金属粉末的方法 | |
RU2416837C2 (ru) | Конденсатор | |
CN101258570B (zh) | 电容器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TH4A | Reissue of patent specification | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160602 |