RU2389833C2 - Сверхпрочные монокристаллы cvd-алмаза и их трехмерный рост - Google Patents

Сверхпрочные монокристаллы cvd-алмаза и их трехмерный рост Download PDF

Info

Publication number
RU2389833C2
RU2389833C2 RU2007113175/15A RU2007113175A RU2389833C2 RU 2389833 C2 RU2389833 C2 RU 2389833C2 RU 2007113175/15 A RU2007113175/15 A RU 2007113175/15A RU 2007113175 A RU2007113175 A RU 2007113175A RU 2389833 C2 RU2389833 C2 RU 2389833C2
Authority
RU
Russia
Prior art keywords
diamond
single crystal
growing
cvd
strength
Prior art date
Application number
RU2007113175/15A
Other languages
English (en)
Other versions
RU2007113175A (ru
Inventor
Расселл Дж. ХЕМЛИ (US)
Расселл Дж. ХЕМЛИ
Хо-кванг МАО (US)
Хо-Кванг Мао
Чжи-Шию ЯНЬ (US)
Чжи-Шию ЯНЬ
Original Assignee
Карнеги Инститьюшн Оф Вашингтон
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Карнеги Инститьюшн Оф Вашингтон filed Critical Карнеги Инститьюшн Оф Вашингтон
Publication of RU2007113175A publication Critical patent/RU2007113175A/ru
Application granted granted Critical
Publication of RU2389833C2 publication Critical patent/RU2389833C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/279Diamond only control of diamond crystallography
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к технологии получения сверхпрочного монокристалла алмаза, выращенного с помощью индуцированного микроволновой плазмой химического осаждения из газовой фазы. Способ включает размещение кристаллического зародыша алмаза в теплопоглощающем держателе, сделанном из вещества, обладающего высокой точкой плавления и высокой теплопроводностью, чтобы минимизировать температурные градиенты в направлении от края до края поверхности роста алмаза, управление температурой поверхности роста алмаза так, чтобы температура растущих кристаллов алмаза находилась в диапазоне примерно 1050-1200°С, выращивание монокристалла алмаза с помощью индуцированного микроволновой плазмой химического осаждения из газовой фазы на поверхности роста алмаза в камере осаждения, в которой атмосфера характеризуется соотношением азота к метану примерно 4% N2/CH4, и проведение отжига монокристалла алмаза таким образом, что отожженный монокристалл алмаза имеет прочность, по меньшей мере, примерно 30 МПа м1/2. 3 н. и 23 з.п. ф-лы, 4 ил., 1 табл.

Description

Настоящее изобретение испрашивает приоритет предварительной заявки на выдачу патента №60/608516, поданной 10 сентября 2004, которая тем самым включена в данное описание в виде ссылки в полном объеме.
Подтверждение государственного права
Настоящее изобретение осуществлено при поддержке правительства США по гранту c номером EAR-0135626 от Национального Научного Фонда и инвентарным номером DE-FC03-03NA00144 от Министерства Энергетики США. Правительство США имеет определенные права на данное изобретение.
Область техники, к которой относится изобретение
Настоящее изобретение относится к отожженному монокристаллу CVD-алмаза (химически осажденного из газовой фазы алмаза), имеющему чрезвычайно высокую прочность. Изобретение также относится к способу получения трехмерного монокристалла CVD-алмаза на подложке из монокристалла алмаза с использованием индуцированного микроволновой плазмой химического осаждения из газовой фазы (MPCVD) в камере осаждения.
Описание предшествующего уровня техники
Массовое производство синтетического алмаза долгое время было целью как научных исследований, так и промышленного производства. Алмаз, кроме своих качеств драгоценного камня, является самым твердым известным веществом, обладает самой высокой известной теплопроводностью и прозрачен в широком спектре электромагнитного излучения. Монокристаллический алмаз, в частности, обладает широким диапазоном важных свойств, включая низкий коэффициент теплового расширения, самую высокую известную теплопроводность, химическую инертность, износостойкость, малый коэффициент трения и оптическую прозрачность от ультрафиолетовой (УФ) области до дальней инфракрасной (ИК) области. Поэтому алмаз высоко ценится вследствие его широкого круга применений в ряде отраслей промышленности и научных исследований, наряду с его ценностью в качестве драгоценного камня.
В течение, по меньшей мере, последних двадцати лет, был доступен способ получения небольших количеств алмаза химическим осаждением из газовой фазы (CVD). Как сообщалось Б.В. Спицыным (B.V.Spitsyn) с соавт. в «Vapor Growth of Diamond on Diamond and Other Surfaces», Journal of Crystal Growth, vol.52, pp.219-226, способ включает в себя CVD (химическое осаждение из газовой фазы) алмаза на подложке с использованием комбинации метана или другого простого углеводородного газа и газа водорода при пониженных давлениях и температурах 800-1200°C. Использование в смеси водорода предотвращает образование графита, в то время как происходит образование центров кристаллизации и рост алмаза. В случае использования указанного способа сообщалось о скоростях роста до 1 мкм/ч.
В последующей работе, например работе Камо с соавт. (Kamo et al.), о которой сообщается в «Diamond Synthesis from Gas Phase in Microwave Plasma», Journal of Crystal Growth, vol.62, pp.642-644, показано применение индуцированного микроволновой плазмой химического осаждения из газовой фазы (MPCVD) для получения алмаза при давлениях 1-8 кПа в пределах температур 800-1000°C с микроволновой мощностью 300-700 Вт на частоте 2,45 ГГц. В указанном способе Камо с соавт. использовали концентрацию газа метана 1-3%. В случае использования способа MPCVD сообщалось о максимальных скоростях роста 3 мкм/ч. В описанных выше способах и в ряде других использованных способов скорости роста ограничены только несколькими микрометрами в час.
Недавно сообщалось о способах улучшения скоростей роста монокристаллов алмазов (SC-CVD), полученных химическим осаждением из газовой фазы, и эти указанные способы открыли новые возможности для применения алмаза в качестве драгоценных камней, в оптике и электронике.
Патент США №6858078 Хемли (Hemley) с соавт. относится к устройству и технологии получения алмазов. Раскрытое в патенте устройство и технология могут привести к получению алмазов, окраска которых изменяется от светло-коричневой до бесцветной.
Заявка на выдачу патента США №10/889171 относится к отжигу монокристаллов алмазов, полученных химическим осаждением из газовой фазы. Важные особенности изобретения включают в себя нагревание CVD-алмаза до установленной температуры, по меньшей мере, 1500°C при давлении, по меньшей мере, 4,0 ГПа, которые находятся за пределами области устойчивости алмазной модификации.
Заявка на выдачу патента США №10/889170 относится к алмазам с улучшенной твердостью. В заявке приведены данные о монокристалле алмаза с твердостью более чем 120 ГПа.
Заявка на выдачу патента США №10/889169 относится к алмазам с улучшенной прочностью. В заявке приведены данные о монокристалле алмаза с трещиностойкостью 11-20 МПа м1/2 и твердостью 50-90 ГПа.
В упомянутых выше сообщениях не сообщается о монокристалле алмаза, имеющем прочность более чем 20 МПа м1/2. И при этом в них не раскрывают способы получения монокристалла алмаза, растущего в трех направлениях на подложке из монокристалла алмаза.
Сущность изобретения
Таким образом, настоящее изобретение направлено на монокристалл алмаза и способ получения такого алмаза, который в значительной степени устраняет одну или несколько проблем, обусловленных ограничениями и недостатками предшествующего уровня техники.
Задачей настоящего изобретения является сверхпрочный алмаз и способ получения такого алмаза в установке для индуцированного микроволновой плазмой химического осаждения из газовой фазы. Другая задача настоящего изобретения состоит в способе получения монокристалла алмаза, растущего в трех направлениях, на подложке из монокристалла алмаза.
Дополнительные особенности и преимущества изобретения будут указаны в приведенном ниже описании и частично будут понятны из описания или могут быть изучены при практическом осуществлении изобретения. Указанные задачи и другие преимущества настоящего изобретения будут конкретизированы и достигнуты с помощью установки, в частности, указанной в описании и в формуле изобретения, а также прилагаемых чертежей.
Для достижения указанных и других преимуществ и в соответствии с задачей настоящего изобретения, которое осуществлено и подробно описано, вариант осуществления настоящего изобретения включает в себя монокристалл алмаза, выращенный с помощью индуцированного микроволновой плазмой химического осаждения из газовой фазы, который при этом обладает прочностью по меньшей мере примерно 30 МПа м1/2.
В другом варианте осуществления настоящего изобретения способ выращивания сверхпрочного монокристалла алмаза включает в себя
i) размещение кристаллического зародыша алмаза в теплопоглощающем держателе, сделанном из вещества, обладающего высокой точкой плавления и высокой теплопроводностью, чтобы минимизировать температурные градиенты в направлении от края до края поверхности роста алмаза;
ii) управление температурой поверхности роста алмаза так, чтобы температура растущих кристаллов алмаза находилась в диапазоне примерно 1050-1200°C; и
iii) выращивание монокристалла алмаза с помощью индуцированного микроволновой плазмой химического осаждения из газовой фазы на поверхность роста алмаза в камере осаждения, в которой атмосфера характеризуется соотношением азота к метану примерно 4% N2/CH4,
iv) проведение отжига монокристалла алмаза таким образом, что отожженный монокристалл алмаза имеет прочность, по меньшей мере, примерно 30 МПа м1/2.
Другой вариант осуществления настоящего изобретения относится к способу получения монокристалла CVD-алмаза, растущего в трех направлениях, на монокристаллической алмазной подложке, включающему в себя
i) выращивание монокристалла на первой (100) грани монокристаллической алмазной подложки;
ii) изменение положения монокристаллической алмазной подложки с выращенным на ней монокристаллом алмаза и
iii) выращивание монокристалла на второй (100) грани монокристаллической алмазной подложки.
Следует понимать, что как предшествующее общее описание, так и последующее подробное описание являются иллюстративными и пояснительными и предназначены для дальнейшего разъяснения заявленного изобретения.
Краткое описание чертежей
Сопровождающие чертежи, которые включены для обеспечения дальнейшего понимания изобретения и которые включены в данное описание и составляют его часть, иллюстрируют варианты осуществления изобретения и вместе с описанием служат для объяснения принципов изобретения.
На фиг.1 приведены фотографии CVD- и aCVD-алмазов, выращенных при различных условиях.
На фиг.2 показаны отпечатки индентора для различных CVD- и aCVD-алмазов.
На фиг.3 приведены спектры фотолюминесценции различных CVD-и aCVD-алмазов.
На фиг.4 показаны данные, относящиеся к инфракрасному поглощению (FTIR) различных CVD- и aCVD-алмазов.
Подробное описание предпочтительных вариантов
Теперь будет сделана ссылка на подробное описание предпочтительных вариантов осуществления настоящего изобретения, результаты которого проиллюстрированы на прилагаемых чертежах.
CVD-выращенный в индуцированной микроволновой плазме монокристалл алмаза, относящийся к данной заявке, был выращен с использованием устройства, описанного в заявке на выдачу патента США под номером 10/288499, поданной 6 ноября 2002, в настоящее время являющейся патентом США №6858078 под названием «Apparatus and Method for Diamond Production», которая включена в данное описание в виде ссылки.
В одном варианте осуществления изобретения получен монокристалл алмаза, выращенный с помощью индуцированного микроволновой плазмой химического осаждения из газовой фазы, который обладает прочностью, по меньшей мере, примерно 30 МПа м1/2. В другом варианте осуществления прочность монокристалла алмаза составляет, по меньшей мере, примерно 35 МПа м1/2. В другом варианте осуществления прочность монокристалла алмаза составляет, по меньшей мере, примерно 40 МПа м1/2.
Алмазы в этих вариантах осуществления изобретения подвергались отжигу, например, при температурах от примерно 2000°C до примерно 2700°C в течение примерно 10 минут, используя устройство типа белт. Отжиг приводил к резкому увеличению твердости алмазов. В другом варианте осуществления твердость составляет от примерно 100 до примерно 160 ГПа.
Твердость в упомянутых выше вариантах осуществления изобретения определялась согласно уравнению Hv=1,854×P/D2, где P - максимальный груз, используемый в инденторе для образования углубления в монокристалле алмаза, D означает протяженность самой длинной трещины, образовавшейся под воздействием индентора в монокристалле алмаза.
Прочность, или трещиностойкость, Kc монокристалла алмаза в упомянутых выше вариантах осуществления изобретения определялась согласно уравнению Kc=(0,0160±0,004) (E/HV)1/2 (Р/C3/2), где E означает модуль Юнга алмаза и C означает среднюю длину радиальных трещин в монокристалле алмаза.
Другой вариант осуществления включает способ выращивания сверхпрочного монокристалла алмаза, включающий в себя
i) размещение кристаллического зародыша алмаза в теплопоглощающем держателе, сделанном из вещества, обладающего высокой точкой плавления и высокой теплопроводностью, чтобы минимизировать температурные градиенты в направлении от края до края поверхности роста алмаза;
ii) управление температурой поверхности роста алмаза так, чтобы температура растущих кристаллов алмаза находилась в диапазоне примерно 1050-1200°C; и
iii) выращивание монокристалла алмаза с помощью индуцированного микроволновой плазмой химического осаждения из газовой фазы на поверхности роста алмаза в камере осаждения, в которой атмосфера характеризуется соотношением азота к метану примерно 4% N2/CH4,
iv) проведение отжига монокристалла алмаза таким образом, что отожженный монокристалл алмаза имеет прочность, по меньшей мере, примерно 30 МПа м1/2.
В другом варианте осуществления, упомянутый выше способ дополнительно включает в себя отжиг монокристалла алмаза при давлениях свыше от примерно 5 до примерно 7 ГПа и температурах от примерно 2000°С до примерно 2700°С так, что твердость составляет от примерно 100 до примерно 160 ГПа. В еще одном варианте осуществления монокристалл алмаза до отжига был по существу бесцветным.
Другой вариант осуществления настоящего изобретения относится к способу получения монокристалла CVD-алмаза, растущего в трех направлениях на монокристаллической алмазной подложке, включающему в себя
i) выращивание монокристалла на первой (100) грани монокристаллической алмазной подложки;
ii) изменение положения монокристаллической алмазной подложки с выращенным на ней монокристаллом алмаза и
iii) выращивание монокристалла на второй (100) грани монокристаллической алмазной подложки.
В другом варианте осуществления для получения монокристалла CVD-алмаза, растущего в трех направлениях,
температура осаждения составляет от примерно 1150°С до примерно 1250°С.
В другом варианте осуществления трехмерный полученный алмаз обладает размером, большим, чем примерно один кубический дюйм.
Индуцированное микроволновой плазмой химическое осаждение из газовой фазы (MPCVD) с использованием Ib-типа синтетических подложек из алмаза при давлениях газа примерно 150 Торр (~1/4 атм) и температурах примерно 1000-1400°С приводило к изменению окраски подложки из алмаза от желтой до зеленой. Изменение цвета достигнуто с помощью размещения Ib-алмаза на держателе подложки, имеющего крайне незначительную теплопроводность (например, hBN-порошка или Мо-проволоки для закрепления подложки). Изменение цвета оказалось подобно изменению цвета, отмеченному для природного алмаза при НРНТ-отжиге. См. I.М.Reinitz с соавт., Gems & Gemology (2000) 36, 128. С другой стороны, CVD-алмаз не подвергался очевидным изменениям цвета и превращался в графит при температурах более чем 1800°С при том же самом способе обработки. Поэтому представляло интерес проводить отжиг CVD-алмаза при более высокой температуре - свыше 2000°С - с помощью методов высоких давлений/высоких температур (НРНТ).
Условия CVD-выращивания
Монокристаллы алмазов синтезировали с помощью индуцированного микроволновой плазмой химического осаждения из газовой фазы (CVD) при 8-20% СН4/H2, 0,2-3% N2/CH4, 160-220 Торр при различных температурах. Алмазы, показанные на фиг.1, выращены при следующих температурах: (а) 1300°С; (b) 1250°С; (с) 1400°С; (d) 1200°C; (е) 1050°С. Алмаз (f) являлся подложкой из алмаза Ib-типа (4×4×1,5 мм3). Все подложки являлись Ib-типом синтетических желтых НРНТ-алмазов с гранями (100) на верхней поверхности и на боковых сторонах. Морфология и окраска CVD-алмазов непосредственно после выращивания в значительной степени зависит от температуры осаждения. Неправильные формы граней с коричневыми, более темными ступеньками из оплавленных поверхностей связаны с более высокой температурой (примерно 1300-1400°С) [фиг.1(a, b, c)]. Гладкие бесцветные CVD-алмазы, увеличившиеся вдоль трех направлений, получали при более низких температурах осаждения [примерно 1050-1200°С, фиг.1(с, d)]. При температурах свыше примерно 1500°С начинают формироваться черные слои. Ниже примерно 900°С происходит осаждение черного микрокристаллического вещества.
В наибольшей степени примерно двойное увеличение выявлено для верхней поверхности роста образца относительно подложки [фиг.1(d)], тогда как геометрическая форма образца на фиг.1(а) осталась подобной. Это сделанное наблюдение свидетельствует, что размер бесцветного CVD-алмаза с добавками азота может быть увеличен вдоль трех направлений (100) при температурах осаждения примерно 1200°С. Такое трехмерное увеличение структуры при примерно 1200°С является важным для продолжительного выращивания с целью получения CVD-алмаза ювелирного качества с намного большими боковыми размерами, чем у подложек. При таких условиях CVD-алмаз ювелирного качества может быть выращен отдельно и последовательно вдоль 6 (100) граней подложки. С помощью указанного способа является достижимым получение монокристалла алмаза (~300 каратов) в форме куба с размером один дюйм.
Примеры, основанные на отпечатках индентора после НРНТ-отжига
Другие аспекты изобретения могут быть поняты более отчетливо из следующих примеров.
Различные монокристаллы CVD-алмазов, с окраской от бесцветной до коричневой, были подвергнуты HPHT-отжигу (aCVD); все алмазы были бесцветными после обработки при температурах примерно 2000-2700°C и давлении примерно 5-7 ГПа в течение примерно 10 минут, используя устройство типа белт. Перед HPHT-отжигом эти указанные CVD-алмазы обнаружили высокую прочность, а после отжига твердость этих алмазов существенно увеличилась.
Отпечатки индентора на различных алмазах показаны на фиг.2. На фиг.2(a) показан отпечаток индентора на природном IIa-алмазе, который имеет твердость примерно 110 ГПа. На фиг.2(b) показан отпечаток индентора на отожженном IIa-алмазе с твердостью примерно 140 ГПа. На фиг.2(c) показан отпечаток индентора на неотожженном CVD-алмазе с твердостью примерно 60 ГПа. На фиг.2(d) показан отпечаток индентора на отожженном бесцветном сверхпрочном aCVD-алмазе, выращенном в условиях низкого содержания азота, который имеет твердость примерно 160 ГПа. На фиг.2(e) показан отпечаток индентора на сверхпрочном aCVD-алмазе, выращенном в условиях высокого содержания азота, который имеет твердость примерно 160 ГПа. На фиг.2(f) показан отпечаток индентора на бесцветном, сверхпрочном aCVD-алмазе, выращенном в условиях высокого содержания азота, с твердостью от примерно 100 до примерно 160 ГПа. Кругообразные отпечатки индентора, наблюдаемые после отжига в бесцветных алмазах, выращенных при низком соотношении азота/метана (примерно 0,4% N2/CH4) и примерно 1200°C (фиг.2(d)), подобны отпечаткам индентора в отожженных природных алмазах типа IIa (фиг.2(b)). Отожженные темно-коричневые алмазы, выращенные с более высоким содержанием азота (примерно 4% N2/CH4) и высоких температурах (>примерно 1300°C) (фиг.2(e)), обладают квадратными отпечатками, характеризующими растрескивание; после отжига более темный CVD-кристалл практически не может быть подвергнут индентированию, т.е. кристалл становится сверхпрочным. Заметный отпечаток индентора наблюдали после отжига бесцветного алмаза, выращенного с высоким содержанием азота (фиг.2(f)). Вычисление его прочности дает нижний предел примерно 30 MПa м1/2. Как используется в данном описании и если не определено иначе, то "сверхпрочные" алмазы означают алмазы с прочностью больше чем примерно 30 MПa м1/2.
Анализ
На фиг.3 показаны спектр фотолюминесценции (ФЛ) и рамановский спектр, которые были измерены с частотой возбуждения 488 нм. CVD-алмазы показали наличие пика при 575 нм, связанного с очевидным присутствием центров (N-V) в виде атома азота и вакансии в соседнем узле решетки; интенсивность этой полосы была выше для коричневых CVD-алмазов по сравнению с бесцветными. Непосредственно после выращивания коричневый CVD-алмаз, который был отожжен до бесцветного, обладал сильным центром агрегации азота (H3) (см. S.J.Charles et al., (2004) Physica Status Solidi (a): 1-13) при 503 нм и характеризовался уменьшением полосы, связанной с наличием центра N-V. Обращается внимание, что пик H3 наиболее сильный в неиндентируемом (сверхпрочном) алмазе. Отожженный непосредственно после выращивания бесцветный CVD-алмаз обладает центрами и H3 и N-V, но интенсивности этих полос уменьшены на два порядка после отжига, и у алмаза появилась полоса комбинационного рассеяния второго порядка. Центры N-V в отожженных CVD (aCVD) алмазах позволяют предполагать, что обогащенный вакансиями CVD-алмаз трансформируется в более плотные структуры после НРНТ-отжига.
На фиг.4 показано С-Н уширение инфракрасного поглощения в диапазоне 2800-3200 см-1. Широкую полосу при 2930 см-1, связанную с присутствием гидрогенизированного аморфного углерода (а-С:Н), наблюдали в коричневом CVD-алмазе. Интенсивность полосы коррелирует с коричневым цветом алмаза и его высокой прочностью. Как показано на фиг.4, пик а-С:Н после отжига трансформируется в различные хорошо разрешимые полосы валентных колебаний связей С-Н при 2830 см-1 (sp3-дефекты в (111)), 2875 (sp3-CH3-дефекты) и 2900 см-1 (sp3-дефекты в (100)), так же как и при 2972, 3032 и 3107 см-1 (sp2-дефекты) (см. K.M. McNamaara et al. J. Appl. Phys. (1994) 76, 2466-2472). Эти указанные поверхности (111) внутри aCVD-алмаза подразумевают относительно открытую структуру а-С:Н в непосредственно выращенном (100) CVD-алмазе, трансформирующуюся при отжиге в локально более плотную структуру. Например, происходит увеличение внутренних дефектов в плоскости (111) и атомов углерода с sp2-конфигурацией на границе. Такое изменение может внести вклад в отпечаток индентора в форме квадрата для (111) или (110) на фиг.2. Бесцветный CVD-алмаз имеет более низкие интенсивности полос, связанных с а-С:Н, обнаруживая при этом широкую и интенсивную полосу при 2800 см-1. Эта отмеченная особенность могла быть связана со случайным загрязнением атомами бора (см. Z.Teukam et al., Natural Materials (2003) 2: 482-486), иметь отношение к С-Н колебаниям (см. K.M. McNamaara et al. J. Appl. Phys. (1994) 76, 2466-2472) или к неизвестному центру (все еще остающемуся в стадии исследования). Ионный микрозондовый анализ алмаза показал, что максимальная концентрация N в CVD-алмазе примерно в 75 раз меньше, чем концентрация N в подложке из алмаза Ib-типа.
Авторы считают важным обратить внимание, что оптические методы показали отсутствие границ зерен в aCVD-алмазах. Исследованные aCVD кристаллы не имеют очевидных абсорбционных пиков при 1000-1500 см-1, связанных с присутствием атомов азота, даже если небольшое количество азота специально добавляют в газ для химического синтеза; таким образом, эти алмазы можно отнести к IIa-типу. Не желая быть связанными соответствием с теорией, авторы полагают, что механизм повышения твердости/прочности и изменения цвета в aCVD-алмазах отличается от предполагаемого механизма в отожженном природном или синтетическом HPHT-алмазе, в которых доминирует азот.
Проверка с использованием скрещенных поляризаторов показала, что этот CVD-алмаз имеет относительно высокое внутреннее напряжение по сравнению с другими алмазами. После HPHT-обработки напряжение может уменьшаться, но в алмазах Ia-, Ib-, IIa-типа такое напряжение после отжига может увеличиться. Не желая быть связанными соответствием с теорией, авторы полагают, что это рассмотренное явление подразумевает, что повышение твердости в отожженном IIa может произойти из-за дислокации, индуцированной напряжениями, хотя дальнейшее исследование этого вопроса представляется необходимым (см. K.Kanda (2003) Diamond Related Matter, 12, 1760-1765).
Дополнительная информация получена из измерений рентгеновской кривой качания, включая составление картограмм кривых качания. Полная ширина на высоте полумаксимума (FWHM) для бесцветного алмаза составляет ~20 арксек (дуговых секунд), для коричневого CVD ~80 арксек и aCVD ~150-300 арксек. Не желая быть связанными соответствием с теорией, авторы полагают, что уширенный профиль FWHM в aCVD-кристалле, вероятно, связан с присутствием a-C:H в CVD, трансформирующихся в более плотные области алмаза, для которых характерно значительное количество мозаичных областей рассеяния.
Figure 00000001
Установленный в данном исследовании механизм чрезвычайно высокой трещиностойкости может быть связан с небольшим количеством аморфного углерода или дислокациями, которые присутствуют в этих монокристаллах CVD-алмазов. Более плотные sp2- или sp3-гибридизированные нанокристаллы, содержащие чередующиеся примесные атомы азота и водорода на границе нанокристаллического зерна, могут возникнуть во время HPHT-отжига.
Сверхпрочные алмазы согласно изобретению и алмазы, полученные с помощью упомянутых выше способов, будут достаточно большими, прочными, свободными от дефектов и прозрачными для того, чтобы быть использованными в качестве, например, окон в лазере большой мощности или синхротронных применениях, как наковальни в установках высокого давления, как режущие инструменты, как волоки для проволоки, как компоненты для электроники (поглотители тепла, подложки для электронных устройств) или как драгоценные камни. Другие примеры использования или применения упомянутых выше сверхпрочных алмазов и алмазов, полученных с помощью упомянутых выше способов, включают в себя следующее:
a) износостойкое вещество, включая, но не ограничиваясь перечисленным, водные/газожидкостные струйные сопла, бритвы, лезвия скальпеля, микротон, индентор твердости, графические средства, штихели, инструменты, используемые при восстановлении литографских деталей, реактивные обтекатели, опоры, включая те, которые используют в станках с ультравысокой частотой вращения шпинделя, алмазно-биомолекулярных устройствах, микротомах и инденторах твердости;
b) оптические узлы - включая, но не ограничиваясь перечисленным, оптические окна, рефлекторы, рефракторы, линзы, решетки, эталоны, детекторы альфа-частиц и призмы;
c) электроника, включая, но не ограничиваясь перечисленным, микроканальные охлаждающие устройства, высокочистые SC-CVD-алмазы для полупроводниковых компонентов, допированные примесями SC-CVD-алмазы для полупроводниковых компонентов;
d) наковальни в установках высокого давления, включая, но не ограничиваясь перечисленным, торообразные наковальни "Khvostantsev" или "Paris-Edinburgh", которые могут использоваться с многочисленными оптическими, электрическими, магнитными и акустическими датчиками; наковальни Бриджмена (Bridgman), которые являются относительно большими, имеющими варьируемые высоты и включают в себя основные углы [15]; мультинаковальни, ячейки Дрикамера (Drickamer), устройство типа белт, устройство типа поршень-цилиндр; для осуществления предварительного сжатия образцов при проведении лазерных или магнитных исследований ударных волн; бесцветного защитного покрытия для водорода и других применений, устройства для предварительного сжатия образцов для исследований лазерных или магнитных ударов;
e) контейнеры, включая, но не ограничиваясь перечисленным, 6-гранные {100} с металлопокрытием алмазы, которые могут быть связаны друг с другом с образованием контейнера, CVD-алмазное покрытие может дополнительно использоваться для образования вакуумонепроницаемого контейнера;
f) лазерные источники, включая, но не ограничиваясь перечисленным, отожженный SC-CVD-алмаз для формирования стабильного H3-центра (агрегатов азота, N-V-центра, Si-центра или других допантов);
g) сверхпроводник и проводящий алмаз, включая, но не ограничиваясь перечисленным, HPHT-отжиг для SC-CVD-алмаза, выращенного с примесями, такими как H, Li, Na, N, Mg, или элементом с другим низким атомным весом с размером, приближающимся к размеру углерода;
h) подложка для выращивания другого CVD-алмаза, используя CVD-пластины в качестве подложки для CVD-выращивания, имеет преимущество перед природными подложками или HPT-подложками из-за большего размера и прочности (позволяющей избежать растрескивания во время роста).
Раскрытые в данном описании сверхпрочные алмазы особенно полезны для применений, включая, но не ограничиваясь перечисленным, как водные/газожидкостные струйные сопла, бритвы, лезвия скальпеля, микротон, индентор твердости, графические средства, штихели, инструменты, используемые при восстановлении литографских деталей, реактивные обтекатели, опоры, включая те, которые используют в станках с особо высокой частотой вращения шпинделя, алмазно-биомолекулярных устройствах, микротомах, инденторах и наковальнях в установках высокого давления.
В одном варианте осуществления настоящее изобретение направлено на наковальни в установках высокого давления, при этом наковальни содержат сверхпрочный монокристалл CVD-алмаза. Наковальни, содержащие сверхпрочный монокристалл CVD-алмаза, могут использоваться при более высоких давлениях, чем наковальни, сделанные из других веществ, таких как карбид вольфрама. Примеры конструирования наковален, которые могут содержать монокристаллы CVD-алмазов, включают в себя наковальни Бриджмена, включая, но не ограничиваясь перечисленным, наковальни Бриджмена, которые являются относительно большими, имеющими варьируемые высоты и включают в себя основные углы, и торообразные наковальни "Paris-Edinburgh", включая, но не ограничиваясь перечисленным, наковальни, рассмотренные в Khvostantsev, L.G., Vereshchagin, L.F., and Novikov, A.P., Device of toroid type for high pressure generation, High Temperatures - High Pressures, 1977, vol.9, pp 637-638.
В одном варианте осуществления настоящее изобретение направлено на сверхпрочный монокристалл CVD-алмаза, на который лазером нанесены идентификационные метки (например, название, дата, номер), и способ получения такого алмаза. Идентификационные метки могут быть нанесены лазером на алмазную подложку перед инициацией CVD-способа получения монокристалла алмаза. Метки переносят на монокристалл алмаза в результате этого способа.
Поскольку настоящее изобретение может быть осуществлено в нескольких формах, не отходя от сути или его существенных признаков, следует также понимать, что описанные выше варианты не ограничены никакими подробностями приведенного выше описания, если не оговорено особо, и их следует толковать широко в пределах его сущности и объема, которые определены в прилагаемой формуле изобретения, и поэтому подразумевается, что все изменения и модификации, которые входят в пределы объема формулы изобретения или эквивалентны такому объему, включены в прилагаемую формулу изобретения.

Claims (26)

1. Монокристалл алмаза, выращенный с помощью индуцированного микроволновой плазмой химического осаждения из газовой фазы, который имеет прочность, по меньшей мере, примерно 30 МПа м1/2.
2. Монокристалл алмаза по п.1, прочность которого равна, по меньшей мере, примерно 35 МПа м1/2.
3. Монокристалл алмаза по п.2, прочность которого равна, по меньшей мере, примерно 40 МПа м1/2.
4. Монокристалл алмаза по п.1, твердость которого изменяется от примерно 100 до примерно 160 ГПа.
5. Монокристалл алмаза по п.1, отличающийся тем, что монокристалл алмаза использован в качестве сопла.
6. Монокристалл алмаза по п.5, отличающийся тем, что сопло используется в устройстве для водоструйной резки под высоким давлением.
7. Монокристалл алмаза по п.1, отличающийся тем, что монокристалл алмаза использован в режущем лезвии для хирургического инструмента, включающем режущую кромку, в котором режущая кромка выполнена из монокристалла алмаза.
8. Монокристалл алмаза по п.1, отличающийся тем, что монокристалл алмаза использован в бритве, включающей режущую кромку, в которой режущая кромка выполнена из монокристалла алмаза.
9. Монокристалл алмаза по п.1, отличающийся тем, что монокристалл алмаза использован в волоке для проволоки.
10. Монокристалл алмаза по п.1, отличающийся тем, что монокристалл алмаза использован в качестве опоры.
11. Монокристалл алмаза по п.1, отличающийся тем, что монокристалл алмаза использован в качестве алмазной наковальни.
12. Монокристалл алмаза по п.1, отличающийся тем, что монокристалл алмаза использован в качестве драгоценного камня.
13. Монокристалл алмаза по п.1, отличающийся тем, что монокристалл алмаза использован в оптическом узле.
14. Способ выращивания сверхпрочного монокристалла алмаза, включающий в себя
i) размещение кристаллического зародыша алмаза в теплопоглощающем держателе, сделанном из вещества, обладающего высокой точкой плавления и высокой теплопроводностью, чтобы минимизировать температурные градиенты в направлении от края до края поверхности роста алмаза;
ii) управление температурой поверхности роста алмаза так, чтобы температура растущих кристаллов алмаза находилась в диапазоне примерно 1050-1200°С; и
iii) выращивание монокристалла алмаза с помощью индуцированного микроволновой плазмой химического осаждения из газовой фазы на поверхности роста алмаза в камере осаждения, в которой атмосфера характеризуется соотношением азота к метану примерно 4% N2/CH4,
iv) проведение отжига монокристалла алмаза таким образом, что отожженный монокристалл алмаза имеет прочность, по меньшей мере, примерно 30 МПа м1/2.
15. Способ по п.14, в котором стадия iv) включает отжиг монокристалла алмаза при давлениях свыше от примерно 5 до примерно 7 ГПа и температурах от примерно 2000°С до примерно 2700°С так, что твердость составляет от примерно 100 до примерно 160 ГПа.
16. Способ по п.14, в котором монокристалл алмаза до отжига, по существу, бесцветен.
17. Способ получения монокристалла CVD-алмаза, растущего в трех направлениях, на монокристаллической алмазной подложке, включающий в себя
i) выращивание монокристалла на первой (100) грани монокристаллической алмазной подложки;
ii) изменение положения монокристаллической алмазной подложки с выросшим на ней монокристаллом алмаза и
iii) выращивание монокристалла на второй (100) грани монокристаллической алмазной подложки,
при этом температура осаждения составляет от примерно 1150°С до примерно 1250°С.
18. Способ по п.17, в котором полученный трехмерный алмаз обладает размером большим, чем примерно один кубический дюйм.
19. Способ по п.17, в котором полученный монокристалл алмаза используют в качестве сопла.
20. Способ по п.17, в котором полученный монокристалл алмаза используют в качестве режущей кромки режущего лезвия для хирургического инструмента.
21. Способ по п.17, в котором полученный монокристалл алмаза используют в качестве режущей кромки бритвы.
22. Способ по п.17, в котором полученный монокристалл алмаза используют в волоке для проволоки.
23. Способ по п.17, в котором полученный монокристалл алмаза используют в качестве опоры.
24. Способ по п.17, в котором полученный монокристалл алмаза используют в качестве алмазной наковальни.
25. Способ по п.17, в котором полученный монокристалл алмаза используют в качестве драгоценного камня.
26. Способ по п.17, в котором полученный монокристалл алмаза используют в оптическом узле.
RU2007113175/15A 2004-09-10 2005-09-09 Сверхпрочные монокристаллы cvd-алмаза и их трехмерный рост RU2389833C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60851604P 2004-09-10 2004-09-10
US60/608,516 2004-09-10

Publications (2)

Publication Number Publication Date
RU2007113175A RU2007113175A (ru) 2008-10-27
RU2389833C2 true RU2389833C2 (ru) 2010-05-20

Family

ID=37727751

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007113175/15A RU2389833C2 (ru) 2004-09-10 2005-09-09 Сверхпрочные монокристаллы cvd-алмаза и их трехмерный рост

Country Status (13)

Country Link
US (1) US7594968B2 (ru)
EP (1) EP1807346A4 (ru)
JP (1) JP4972554B2 (ru)
KR (1) KR101277232B1 (ru)
CN (1) CN101023028A (ru)
AU (1) AU2005335208B2 (ru)
BR (1) BRPI0515347A (ru)
CA (1) CA2589299C (ru)
IL (1) IL181789A0 (ru)
RU (1) RU2389833C2 (ru)
TW (1) TWI411710B (ru)
WO (1) WO2007018555A2 (ru)
ZA (1) ZA200702010B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638220C2 (ru) * 2012-11-21 2017-12-12 Нэшнл Ойлвэл Дхт, Л.П. Режущие элементы бурового долота с закрепленными резцами, содержащие твердые режущие пластины, выполненные из синтетических алмазов, сформированных химическим осаждением из паровой фазы

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711677B2 (ja) * 2002-09-06 2011-06-29 エレメント シックス リミテッド 着色されたダイヤモンド
TWI410538B (zh) * 2005-11-15 2013-10-01 Carnegie Inst Of Washington 建基於以快速生長速率製造之單晶cvd鑽石的新穎鑽石的用途/應用
DE102008047591B4 (de) 2007-09-18 2019-08-14 Samsung Electronics Co., Ltd. Verfahren zum Herstellen einer Halbleitervorrichtung mit reduzierter Dicke
EP2215291A1 (en) * 2007-10-02 2010-08-11 Carnegie Institution Of Washington Low pressure method annealing diamonds
TWI457475B (zh) * 2008-05-05 2014-10-21 Carnegie Inst Of Washington 超韌性單晶型摻硼鑽石
US20100055022A1 (en) * 2008-05-09 2010-03-04 Apollo Diamond Gemstone Corporation Diamond identifier
WO2010048607A2 (en) * 2008-10-24 2010-04-29 Carnegie Institution Of Washington Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing
AU2009324921A1 (en) * 2008-11-25 2010-06-17 Carnegie Institution Of Washington Production of single crystal CVD diamond rapid growth rate
GB2476478A (en) * 2009-12-22 2011-06-29 Element Six Ltd Chemical vapour deposition diamond synthesis
US20110226016A1 (en) * 2010-03-16 2011-09-22 Terrence Dashon Howard Diamond earring with washer
US9023307B2 (en) 2010-05-17 2015-05-05 Carnegie Institution Of Washington Production of large, high purity single crystal CVD diamond
GB2481285B (en) * 2010-06-03 2013-07-17 Element Six Ltd A method of increasing the toughness and/or wear resistance of diamond tool pieces and diamond tool pieces fabricated by said method
EP2868780B1 (en) * 2012-06-29 2020-11-04 Sumitomo Electric Industries, Ltd. Diamond single crystal and production method thereof, and single crystal diamond tool
JP6118954B1 (ja) * 2015-07-22 2017-04-19 住友電気工業株式会社 単結晶ダイヤモンド材、単結晶ダイヤモンドチップおよび穿孔工具
CN104988578B (zh) * 2015-07-24 2017-08-25 哈尔滨工业大学 一种利用等离子体挡板优化单晶金刚石同质外延生长的方法
US9966161B2 (en) * 2015-09-21 2018-05-08 Uchicago Argonne, Llc Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics
EP3373052A1 (de) * 2017-03-06 2018-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Halbzeug, verfahren zu dessen herstellung und damit hergestellte komponente
CN110387533B (zh) * 2019-07-24 2021-04-06 珠海中纳金刚石有限公司 一种热丝cvd纳米金刚石涂层的自动控制方法
US11753740B2 (en) * 2019-11-18 2023-09-12 Shin-Etsu Chemical Co., Ltd. Diamond substrate and method for manufacturing the same
CN113005517B (zh) * 2021-02-25 2022-07-12 廊坊西波尔钻石技术有限公司 一种减小单晶金刚石内应力的处理方法
CN113026001B8 (zh) * 2021-05-26 2021-09-14 上海征世科技股份有限公司 一种介稳态控制制备金刚石的方法
KR20230108459A (ko) 2022-01-11 2023-07-18 서울시립대학교 산학협력단 인공지능 기반의 다이아몬드 제조 방법 및 다이아몬드 제조 장비
CN114941173B (zh) * 2022-05-26 2023-10-10 曲阜师范大学 一种高相干金刚石氮空穴及金刚石压砧的制备与应用

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661758A (en) * 1970-06-26 1972-05-09 Hewlett Packard Co Rf sputtering system with the anode enclosing the target
JPH0798521B2 (ja) * 1986-08-20 1995-10-25 澁谷工業株式会社 回転式重量充填装置
US4985226A (en) 1988-06-20 1991-01-15 Sumitomo Electric Industries, Ltd. Hole-burning material and production thereof
US5099788A (en) 1989-07-05 1992-03-31 Nippon Soken, Inc. Method and apparatus for forming a diamond film
US5209182A (en) 1989-12-01 1993-05-11 Kawasaki Steel Corporation Chemical vapor deposition apparatus for forming thin film
US5704976A (en) 1990-07-06 1998-01-06 The United States Of America As Represented By The Secretary Of The Navy High temperature, high rate, epitaxial synthesis of diamond in a laminar plasma
EP0525207B1 (en) * 1991-02-15 1996-11-06 Sumitomo Electric Industries, Ltd. Process for synthesizing diamond
US5397428A (en) 1991-12-20 1995-03-14 The University Of North Carolina At Chapel Hill Nucleation enhancement for chemical vapor deposition of diamond
JPH07331441A (ja) * 1994-03-11 1995-12-19 General Electric Co <Ge> 強化された化学蒸着ダイヤモンド
US5451430A (en) * 1994-05-05 1995-09-19 General Electric Company Method for enhancing the toughness of CVD diamond
JPH08337498A (ja) * 1995-04-13 1996-12-24 Sumitomo Electric Ind Ltd ダイヤモンド粒子、ダイヤモンド合成用粒子及び圧密体並びにそれらの製造方法
DE69604733T2 (de) 1995-07-05 2000-05-31 Ngk Spark Plug Co Diamantbeschichteter Gegenstand und Verfahren zu seiner Herstellung
US5653800A (en) 1995-08-03 1997-08-05 Eneco, Inc. Method for producing N-type semiconducting diamond
JPH0948694A (ja) 1995-08-04 1997-02-18 Kobe Steel Ltd 単結晶ダイヤモンド膜の形成方法
US6858080B2 (en) * 1998-05-15 2005-02-22 Apollo Diamond, Inc. Tunable CVD diamond structures
US6582513B1 (en) * 1998-05-15 2003-06-24 Apollo Diamond, Inc. System and method for producing synthetic diamond
US6221221B1 (en) * 1998-11-16 2001-04-24 Applied Materials, Inc. Apparatus for providing RF return current path control in a semiconductor wafer processing system
WO2001031082A1 (en) 1999-10-28 2001-05-03 P1 Diamond, Inc. Improved diamond thermal management components
DE60135653D1 (de) 2000-06-15 2008-10-16 Element Six Pty Ltd Einkristalldiamant hergestellt durch cvd
JP3378575B2 (ja) * 2000-10-27 2003-02-17 住友電気工業株式会社 フライスカッタ
UA81614C2 (ru) * 2001-11-07 2008-01-25 Карнеги Инститьюшн Ов Вашингтон Устройство для изготовления алмазов, узел удержания образца (варианты) и способ изготовления алмазов (варианты)
US6811610B2 (en) 2002-06-03 2004-11-02 Diamond Innovations, Inc. Method of making enhanced CVD diamond
US7157067B2 (en) * 2003-07-14 2007-01-02 Carnegie Institution Of Washington Tough diamonds and method of making thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГАРГИН В.Г. Влияние условий нагрева на прочность синтетических алмазов. Сверхтвердые материалы, 1981, №4, с.9-11. КОСТОВ И. Кристаллография. - М.: МИР, 1965, с.108. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638220C2 (ru) * 2012-11-21 2017-12-12 Нэшнл Ойлвэл Дхт, Л.П. Режущие элементы бурового долота с закрепленными резцами, содержащие твердые режущие пластины, выполненные из синтетических алмазов, сформированных химическим осаждением из паровой фазы
US9976231B2 (en) 2012-11-21 2018-05-22 National Oilwell DHT, L.P. Fixed cutter drill bit cutter elements including hard cutting tables made from CVD synthetic diamonds

Also Published As

Publication number Publication date
AU2005335208A1 (en) 2007-02-15
WO2007018555A2 (en) 2007-02-15
TWI411710B (zh) 2013-10-11
JP2008512342A (ja) 2008-04-24
AU2005335208B2 (en) 2010-06-24
WO2007018555B1 (en) 2007-05-24
ZA200702010B (en) 2010-06-30
CA2589299A1 (en) 2007-02-15
EP1807346A2 (en) 2007-07-18
CN101023028A (zh) 2007-08-22
KR101277232B1 (ko) 2013-06-26
BRPI0515347A (pt) 2008-07-22
WO2007018555A3 (en) 2007-04-05
KR20070094725A (ko) 2007-09-21
WO2007018555A8 (en) 2007-08-23
CA2589299C (en) 2014-04-01
JP4972554B2 (ja) 2012-07-11
RU2007113175A (ru) 2008-10-27
TW200628642A (en) 2006-08-16
EP1807346A4 (en) 2010-04-28
US7594968B2 (en) 2009-09-29
US20060065187A1 (en) 2006-03-30
IL181789A0 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
RU2389833C2 (ru) Сверхпрочные монокристаллы cvd-алмаза и их трехмерный рост
JP5296533B2 (ja) 高成長速度での無色単結晶cvdダイヤモンド
AU2006315377B2 (en) New Diamond uses/applications based on single-crystal CVD Diamond Produced at Rapid Growth Rate
KR101052395B1 (ko) 유색 다이아몬드
Ashfold et al. Thin film diamond by chemical vapour deposition methods
CA2607202C (en) High colour diamond layer
RU2323281C2 (ru) Сверхтвердые алмазы и способ их получения
US20230272551A1 (en) Method of manufacture of single crystal synthetic diamond material
GB2430194A (en) Converting the colour of a single crystal CVD diamond
Ruoff et al. Multimegabar pressures using synthetic diamond anvils

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140910