RU2392296C2 - Применение источника хрома в сочетании с осажденным катализатором в реакции фишера-тропша - Google Patents

Применение источника хрома в сочетании с осажденным катализатором в реакции фишера-тропша Download PDF

Info

Publication number
RU2392296C2
RU2392296C2 RU2006117098/04A RU2006117098A RU2392296C2 RU 2392296 C2 RU2392296 C2 RU 2392296C2 RU 2006117098/04 A RU2006117098/04 A RU 2006117098/04A RU 2006117098 A RU2006117098 A RU 2006117098A RU 2392296 C2 RU2392296 C2 RU 2392296C2
Authority
RU
Russia
Prior art keywords
catalyst
iron
precipitated
chromium
fischer
Prior art date
Application number
RU2006117098/04A
Other languages
English (en)
Other versions
RU2006117098A (ru
Inventor
Трейси-Каролин БРОМФИЛД (ZA)
Трейси-Каролин БРОМФИЛД
Рентия ВИЗАЖИ (ZA)
Рентия ВИЗАЖИ
Original Assignee
САСОЛ ТЕКНОЛОДЖИ (ПиТиУай) ЛТД
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by САСОЛ ТЕКНОЛОДЖИ (ПиТиУай) ЛТД filed Critical САСОЛ ТЕКНОЛОДЖИ (ПиТиУай) ЛТД
Publication of RU2006117098A publication Critical patent/RU2006117098A/ru
Application granted granted Critical
Publication of RU2392296C2 publication Critical patent/RU2392296C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к применению источника хрома в качестве активатора катализатора в сочетании с осажденным железным катализатором в высокотемпературном процессе Фишера-Тропша с целью преобразования реагентов в виде СО и Н2 в продукты реакции в виде углеводородов и возможно их оксигенатов путем введения в контакт СО и H2 с источником хрома в сочетании с осажденным железным катализатором в ходе двухфазной высокотемпературной реакции Фишера-Тропша. Реакцию осуществляют в реакторе с псевдоожиженным слоем, при этом реагенты и продукты реакции находятся в газообразной фазе, а катализатор - в твердой фазе. При этом концентрация источника хрома в осажденном железном катализаторе составляет от 0,3 грамма хрома/100 граммов железа до 1 грамма хрома/100 граммов железа. Помимо источника хрома осажденный железный катализатор имеет, по меньшей мере, один дополнительный активатор катализатора. Также предложен двухфазный высокотемпературный процесс Фишера-Тропша. Изобретение позволяет повысить активность катализатора, уменьшить образование органических кислот в углеводородах и снизить концентрацию образующегося метана. 3 н. и 19 з.п. ф-лы, 1 табл.

Description

Область техники
Настоящее изобретение относится к применению источника хрома в сочетании с осажденным железным катализатором в высокотемпературном процессе Фишера-Тропша. Изобретение также относится к высокотемпературному процессу Фишера-Тропша, в котором применяют источник хрома, а также к осажденному железному катализатору, включающему источник хрома.
Предпосылки создания изобретения
Процесс Фишера-Тропша заключается в гидрировании СО в присутствии катализатора на основе металлов VIII группы, таких как Fe, Co и Ru. Получаемые продукты реакции представляют собой газообразные, жидкие и воскообразные углеводороды, которые могут быть насыщенными и ненасыщенными. Также образуются продукты окисления углеводородов, такие как спирты, кислоты и альдегиды. Распределение углерода в продуктах реакции соответствует хорошо известному распределению Андерсона-Шульца.
Неоднородный процесс Фишера-Тропша может быть легко классифицирован как высокотемпературный процесс Фишера-Тропша или низкотемпературный процесс Фишера-Тропша. Высокотемпературный процесс Фишера-Тропша описывают как двухфазный процесс Фишера-Тропша. Его обычно осуществляют при температуре от 250°С до 400°С, а в качестве катализатора обычно используют катализатор на основе железа, обычно катализатор из плавленого железа. В температурных условиях, при которых осуществляют данный процесс, реагенты и продукты реакции в зоне реакции находятся в газообразной фазе, а являющийся твердым катализатор образует вторую фазу. В промышленных условиях процесс, как правило, осуществляют в реакторе с псевдоожиженным слоем, а получаемые продукты реакции отличаются более высоким олефинированием и имеют более короткие цепи (то есть продуктами реакции является бензин и дизельное топливо) по сравнению с продуктами реакции низкотемпературного процесса Фишера-Тропша.
Низкотемпературный процесс Фишера-Тропша описывают как трехфазный процесс Фишера-Тропша. Его обычно осуществляют при температуре от 240°С до 310°С, а в качестве катализатора обычно используют катализатор на основе Со, но также применяют катализатор на основе железа. В условиях, при которых осуществляют данный процесс, в реакторе получают продукты реакции, которые находятся в жидкой фазе. Таким образом, данный процесс можно описать как трехфазный процесс, реагенты которого находятся в газообразной фазе, продукты реакции в жидкой фазе, а катализатор в зоне реакции находится в твердой фазе. В промышленных условиях данный процесс, как правило, осуществляют в реакторе с неподвижным слоем или реакторе с взвешенным слоем. Получаемые продукты реакции представляют собой более тяжелые углеводороды, такие как твердые углеводороды. Реактор с псевдоожиженным слоем неприменим в низкотемпературном процессе Фишера-Тропша, поскольку жидкие продукты реакции вызывают слипание частиц твердого катализатора, что влияет на псевдоожижающую способность катализатора.
Поскольку высокотемпературный и низкотемпературный процессы Фишера-Тропша отличаются, в каждом из них используют различные катализаторы. Катализатор, как правило, оптимизируют применительно к конкретному процессу и в расчете на получение продуктов реакции определенного вида.
Как указано выше, в высокотемпературном процессе Фишера-Тропша в качестве катализатора обычно используют катализатор на основе плавленого железа, который активизируют, как правило, при помощи источника щелочных или щелочноземельных металлов. Плавленый катализатор обладает высокой механической прочностью, необходимой с учетом жестких условий в псевдоожиженном слое, в котором при высокой температуре происходит быстрое смешивание двух фаз.
Катализаторы на основе плавленого железа обычно получают из источников, содержащих железо в качестве примесей с низкой концентрацией, например из прокатной окалины. В процессе получения катализатора на основе плавленого железа прокатную окалину металлургических заводов обычно сплавляют с требуемым количеством активатора с целью получения расплавленного чугуна. Из расплавленного чугуна отливают бруски, которые измельчают и затем прокатывают на грануляторе с целью получения частиц требуемого размера. Основной недостаток описанного процесса заключается в том, что он зависит от производительности металлургических заводов, а уровень содержания примесей в прокатной окалине не всегда одинаков, что отрицательно сказывается на характеристиках катализатора.
В процессах Фишера-Тропша также применяют осажденные катализаторы. Катализаторы данного типа позволяют лучше регулировать уровень содержания примесей, но их недостатком также является то, что частицы осажденного катализатора недостаточно прочны для применения в реакторах с псевдоожиженным слоем, которые используют в высокотемпературном процессе Фишера-Тропша. Соответственно, осажденные катализаторы обычно применяют в низкотемпературных процессах Фишера-Тропша. Однако в заявке PCT/ZA 01/00084, поданной заявителем настоящей заявки, описан осажденный катализатор на основе железа, обладающий достаточной механической прочностью для применения в псевдоожиженном слое высокотемпературного процесса Фишера-Тропша. В данном случае вещество катализатора осаждают из раствора, содержащего растворенную соль железа, а осажденное вещество (содержащее некоторые активаторы) затем подвергают тепловой обработке в восстановительных условиях с целью получения катализатора, обладающего необходимой площадью поверхности и прочностью для применения в псевдоожиженном слое высокотемпературного процесса Фишера-Тропша.
Известно применение источника хрома в сочетании с определенными катализаторами в определенных реакциях Фишера-Тропша и в реакциях конверсии водяного газа. Dry, М.Е. в "Catalyst-Science and Technology" под редакцией Anderson J.R. и Boudart M., издательство "Шпрингер", Берлин, 159 (1981) описывает, что в результате добавления Cr2O3 и Al2O3 происходит снижение эффективности катализатора на основе Со, применяемого в низкотемпературном процесс Фишера-Тропша.
Storch H.H., Golumbic N., Anderson R.B. в "The Fischer-Tropsch and Related Synthesis", издательство "Джон Уили энд Сонз", Нью-Йорк (1951) описывают применение Cr2O3 в качестве активатора для катализатора на основе железа. В названном документе указано, что присутствие Cr2O3 приводит к снижению скорости образования свободного углерода в низкотемпературном процессе Фишера-Тропша.
Colley S.E., Copperthwaite R.G., Hutchings G.J., Foulds G.A., Coville N.J. в Appl Catal, 84, 1-15 1992 описывают добавление хрома в кобальт-марганцевый катализатор, применяемый в низкотемпературном процессе Фишера-Тропша, в результате чего существенно повышается избирательность в отношении углеводородов С2535. В названной работе указано, что в результате добавления 2% хрома происходит увеличение значения альфа, а также повышение избирательности в отношении
Figure 00000001
с 6,9 до 24,2 мас.% по сравнению с неактивированной системой. Естественно, что данный сдвиг в направлении более тяжелых веществ сопровождается уменьшением выхода легких углеводородов. Было отмечено снижение соотношения между С2-олефином и парафином, но при постоянном выходе этилена, из чего можно заключить, что полимеризующая способность катализатора не повысилась. Также отмечена высокая активность катализатора на основе Со.
Perez М., Diaz L., Galinda H. de J., Dominguez J.M., Salmon M.; Rev. Soc. Quim. Мех., 43(3,4) 97-99 (1999) провели исследование кобальтового катализатора, в ходе которого методом осаждения нитратов металлов и M2CO3 получали ряд окислов Cu-Co-Cr, легированных щелочными металлами (M). Кальцинированные продукты реакции использовали в качестве катализаторов низкотемпературного процесса Фишера-Тропша, осуществлявшегося в микрореакторе из нержавеющей стали с неподвижным слоем. Композицию выбирали с целью получения высших спиртов и углеводородов. Основные полученные спирты включали метанол, этанол и 2-пропанол, а добавление натрия или церия в наибольшей степени влияло на выход углеводородов. Хром в данном случае использовали в качестве активатора спирта.
Согласно Zhang Y., Zhong В., Wang Q.; Culhua Xuebao, 18 (6), 513-516 (1997) при добавлении хрома в кобальтовый катализатор на носителе из ZrO2-SiO2 в результате низкотемпературного процесса Фишера-Тропша уменьшалось преобразование СО и избирательность в отношении С5+ при одновременном увеличении выхода метана. Аналогичным образом, Lapidus A.C., Krylova A.Y., Sineva L.A., Durandina Y.V., Motorina S.N.; Khim, Tverd. Topl.; (1), 32-38, (1997) описывают, что Cr2O3 и окись алюминия способствуют снижению выхода жидких углеводородов в результате низкотемпературного процесса Фишера-Тропша.
В CN1140630 описан катализатор, полученный путем совместного осаждения и пропитки. Описанный катализатор включает 80-90% окиси железа, 5,0-15% Cr2O3, 1,0-5,0 окиси меди, 0,5-5,0 окисей редкоземельных металлов (например, окиси церия) и применим для преобразования СО посредством конверсии водяного газа при ослабленной активности процесса Фишера-Тропша.
Перечисленные материалы известного уровня техники относятся, прежде всего, к низкотемпературным процессам Фишера-Тропша или к реакции конверсии водяного газа в случае CN1140630, а также относятся по большей части к катализаторам на основе Со. Из названных материалов ясно, что добавление хрома приводит к достаточно противоречивым результатам. Например, в некоторых случаях отмечалась повышенная избирательность в отношении более тяжелых углеводородов, но в других случаях наблюдалось обратное.
Совершенно неожиданно было обнаружено, что добавление источника хрома в осажденный катализатор на основе железа обеспечивает определенные преимущества в случае применения такого осажденного катализатора в высокотемпературном процессе Фишера-Тропша.
Краткое изложение сущности изобретения
В настоящем изобретении предложено применение источника хрома в сочетании с осажденным железным катализатором в высокотемпературном процессе Фишера-Тропша с целью преобразования СО и Н2 в углеводороды и их возможные оксигенаты путем введения в контакт СО и Н2 с источником хрома в сочетании с осажденным железным катализатором в ходе высокотемпературной реакции Фишера-Тропша.
Источник хрома в сочетании с осажденным железным катализатором применяют предпочтительно для достижения по меньшей мере одного из результатов, выбранных из группы, включающей:
- снижение концентрации органической кислоты в углеводородах и их оксигенатах, образующихся в результате процесса Фишера-Тропша,
- повышение активности осажденного железного катализатора с целью преобразования СО и Н2 в углеводороды и возможно в их оксигенаты,
- снижение концентрации метана, образующегося в результате процесса Фишера-Тропша,
- уменьшение образования свободного углерода на осажденном железном катализаторе,
- повышение концентрации разветвленных углеводородов и возможно их оксигенатов, образующихся в результате процесса Фишера-Тропша,
- повышение концентрации оксигенатов углеводородов, образующихся в результате процесса Фишера-Тропша, и
- повышение концентрации С4+ углеводородов и их оксигенатов, образующихся в результате процесса Фишера-Тропша.
Предпочтительно, источник хрома в сочетании с осажденным железным катализатором применяют, предпочтительно, для достижения по меньшей мере одного (предпочтительно, по меньшей мере двух, предпочтительно, всех трех) из результатов, выбранных из группы, включающей:
- снижение концентрации органической кислоты в углеводородах и их оксигенатах, образующихся в результате процесса Фишера-Тропша,
- повышение активности осажденного железного катализатора с целью преобразования СО и Н2 в углеводороды и возможно в их оксигенаты, и
- снижение концентрации метана, образующегося в результате процесса Фишера-Тропша.
Очевидно, что получаемые результаты сравнивают с результатами высокотемпературного процесса Фишера-Тропша, осуществляемого в таких же условиях, за исключением отсутствия источника хрома.
В соответствии со второй особенностью настоящего изобретения предложено применение источника хрома для получения осажденного железного катализатора, который используют в высокотемпературном процессе Фишера-Тропша для преобразования СО и Н2 в углеводороды и возможно в их оксигенаты.
В соответствии с третьей особенностью настоящего изобретения предложен высокотемпературный процесс Фишера-Тропша, в котором СО и Н2 преобразуют в углеводороды и возможно в их оксигенаты путем введения в контакт СО и Н2 с осажденным железным катализатором в сочетании с источником хрома в ходе высокотемпературной реакции Фишера-Тропша.
Источник хрома
Предпочтительно, источник хрома вводят в осажденный железный катализатор. Предпочтительно, концентрация источника хрома в осажденном железном катализаторе составляет от 0,1 грамма хрома/100 граммов железа до 2 граммов хрома/100 граммов железа. Более предпочтительно, концентрация составляет от 0,2 грамма хрома/100 граммов железа до 1,5 грамма хрома/100 граммов железа, наиболее предпочтительно, от 0,3 грамма хрома/100 граммов железа до 1 грамма хрома/100 граммов железа. Предпочтительно, источник хрома, введенный в осажденный катализатор, представляет собой окись хрома и, предпочтительно, Cr2O3.
Предпочтительно, источник хрома вводят в осажденный катализатор в процессе образования осажденного катализатора путем осаждения. Предпочтительно, источник хрома добавляют в форме соли хрома, предпочтительно, растворимой в воде соли хрома. Предпочтительно, соль хрома добавляют в процессе получения осажденного катализатора в виде раствора (предпочтительно, водного раствора) и осаждают его. В одном из вариантов осуществления в качестве водного раствора используют соль хрома в виде нитрата хрома (III). Предполагается, что в процессе применения она осаждается, образуя CrOOH. В процессе тепловой обработки происходит преобразование CrOOH в Cr2O3. Также могут использоваться другие соли хрома, такие как Cr(NO3)2OH.
Осажденный железный катализатор
Осажденный железный катализатор представляет собой железный катализатор, полученный любым применимым способом осаждения. Предпочтительно, осажденный железный катализатор представляет собой железный катализатор, полученный в результате осаждения путем гидролиза-окисления.
Осажденный железный катализатор представляет собой железный катализатор, полученный способом, заключающимся в том, что:
- из раствора, содержащего железо, осаждают соединение железа в виде железа и/или композиции, содержащей железо,
- до, во время или после осаждения добавляют по меньшей мере один активатор катализатора, и
- подвергают осажденное соединение железа тепловой обработке с целью получения катализатора с уменьшенной площадью поверхности.
Предпочтительно, осажденный железный катализатор представляет собой восстановленный осажденный железный катализатор, полученный способом, заключающимся в том, что:
- из раствора, содержащего железо, осаждают соединение железа в виде железа и/или композиции, содержащей железо,
- до, во время или после осаждения добавляют по меньшей мере один активатор катализатора,
- подвергают осажденное соединение железа тепловой обработке с целью получения катализатора с уменьшенной площадью поверхности, и
- подвергают соединение железа воздействию восстановительных условий с целью восстановления соединения железа до железа, рафинированного от примесей.
Предпочтительно, площадь поверхности восстановленного осажденного железного катализатора составляет менее 60 м2 на грамм катализатора.
Предпочтительно, источник хрома вводят в осажденный железный катализатор до, во время или после осаждения железа. В одном из вариантов осуществления изобретения источник хрома вводят после осаждения железа.
Предпочтительно, источник хрома добавляют в виде соли хрома, предпочтительно, растворимой в воде соли хрома. Предпочтительно, соль хрома добавляют в процессе получения осажденного катализатора в виде раствора (предпочтительно, водного раствора) и осаждают его. В одном из вариантов осуществления в качестве водного раствора используют соль хрома в виде нитрата хрома (III). Предполагается, что в процессе применения она осаждается, образуя CrOOH. В процессе тепловой обработки происходит преобразование CrOOH в Cr2O3. Также могут использоваться другие соли хрома, такие как Cr(NO3)2OH.
Осажденный железный катализатор предпочтительно представляет собой осажденный железный катализатор, описанный в заявке PCT/ZAO 1/00084, признаки которой полностью включены в настоящую заявку путем ссылки. Вместе с тем. в предпочтительном варианте осуществления настоящего изобретения источник хрома вводят в осажденный железный катализатор до, во время или после осаждения. Очевидно, что источник хрома служит активатором катализатора.
Осажденный железный катализатор, предпочтительно, включает осажденное соединение железа в виде железа и/или композиции, содержащей железо, и по меньшей мере один активатор катализатора. Предпочтительно, катализатор восстанавливают, а его площадь поверхности, предпочтительно, составляет менее 60 м2 на грамм катализатора.
Катализатор также может содержать медь. Предполагается, что медь способствует восстановлению осажденного железного катализатора. Медь добавляют в виде соли меди, предпочтительно, растворимой в воде соли. Медь может присутствовать в малых концентрациях, предпочтительно, менее 1 грамма меди/100 граммов железа.
Осажденное соединение железа может представлять собой вещество, образовавшееся в результате осаждения соли железа. Соль железа может представлять собой соль, выбранную из группы, включающей нитрат железа, оксалат железа, сульфат железа, хлорид железа. В одном из предпочтительных вариантов осуществления изобретения используют нитрат железа.
Соль железа осаждают из водного раствора.
Осажденное соединение железа осаждают в присутствии щелочи. Щелочь может представлять собой гидроокись. Щелочь может представлять собой карбонатное соединение. В одном из вариантов осуществления изобретения она представляет собой гидроокись аммония.
Осажденная композиция, содержащая железо, может представлять оксигидроксид железа, который в результате сушки по меньшей мере частично преобразуется в окись железа, которая в результате восстановления в свою очередь по меньшей мере частично преобразуется в железо. Соответственно, соединение железа, входящее в состав восстановленного катализатора, содержит по меньшей мере некоторое количество железа.
Помимо источника хрома активатор катализатора также может содержать источник щелочного металла и/или щелочноземельного металла. Предпочтительно, он представляет собой окись щелочного металла или окись щелочноземельного металла. Окись щелочного металла выбирают из группы, включающей Na2O, K2O и Cs2O. В одном из вариантов осуществления используют Na2O.
Концентрацию источника щелочного или щелочноземельного металла в активаторе катализатора варьируют с целью максимально повысить активность и избирательность катализатора.
В случае использования в качестве активатора Na2O ее концентрация составляет от 0,01 грамма Na2O/100 граммов железа до 2,0 граммов Na2O/100 граммов железа, предпочтительно, от 0,05 грамма Na2O/100 граммов железа до 1,0 грамма Na2O/100 граммов железа, более предпочтительно, от около 0,1 грамма Na2O/100 граммов железа до 0,5 грамма Na2O/100 граммов железа. Также используют другие источники щелочного или щелочноземельного металла в количествах, обеспечивающих такие же молярные количества щелочного или щелочноземельного металла, как и названные выше количества, которые обеспечивает Na.
Площадь поверхности восстановленного катализатора составляет менее 50 м2/грамм катализатора, предпочтительно, 30 м2/грамм катализатора, более предпочтительно, 20 м2/грамм катализатора или менее, или даже 10 м2/грамм катализатора или менее. Названная площадь поверхности обычно составляет не менее 1 м2/грамм катализатора.
Площадь поверхности определяют классическим способом Брунауэра-Эмметта-Теллера (БЭТ) с использованием изотерм адсорбции азота. Очевидно, что измеряют площади наружной и внутренней "незащищенных" поверхностей.
Катализатор также может преимущественно не содержать или содержать регулируемые минимальные количества примесей. Этим он отличается от катализаторов на основе плавленого железа, полученных, например, из прокатной окалины, которые содержат переменные количества примесей.
Примеси могут представлять собой окислы металлов помимо выбранных в качестве активаторов, которые вступают в реакцию с щелочным или щелочноземельным металлом, образуя нежелательные продукты присоединения, поскольку они не участвуют в процессе Фишера-Тропша и способны стать причиной образования нежелательных продуктов реакции.
Катализатор может не содержать или содержать небольшие (предпочтительно, равномерные) количества примесей, таких как Al2O3, SiO2, MgO, CaO, Li2O, Na2O и TiO2, предпочтительно, Al2O3, SiO2, MgO или СаО. Общее количество примесей в катализаторе составляет менее 5 граммов/100 граммов железа, предпочтительно, менее 2 граммов/100 граммов железа, более предпочтительно, менее 1 грамма/100 граммов железа.
Было обнаружено, что за счет уменьшения количества примесей уменьшается количество используемого в качестве активатора источника щелочного и/или щелочноземельного металла (в особенности, K2O). В частности, при снижении уровня содержания примесей также происходит снижение уровня разведения активатора K2O в матрице катализатора, которое зависит от количества присутствующих примесей.
С учетом тенденции расходования служащего активатором источника щелочного металла и/или щелочноземельного металла в матрице из-за смешивания с примесями, в результате чего образуются преимущественно инертные соединения, такие как силикат калия, чтобы восполнить израсходованную часть, необходимо увеличивать количество активатора (в особенности, K2O), используемого на стадии получения катализатора. Предполагается, что этого не происходит в случае использования осажденного катализатора в отличие от обычного катализатора на основе плавленого железа. Так, количество источника служащего активатором щелочного металла и/или щелочноземельного металла (в особенности, K2О), которое необходимо для обеспечения требуемого эффекта активации, также может быть уменьшено пропорционально уровню содержания примесей.
Размер частиц катализатора составляет от 1 до 250 µм, предпочтительно, от 2 до 200 µм, более предпочтительно, от около 5 до 150 µм.
Катализатор может представлять собой катализатор, не имеющий носителя.
Перед восстановлением осажденный катализатор имеет площадь поверхности менее 100 м2/грамм катализатора. Предпочтительно, невосстановленный катализатор имеет площадь поверхности от 80 м2/грамм катализатора или менее, более предпочтительно, от 50 м2/грамм катализатора или даже от 10 до 50 м2/грамм катализатора.
Предусмотрено, что восстановление и тепловую обработку осуществляют одновременно. Вместе с тем, предпочтительно, тепловую обработку осуществляют перед восстановлением, то есть прошедшее тепловую обработку соединение железа затем подвергают восстановлению.
В одном из вариантов осуществления изобретения композицию, содержащую железо, осаждают методом обратного осаждения, в ходе которого в содержащий железо раствор добавляют щелочь. Предпочтительно, щелочь находится в виде раствора, предпочтительно, водного раствора.
В другом варианте осуществления изобретения композицию, содержащую железо, осаждают методом прямого осаждения, в ходе которого содержащий железо раствор добавляют в щелочь, предпочтительно, щелочной раствор.
Температуру осаждения и рН варьируют, при этом оба параметра влияют на площадь поверхности частиц готового катализатора.
Осаждение осуществляют при температуре от 0°С до 100°С, как правило, от 10°С до 60°С и даже от 20°С до 40°С. Осаждение может происходить при температуре окружающей среды.
Уровень рН готового раствора, содержащего выделившуюся фазу, составляет от 5,0 до 9,0, как правило, от 6,0 до 8,0 или даже от 6,5 до 7,5.
В другом варианте осуществления изобретения композицию, содержащую железо, осаждают при преимущественно постоянном уровне рН, при этом для поддержания преимущественно постоянного уровня рН, предпочтительно, в диапазоне от 6 до 9, как правило, около 7,5±0,2 смешивают содержащий железо раствор и щелочь.
Активатор катализатора в виде источника щелочного металла и/или щелочноземельного металла осаждают одновременно с соединением железа. В качестве альтернативы, активатор добавляют в осажденное соединение железа. Осажденное соединение железа пропитывают активатором катализатора.
Источник хрома осаждают одновременно с соединением железа. В качестве альтернативы, источник хрома добавляют в осажденное соединение железа. Осажденное соединение железа пропитывают источником хрома.
Тепловую обработку осуществляют при температуре от 140°С или выше, предпочтительно, от 140°С до 600°С, более предпочтительно, от 300°С до 450°С. Тепловую обработку осуществляют в течение более 15 минут, предпочтительно, более 1 часа. Тепловую обработку осуществляют в воздухе. В процессе тепловой обработки площадь поверхности, предпочтительно, сокращается по меньшей мере на 20%.
Перед осуществлением тепловой обработки катализатор подвергают сушке.
В одном из вариантов осуществления изобретения катализатор подвергают сушке распылением. Сушку распылением осуществляют при температуре на входе от 250 до 500°С, предпочтительно, от 300 до 400°С, более предпочтительно, около 350°С. Температура на выходе составляет от 80 до 180°С, предпочтительно, от 100 до 150°С, более предпочтительно, около 120°С.
В результате процесса сушки распылением получают сферические частицы катализатора в отличие от частиц плавленого катализатора, которые имеют несферическую и неправильную форму. В целом, предпочтительными являются сферические частицы.
Подвергнутые сушке распылением частицы имеют размер от 1 до 250 µм, предпочтительно, от 5 до 150 µм.
Процесс восстановления включает тепловую обработку при восстановительных условиях. Восстановительные условия обеспечивают за счет применения восстановительного газа, такого как H2 и/или СО. Температура тепловой обработки может превышать 200°С. В ходе процесса окись железа восстанавливают до железа, рафинированного от примесей.
Предпочтительно, по меньшей мере 70 мас.%, предпочтительно, по меньшей мере 80 мас.% и, более предпочтительно, по меньшей мере 90 мас.% железа восстанавливают, получая железо, рафинированное от примесей. Предпочтительно, преимущественно все железо восстанавливают до железа, рафинированного от примесей.
Высокотемпературный процесс Фишера-Тропша
Высокотемпературный процесс Фишера-Тропша представляет собой двухфазный процесс Фишера-Тропша, в котором реагенты и продукты реакции находятся в газовой фазе, а катализатор - в твердой фазе.
Предпочтительно, процесс осуществляют в реакторе с псевдоожиженным слоем. В стандартном варианте осуществления изобретения высокотемпературный процесс Фишера-Тропша осуществляют в реакторе с неподвижным псевдоожиженным слоем.
Процесс осуществляют при давлении от 10 до 60 бар (1-6 МПа), как правило, от около 15 до 30 бар (1,5-3 МПа), в диапазоне температур от 250 до 400°С, как правило, от 270 до 370°С и даже от 330 до 350°С.
В состав загружаемого синтез-газа обычно входит Н2 и СО в молярном соотношении Н2:СО в пределах от около 5:1 до около 1:5, как правило, 4:1.
Как правило, загружаемый синтез-газ также содержит от около 1 до 25 об.% СО2, N2 и/или метана.
Продукты, получаемые в результате процесса, содержат смесь линейных, разветвленных и ароматических углеводородов. Углеводороды представляют собой преимущественно парафины и олефины. Продукты, получаемые в результате процесса, также включают оксигенаты углеводородов.
В соответствии с другим аспектом настоящего изобретения предложен применимый в высокотемпературном процессе Фишера-Тропша осажденный железный катализатор, который содержит источник хрома в количестве от 0,1 грамма хрома/100 граммов железа до 2 граммов хрома/100 граммов железа.
Предпочтительно, осажденный катализатор представляет собой восстановленный осажденный катализатор.
Примеры
Все катализаторы были получены методом обратного осаждения или непрерывного осаждения при комнатной температуре (около 25°С).
При осуществлении обратного осаждения в 400 мл 1 М водного раствора Fe(NO3)3·9Н2О (161,6 грамма) каплями добавили до 100 мл раствора NH4OH с объемной концентрацией 25%, одновременно энергично перемешивая, до достижения рН, равного 7. После этого в осажденную смесь добавили 0,075 грамма Na2CO3, 0,48 грамма Cu(NO3)2·3H2O одновременно с Cr(NO3)3·9H2O в количестве, необходимом для получения 0,3 грамма, 0,5 грамма и 1 грамма хрома/100 граммов железа. Эти количества составили 0,67 грамма, 0,89 грамма и 1,9 грамма Cr(NO3)3·9H2O, соответственно. В четвертый катализатор, который служил точкой отсчета, не добавляли соли хрома.
В процессе непрерывного осаждения одновременно загружали два раствора, один из которых содержал соли металлов, а другой - гидроокись аммония, представляющую собой осаждающее средство. При осуществлении непрерывного осаждения раствор NH4OH с объемной концентрацией 25% раствора загружали одновременно с 1 М раствора нитрата железа до достижения рН, равного 7-8.
Полученные суспензии затем в течение около 16 часов подвергали сушке в канальной печи при температуре 150°С, а затем в течение 4 часов прокаливали в воздухе при температуре 350°С. Наконец, катализатор измельчили и просеяли с целью получения частиц размером в диапазоне от 38 до 150 µм.
Методика испытания катализатора
5 граммов катализатора загрузили в безградиентный микрореактор Берти и в течение 16 часов при температуре 420°С и давлении 20 бар восстанавливали на месте до водорода. Затем при полном давлении 20 бар и температуре 330°С загрузили синтез-газ со скоростью потока 16 литров/грамм катализатора (рН2=11,5 бар, рСО=2,6 бар, рСО2=2,4 бар). Анализ углеводородов осуществляли методом газовой хроматографии с пламенно-ионизационным детектором, а анализ постоянного газа методом газовой хроматографии с детектором теплопроводности. Для определения общего выхода кислоты применяли химические методы.
Полученные результаты приведены ниже в таблице 1.
Figure 00000002
Для определения загрузки хрома (в граммах Cr/100 граммов Fe) применяли анализ АА или ICP. Методом БЭТ вычисляли площади поверхности кальцинированных (подвергнутых тепловой обработке) катализаторов до восстановления. Значения избирательности (% избирательность с отношении CH4, всего атомов С2, всего атомов С6, всего атомов C8, метилэтилкетон) выражены в виде масс. процентного содержания атомов углерода в СО, преобразованной в продукты реакции Фишера-Тропша. Следовательно, соотношения между олефином и парафином и между 2-ме-пентеном и 1 гексеном приведены в пересчете на массу. Кислотное число является показателем общего количества растворимого в воде соединения на основе органической кислоты, определенного жидкостными химическими методами.
Пояснение
Приведенные в таблице 1 кислотные числа ясно говорят о том, что в результате добавления Cr уменьшается образование органических кислот в углеводородах и их оксигенатах, являющихся продуктами процесса Фишера-Тропша. Значения % преобразования СО+СО2 показывают, что в результате добавления Cr повышается активность осажденного железного катализатора, способствующая преобразованию СО и Н2 в углеводороды и их оксигенаты. Добавление Cr также приводит к снижению концентрации образующегося метана и уменьшению образования свободного углерода на осажденном катализаторе. Значения С2=/C2- отражают повышение избирательности к образованию по меньшей мере некоторых олефиновых соединений в результате добавления Cr. Соотношения между 2-ме-пентеном и 1-гексеном показывают повышение концентрации разветвленных соединений, образующихся в результате добавления Cr. Показатели метилэтилкетона отражают увеличение образования оксигенатов в результате добавления Cr. Показатели общей избирательности в отношении С6 и C8 демонстрируют повышение избирательности при образовании более тяжелых углеводородов и их оксигенатов результате добавления Cr.

Claims (22)

1. Применение источника хрома в качестве активатора катализатора в сочетании с осажденным железным катализатором в высокотемпературном процессе Фишера-Тропша с целью преобразования реагентов в виде СО и Н2 в продукты реакции в виде углеводородов и возможно их оксигенатов путем введения в контакт СО и Н2 с источником хрома в сочетании с осажденным железным катализатором в ходе двухфазной высокотемпературной реакции Фишера-Тропша, которую осуществляют в реакторе с псевдоожиженным слоем, при этом реагенты и продукты реакции находятся в газообразной фазе, а катализатор - в твердой фазе, при этом концентрация источника хрома в осажденном железном катализаторе составляет от 0,3 г хрома/100 г железа до 1 г хрома/100 г железа и помимо источника хрома осажденный железный катализатор имеет, по меньшей мере, один дополнительный активатор катализатора.
2. Применение по п.1 для достижения, по меньшей мере, одного результата, выбранного из группы, включающей:
снижение концентрации органической кислоты в углеводородах и их оксигенатах, образующихся в результате процесса Фишера-Тропша,
повышение активности осажденного железного катализатора с целью преобразования СО и Н2 в углеводороды и возможно в их оксигенаты,
снижение концентрации метана, образующегося в результате процесса Фишера-Тропша,
уменьшение образования свободного углерода на осажденном железном катализаторе,
повышение концентрации разветвленных углеводородов и возможно их оксигенатов, образующихся в результате процесса Фишера-Тропша,
повышение концентрации оксигенатов углеводородов, образующихся в результате процесса Фишера-Тропша, и
повышение концентрации С4+ углеводородов и их оксигенатов, образующихся в результате процесса Фишера-Тропша.
3. Применение по п.2 для достижения, по меньшей мере, одного результата, выбранного из группы, включающей:
снижение концентрации органической кислоты в углеводородах и их оксигенатах, образующихся в результате процесса Фишера-Тропша,
повышение активности осажденного железного катализатора с целью преобразования СО и Н2 в углеводороды и возможно в их оксигенаты, и
снижение концентрации метана, образующегося в результате процесса Фишера-Тропша.
4. Применение источника хрома для получения осажденного железного катализатора, который используют в двухфазном высокотемпературном процессе Фишера-Тропша для преобразования реагентов в виде СО и Н2 в продукты реакции в виде углеводородов и возможно их оксигенатов, при этом реакцию Фишера-Тропша осуществляют в реакторе с псевдоожиженным слоем, реагенты и продукты реакции находятся в газообразной фазе, а катализатор - в твердой фазе, при этом концентрация источника хрома в осажденном железном катализаторе составляет от 0,3 г хрома/100 г железа до 1 г хрома/100 г железа и помимо источника хрома осажденный железный катализатор имеет, по меньшей мере, один дополнительный активатор катализатора.
5. Применение по п.1, в котором источник хрома вводят в осажденный железный катализатор.
6. Применение по п.5, в котором источник хрома, который вводят в осажденный катализатор, представляет собой окись хрома.
7. Применение по п.6, в котором окись хрома представляет собой Cr2O3.
8. Применение по п.1, в котором осажденный железный катализатор представляет собой железный катализатор, полученный способом, заключающимся в том, что:
из раствора, содержащего железо, осаждают соединение железа в виде железа и/или композиции, содержащей железо,
до, во время или после осаждения добавляют, по меньшей мере, один активатор катализатора, и
подвергают осажденное соединение железа тепловой обработке с целью получения катализатора с уменьшенной площадью поверхности.
9. Применение по п.1, в котором осажденный железный катализатор представляет собой восстановленный осажденный железный катализатор, полученный способом, заключающимся в том, что:
из раствора, содержащего железо, осаждают соединение железа в виде железа и/или композиции, содержащей железо,
до, во время или после осаждения добавляют, по меньшей мере, один активатор катализатора,
подвергают осажденное соединение железа тепловой обработке с целью получения катализатора с уменьшенной площадью поверхности, и
подвергают соединение железа воздействию восстановительных условий с целью восстановления соединения железа до железа, рафинированного от примесей.
10. Применение по п.9, в котором площадь поверхности восстановленного осажденного железного катализатора составляет менее 60 м2 на грамм катализатора.
11. Применение по п.1, в котором осажденный железный катализатор содержит осажденное соединение железа в виде железа и/или композиции, содержащей железо, и помимо источника хрома, по меньшей мере, один дополнительный активатор катализатора.
12. Применение по п.4, в котором осажденный железный катализатор содержит осажденное соединение железа в виде железа и/или композиции, содержащей железо, и помимо источника хрома, по меньшей мере, один дополнительный активатор катализатора.
13. Применение по п.11, в котором дополнительный активатор катализатора содержит источник щелочного металла и/или щелочноземельного металла.
14. Применение по п.12, в котором дополнительный активатор катализатора содержит источник щелочного металла и/или щелочноземельного металла.
15. Применение по п.13, в котором дополнительный активатор катализатора содержит окись щелочного металла или окись щелочноземельного металла.
16. Применение по п.14, в котором дополнительный активатор катализатора содержит окись щелочного металла или окись щелочноземельного металла.
17. Применение по п.15, в котором окись щелочного металла выбирают из группы, включающей Na2O, К2О и Cs2O.
18. Применение по п.16, в котором окись щелочного металла выбирают из группы, включающей Na2O, К2О и Cs2O.
19. Применение по п.1, в котором реактор с псевдоожиженным слоем представляет собой реактор с неподвижным псевдоожиженным слоем.
20. Применение по п.1, в котором процесс осуществляют при давлении от 10 до 60 бар (1-6 МПа).
21. Применение по п.1, в котором процесс осуществляют в диапазоне температур от 250 до 400°С.
22. Двухфазный высокотемпературный процесс Фишера-Тропша, в котором реагенты в виде СО и H2 преобразуют в продукты реакции в виде углеводородов и возможно их оксигенатов путем введения в контакт СО и Н2 с осажденным железным катализатором в сочетании с источником хрома в условиях высокотемпературного процесса Фишера-Тропша, который осуществляют в реакторе с псевдоожиженным слоем, при этом реагенты и продукты реакции находятся в газообразной фазе, а катализатор - в твердой фазе, при этом концентрация источника хрома в осажденном железном катализаторе составляет от 0,3 г хрома/100 г железа до 1 г хрома/100 г железа и помимо источника хрома осажденный железный катализатор имеет, по меньшей мере, один дополнительный активатор катализатора.
RU2006117098/04A 2003-11-20 2004-11-18 Применение источника хрома в сочетании с осажденным катализатором в реакции фишера-тропша RU2392296C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA2003/9038 2003-11-20
ZA200309038 2003-11-20

Publications (2)

Publication Number Publication Date
RU2006117098A RU2006117098A (ru) 2007-12-10
RU2392296C2 true RU2392296C2 (ru) 2010-06-20

Family

ID=34620871

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006117098/04A RU2392296C2 (ru) 2003-11-20 2004-11-18 Применение источника хрома в сочетании с осажденным катализатором в реакции фишера-тропша

Country Status (8)

Country Link
US (1) US7598295B2 (ru)
CN (1) CN101278032A (ru)
AU (1) AU2004291739B2 (ru)
CA (1) CA2546011A1 (ru)
RU (1) RU2392296C2 (ru)
UA (1) UA93346C2 (ru)
WO (1) WO2005049765A1 (ru)
ZA (1) ZA200603283B (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086365B2 (en) * 2007-08-30 2018-10-02 Res Usa, Llc Strengthened iron catalyst for slurry reactors
WO2010101636A2 (en) * 2009-03-02 2010-09-10 Sud-Chemie Inc. Promoted zirconium oxide catalyst support
WO2014209664A1 (en) 2013-06-27 2014-12-31 Clariant Corporation Manganese oxide-stabilized zirconia catalyst support materials
JP2023176739A (ja) * 2022-05-31 2023-12-13 Ykk株式会社 炭化水素合成触媒及びその製造方法、並びに炭化水素の合成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB473932A (en) * 1935-11-30 1937-10-22 Ig Farbenindustrie Ag Improvements in the manufacture and production of valuable hydrocarbons and their derivatives containing oxygen from carbon monoxide and hydrogen
GB631457A (en) 1946-08-06 1949-11-03 Standard Oil Dev Co An improved process for the catalytic synthesis of hydrocarbons
US4139550A (en) * 1976-09-10 1979-02-13 Suntech, Inc. Aromatics from synthesis gas
US4290924A (en) * 1979-06-04 1981-09-22 Conoco, Inc. Catalyst composition useful for preparing 2,6-xylenol
US4436834A (en) * 1981-09-03 1984-03-13 Exxon Research And Engineering Co. Iron-thallium catalysts for use in CO hydrogenation and process of preparing the catalysts
US4686313A (en) * 1984-12-31 1987-08-11 Mobil Oil Corporation Low nitrogen iron-containing Fischer-Tropsch catalyst and conversion of synthesis gas therewith
US6756411B2 (en) * 1995-06-29 2004-06-29 Sasol Technology (Proprietary) Limited Process for producing oxygenated products
US20040106517A1 (en) * 2000-05-23 2004-06-03 Dlamini Thulani Humphrey Chemicals from synthesis gas
WO2003087265A1 (en) * 2002-04-16 2003-10-23 Sasol Technology (Proprietary) Limited Hydrocarbon synthesis process using an alkali promoted iron catalyst
EP1658354B1 (en) * 2003-08-22 2008-12-17 Sasol Technology (Proprietary) Limited Process for synthesising hydrocarbons

Also Published As

Publication number Publication date
US7598295B2 (en) 2009-10-06
ZA200603283B (en) 2007-10-31
US20070191498A1 (en) 2007-08-16
AU2004291739A1 (en) 2005-06-02
UA93346C2 (ru) 2011-02-10
CN101278032A (zh) 2008-10-01
RU2006117098A (ru) 2007-12-10
CA2546011A1 (en) 2005-06-02
AU2004291739B2 (en) 2010-02-11
WO2005049765A1 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
Yang et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons
US5254520A (en) Catalyst for the synthesis of methanol
CA2677762C (en) Catalysts with high cobalt surface area
US10005069B2 (en) Core-shell particles with catalytic activity
US9139490B2 (en) Process for the production of light olefins from synthesis gas
CA1153753A (en) Methanation catalyst and process for its preparation
US20090197981A1 (en) Fischer-tropsch catalyst
NL1017458C2 (nl) Verhoogde vloeistofgevoeligheid tijdens Fisher-Tropsch-synthese door het opnemen van alkenen.
WO2003043734A1 (en) Ferrihydrite and aluminium-containing fischer-tropsch catalysts
RU2392296C2 (ru) Применение источника хрома в сочетании с осажденным катализатором в реакции фишера-тропша
JPH08127544A (ja) 二酸化炭素と水素からのメタン製造法
US8329765B2 (en) Fischer tropsch process
US4605639A (en) Methods for making a supported iron-copper catalyst
Sarkari et al. Fischer Tropsch synthesis: the promoter effects, operating conditions, and reactor synthesis
JPS631297B2 (ru)
RU2442815C2 (ru) Способ синтеза углеводородов
Schmitz et al. Highly active methanol dissociation catalysts derived from supported molten salts
MXPA06007480A (es) Procedimiento pra la transformacion de un gas de sintesis en hidrocarburos en presencia de sic beta y efluente de ese procedimiento.
JP4660039B2 (ja) 二酸化炭素の共存下のフィッシャートロプシュ法による炭化水素類の製造方法
CN111068691B (zh) 合成气直接制低碳烯烃的催化剂和其应用
CN114643071B (zh) 合成气直接制低碳烯烃铁基催化剂及其制备方法和应用
JP2003003174A (ja) フィッシャートロプシュ法による炭化水素類の製造方法
RU2205171C1 (ru) Способ получения длинноцепочечных углеводородов из co и h2 в жидкой фазе
JPH08127545A (ja) 二酸化炭素からのメタン製造法
AU2005204343B2 (en) Methods of making catalysts with high cobalt surface area

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141119