CN114941173B - 一种高相干金刚石氮空穴及金刚石压砧的制备与应用 - Google Patents

一种高相干金刚石氮空穴及金刚石压砧的制备与应用 Download PDF

Info

Publication number
CN114941173B
CN114941173B CN202210580229.1A CN202210580229A CN114941173B CN 114941173 B CN114941173 B CN 114941173B CN 202210580229 A CN202210580229 A CN 202210580229A CN 114941173 B CN114941173 B CN 114941173B
Authority
CN
China
Prior art keywords
diamond
anvil
nitrogen
annealing
taking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210580229.1A
Other languages
English (en)
Other versions
CN114941173A (zh
Inventor
刘晓兵
张晓冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qufu Normal University
Original Assignee
Qufu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qufu Normal University filed Critical Qufu Normal University
Priority to CN202210580229.1A priority Critical patent/CN114941173B/zh
Publication of CN114941173A publication Critical patent/CN114941173A/zh
Priority to US18/321,823 priority patent/US11905620B2/en
Application granted granted Critical
Publication of CN114941173B publication Critical patent/CN114941173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/12Single-crystal growth directly from the solid state by pressure treatment during the growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/30Sample handling arrangements, e.g. sample cells, spinning mechanisms
    • G01R33/305Sample handling arrangements, e.g. sample cells, spinning mechanisms specially adapted for high-pressure applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/26Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux using optical pumping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本申请属于量子科技和精密测试材料技术领域,具体涉及一种高相干金刚石氮空穴及金刚石压砧的制备与应用。以石墨作为碳源,以HPHT金刚石作为晶种,以Al/Ti作为除氮剂,高温高压下合成金刚石单晶,对合成的金刚石进行高温高压条件的退火,退火后,在<100>晶向生长区域中从无到有生成大量的氮空穴,同时<111>晶向生长区原生的氮空穴会消失,最终导致氮空穴存在于金刚石的<100>、<311>晶向生长区域;同时<100>、<311>晶向生长区域不含有铁磁性元素相关的缺陷;在无损的条件下制备高密度,高相干性质的氮空穴;同时制备氮空穴深度可控的金刚石压砧,实现氮空穴在60GPa压力以上的精密探测。

Description

一种高相干金刚石氮空穴及金刚石压砧的制备与应用
技术领域
本申请属于量子科技和精密测试材料技术领域,具体涉及一种高相干金刚石氮空穴及金刚石压砧的制备与应用。
背景技术
氮空穴(NV-)是金刚石内部的一种原子级别缺陷,由一个替位的氮原子和一个邻位的空穴组成,其对于外场(电场,磁场,温度场)十分敏感。极低温、高压强、强磁场等极端条件是发现和调控新奇物态的重要途径。为了能在极端条件下实现灵敏的物性测量,需要发展先进的传感探测方案。基于金刚石氮空位中心的自旋量子传感可实现磁学、电学、力学、热学等物理参数的灵敏测量,而且拥有微纳尺度的空间分辨率和极其宽泛的工作区间,有望成为极端条件下灵敏物性测量的重要工具。
为了实现氮空穴在极高压条件下的外场测试,目前常用的方法是在金刚石对顶压砧的砧面进行离子植入或者电子辐照来制备氮空穴。氮空穴的灵敏度主要取决于其密度以及相干时间。通常密度越高,相干时间越长,灵敏度就越高。离子植入与电子辐照均采用高能的离子束或电子束轰击金刚石的表面,使得碳原子被强制性替代。植入能量越高,氮原子与空穴的植入浓度越高,深度越深。但是植入能量越高对金刚石晶格的损伤越大,甚至石墨化。为了避免砧面的石墨化,植入能量存在上限。因此该种方法所制备的氮空穴密度较低,深度较浅。金刚石对顶砧在加压过程,压力集中于压砧的表面,当压力超过大约60 GPa时,探测激光不能再激发浅层氮空穴,因此氮空穴无法再进行传感。另一方面,离子植入和辐照对金刚石的晶格结构带来严重的损伤。严重降低金刚石压砧的机械性能,降低金刚石对顶压砧的断裂压力。
发明内容
针对上述高压精密探测无法在60GPa以上使用的问题,本发明提供了一种一种无损,低成本,制备高质量氮空穴的方法;以石墨作为碳源,以HPHT金刚石作为晶种,以Al/Ti作为除氮剂,高温高压下合成金刚石单晶,通过晶种以及生长温度的选择可以调控金刚石单晶的<100>及<111>生长区间的体积比;对合成的金刚石进行高温高压条件的退火,退火后,在<100>、<311>晶向生长区域中从无到有生成大量的氮空穴,同时<111>晶向生长区原生的氮空穴会消失,最终导致氮空穴存在于金刚石的<100>、<311>晶向生长区域;同时<100>、<311>晶向生长区域不含有铁磁性元素相关的缺陷;在无损的条件下制备高密度,高相干性质的氮空穴;同时制备氮空穴深度可控的金刚石压砧,实现氮空穴在60GPa压力以上的精密探测。
一种高相干金刚石氮空穴,采用铁镍触媒体系,以石墨作为碳源,以HPHT金刚石作为晶种,以Al/Ti作为除氮剂,高温高压下合成氮含量在1~400 ppm的金刚石单晶,通过晶种以及生长温度的选择可以调控金刚石单晶的<100>及<111>生长区间的体积比;对合成的金刚石进行高温高压条件的退火,退火压力为4.5~6.5 GPa,退火温度为1400~1800℃;退火后,在<100>晶向生长区域中从无到有生成大量的氮空穴,同时<111>晶向生长区原生的氮空穴会消失,最终导致氮空穴存在于金刚石的<100>晶向生长区域;若得到的金刚石单晶有<311>晶向生长区出现,则氮空穴同时存在于金刚石的<311>晶向生长区域;同时<100>、<311>晶向生长区域不含有铁磁性元素相关的缺陷。
优选地,石墨为高纯石墨,纯度为99.9%以上;高温高压下合成氮含量在1~400 ppm的金刚石单晶的高压为5.0~6.5GPa,温度为1350~1850℃下,保温时间10~60h。
一种高相干金刚石压砧的制备方法,采用上述的高相干金刚石氮空穴,具体包括以下步骤:
(1)采用铁镍触媒体系,以高纯石墨作为碳源,以Al/Ti作为除氮剂,在5.0~6.5GPa,1350~1850℃下保温10~60h,合成氮含量在1~400 ppm的金刚石单晶;通过晶种以及生长温度的选择可以调控金刚石单晶的<100>及<111>生长区间的体积比;
(2)退火;退火压力在4.5~6.5 GPa范围内,退火温度:1400~1800℃,退火时间为1~20h;退火后,在<100>晶向上从无到有生成大量的氮空穴,同时<111>晶向生长区原生的氮空穴会消失,最终导致氮空穴存在于金刚石的<100>晶向生长区域;若得到的金刚石单晶有<311>晶向生长区出现,则氮空穴同时存在于金刚石的<311>晶向生长区域;同时<100>、<311>晶向生长区域不含有铁磁性元素相关的缺陷;
(3)金刚石压砧的切割,根据氮空穴深度的要求,将砧面置于<100>或者<311>晶向生长区域内部,将压砧的主体部分置于<111>晶向的生长区域。
进一步地,退火与金刚石压砧切割的顺序可以互换。
上述制备方法制备的高相干金刚石压砧,氮空穴的深度为压砧高度的0-100%。
上述制备方法制备的高相干金刚石压砧在高压量子传感器上的应用。
经过1400~1800℃退火后,在<100>以及<311>晶向生长区上从无到有生成大量的氮空穴,同时<111>晶向生长区原生的氮空穴会消失,最终导致氮空穴只存在于金刚石的<100>以及<311>晶向生长区域;<100>及<311>晶向生长区域不含有铁,镍等铁磁性元素相关的缺陷;经过退火后的金刚石,<100>晶向以及<311>晶向生长区域的氮空穴的荧光光谱的半峰宽与低氮的IIa型金刚石的半峰宽相当;通过对<100>或<111>晶种的选择以及生长温度的控制,所生长的金刚石应该包含<100>晶向生长区域;压砧的切割方式可以为任何可用的方式。
本申请的有益效果
① 金刚石压砧中氮空穴厚度可控,现有技术氮空穴的厚度通常在几十nm左右,并且氮空穴的厚度不可控制,本发明中氮空穴层的厚度,可以根据使用需求进行切割。
② 金刚石压砧的机械性能高。本发明属于无损制备氮空穴,金刚石砧面不会被损坏,因此保持了金刚石的本征机械性能。
③ 金刚石压砧中的氮空穴敏感度高。现有技术为了避免压砧表面损伤严重,通常采用较小的能量进行植入,导致所形成的氮空穴密度较低,且相干时间较短,最终氮空穴的敏感度很低。本发明所制备的氮空穴密度高且相干时间很长,因此氮空穴的敏感度明显高于现有技术。
④ 制备成本低,现有技术需要采用TEM以及FIB等先进的科研设备,本发明使用已成熟的金刚石生长设备即可,因此制备成本大大降低。
⑤ 氮空穴所存在的区域内,无镍相关缺陷。
附图说明
图1为实施例1退火前后各个晶向生长区域的荧光光谱图,a为<111>晶向生长区域在不同退火温度下的荧光光谱,b为<311>晶向生长区域在不同退火温度下的荧光光谱
图2为实施例1退火前后各个晶向生长区域的荧光mapping图,a为氮空穴退火前后在不同晶向上的分布情况;b为退火镍相关缺陷退火前后在不同晶向上的分布情况;
图3上为实施例2的荧光光谱图,a为<111>晶向生长区在不同退火温度的荧光光谱,b为<100>晶向生长区在不同退火温度的荧光光谱图;
图4为金刚石压砧切割示意图;
图5为金刚石压砧示意图。
具体实施方式
实施例1
一种高相干金刚石压砧的制备方法,采用以下步骤:
(1)含有高质量氮空穴金刚石的合成
采用铁镍触媒体系,以高纯鳞状石墨作为碳源,以Al/Ti作为除氮剂,以<100>金刚石作为晶种,在5.5GPa,1460℃下保温60h,合成金刚石单晶;所合成的金刚石单晶,其<100>晶向生长区域的氮含量为20~80 ppm,<111>晶向的金刚石的氮含量在200~300 ppm;
(2)退火
对该金刚石进行高温高压退火,退火压力为5 GPa,分别在1400℃、1500℃、1600℃、1700℃温度下,退火4h,该金刚石<111>上无氮空穴,<311>及<100>晶向生长区域上氮空穴含量可达10000/μm3,且相干时间约52μs;
(3)压砧切割
将压砧的砧面置于<311>晶向生长区域,将压砧的其他主体部分置于<111>晶向生长区域,其中砧面厚度为15μm,则所获得的压砧中氮空穴的深度即为15μm。
如图1所示,通过荧光mapping分析可以得到:氮空穴退火后只存在于<311>和<100>晶向生长区域;<111>生长区域的原生氮空穴消失;<311>和<100>晶向生长区域不含有镍相关缺陷;<100>以及<311>生长区形成的氮空穴的ZPL半峰宽可与高纯金刚石中氮空穴的宽度相媲美。
实施例2
一种高相干金刚石压砧的制备方法,采用以下步骤:
(1)含有高质量氮空穴金刚石的合成
采用铁镍触媒体系,以高纯鳞状石墨作为碳源,以<111>金刚石为晶种,以Al/Ti作为除氮剂,在5.5GPa,1370℃下保温60h,合成金刚石单晶;
(2)退火
对该金刚石进行高温高压退火,退火压力为4.5 GPa,分别在1300℃、1400℃、1500℃、1600℃下退火6h,结果高于1400℃的退火条件下,该金刚石<111>上原生的氮空穴消失;<100>生长区形成大量氮空穴;<100>生长区域不含有镍相关曲线;<100>生长区形成的氮空穴的ZPL半峰宽可与高纯金刚石中氮空穴的宽度相媲美。
(3)压砧切割
将压砧的砧面置于<100>晶向生长区域,将压砧的其他主体部分置于<111>晶向生长区域,其中砧面厚度为15μm,则所获得的压砧中氮空穴的深度即为15μm。
结果如图2所示,同样证明了,NV- 退火后只存在于<100>晶向生长区域。
实施例3
一种高相干金刚石压砧的制备方法,采用以下步骤:
(1)含有高质量氮空穴金刚石的合成
采用铁镍触媒体系,以纯度为99.9%以上的鳞状石墨作为碳源,以<111>金刚石为晶种,以Al/Ti作为除氮剂,在6.5GPa,1350℃下保温10h,合成金刚石单晶;
(2)退火
对该金刚石进行高温高压退火,退火压力为6.5 GPa,1600℃,退火1h,
该金刚石<111>上原生的氮空穴消失;<100>生长区形成大量氮空穴;<100>生长区域不含有镍相关曲线;<100>生长区形成的氮空穴的ZPL半峰宽可与高纯金刚石中氮空穴的宽度相媲美;
(3)压砧切割
将压砧的砧面置于<100>晶向生长区域,将压砧的其他主体部分置于<111>晶向生长区域,其中砧面厚度为15μm,则所获得的压砧中氮空穴的深度即为15μm。
NV- 退火后只存在于<100>晶向生长区域。
实施例4
一种高相干金刚石压砧的制备方法,采用以下步骤:
(1)含有高质量氮空穴金刚石的合成
采用铁镍触媒体系,以纯度为99.9%以上的鳞状石墨作为碳源,以Al/Ti作为除氮剂,以<100>金刚石作为晶种,在5GPa,1850℃下保温60h,合成金刚石单晶;
(2)退火
对该金刚石进行高温高压退火,退火压力为4.5 GPa,1800℃,退火时间20 h,该金刚石<111>上无氮空穴。
(3)压砧切割
将压砧的砧面置于<311>晶向生长区域,将压砧的其他主体部分置于<111>晶向生长区域,其中砧面厚度为15μm,则所获得的压砧中氮空穴的深度即为15μm。
氮空穴退火后只存在于<311>和<100>晶向生长区域;<111>生长区域的原生氮空穴消失;<311>和<100>晶向生长区域不含有镍相关缺陷;<100>以及<311>生长区形成的氮空穴的ZPL半峰宽可与高纯金刚石中氮空穴的宽度相媲美。

Claims (5)

1.一种金刚石压砧的制备方法,其特征在于,包括以下步骤:
(1)含有高质量氮空穴金刚石的合成
采用铁镍触媒体系,以高纯鳞状石墨作为碳源,以Al/Ti作为除氮剂,以<100>金刚石作为晶种,在5.5GPa,1460℃下保温60h,合成金刚石单晶;所合成的金刚石单晶,其<100>晶向生长区域的氮含量为20~80ppm,<111>晶向的金刚石的氮含量在200~300ppm;
(2)退火
对该金刚石进行高温高压退火,退火压力为5GPa,分别在1400℃、1500℃、1600℃、1700℃温度下,退火4h;
(3)压砧切割
将压砧的砧面置于<311>晶向生长区域,将压砧的其他主体部分置于<111>晶向生长区域;其中砧面厚度为15μm,则所获得的压砧中氮空穴的深度即为15μm。
2.一种金刚石压砧的制备方法,其特征在于,包括以下步骤:
(1)含有高质量氮空穴金刚石的合成
采用铁镍触媒体系,以高纯鳞状石墨作为碳源,以<111>金刚石为晶种,以Al/Ti作为除氮剂,在5.5GPa,1370℃下保温60h,合成金刚石单晶;
(2)退火
对该金刚石进行高温高压退火,退火压力为4.5GPa,分别在1500℃、1600℃下退火6h;
(3)压砧切割
将压砧的砧面置于<100>晶向生长区域,将压砧的其他主体部分置于<111>晶向生长区域,其中砧面厚度为15μm,则所获得的压砧中氮空穴的深度即为15μm。
3.一种金刚石压砧的制备方法,其特征在于,包括以下步骤:
(1)含有高质量氮空穴金刚石的合成
采用铁镍触媒体系,以纯度为99.9%以上的鳞状石墨作为碳源,以<111>金刚石为晶种,以Al/Ti作为除氮剂,在6.5GPa,1350℃下保温10h,合成金刚石单晶;
(2)退火
对该金刚石进行高温高压退火,退火压力为6.5GPa,1600℃,退火1h;
(3)压砧切割
将压砧的砧面置于<100>晶向生长区域,将压砧的其他主体部分置于<111>晶向生长区域,其中砧面厚度为15μm,则所获得的压砧中氮空穴的深度即为15μm。
4.一种金刚石压砧的制备方法,其特征在于,包括以下步骤:
(1)含有高质量氮空穴金刚石的合成
采用铁镍触媒体系,以纯度为99.9%以上的鳞状石墨作为碳源,以Al/Ti作为除氮剂,以<100>金刚石作为晶种,在5GPa,1850℃下保温60h,合成金刚石单晶;
(2)退火
对该金刚石进行高温高压退火,退火压力为4.5GPa,1800℃,退火时间20h;
(3)压砧切割
将压砧的砧面置于<311>晶向生长区域,将压砧的其他主体部分置于<111>晶向生长区域,其中砧面厚度为15μm,则所获得的压砧中氮空穴的深度即为15μm。
5.权利要求1-4任一所述制备方法制备的金刚石压砧在高压量子传感器上的应用。
CN202210580229.1A 2022-05-26 2022-05-26 一种高相干金刚石氮空穴及金刚石压砧的制备与应用 Active CN114941173B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210580229.1A CN114941173B (zh) 2022-05-26 2022-05-26 一种高相干金刚石氮空穴及金刚石压砧的制备与应用
US18/321,823 US11905620B2 (en) 2022-05-26 2023-05-23 Preparation and application of highly coherent diamond nitrogen vacancy and diamond anvil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210580229.1A CN114941173B (zh) 2022-05-26 2022-05-26 一种高相干金刚石氮空穴及金刚石压砧的制备与应用

Publications (2)

Publication Number Publication Date
CN114941173A CN114941173A (zh) 2022-08-26
CN114941173B true CN114941173B (zh) 2023-10-10

Family

ID=82909487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210580229.1A Active CN114941173B (zh) 2022-05-26 2022-05-26 一种高相干金刚石氮空穴及金刚石压砧的制备与应用

Country Status (2)

Country Link
US (1) US11905620B2 (zh)
CN (1) CN114941173B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1612955A (zh) * 2001-12-14 2005-05-04 六号元素有限公司 硼掺杂的金刚石
RU2005136894A (ru) * 2005-11-28 2007-06-10 Федеральное государственное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГУ ТИСНУМ) (RU) Способ выращивания монокристаллов алмаза
CN106179124A (zh) * 2016-08-30 2016-12-07 四川大学 一种用于产生高压的压砧
CN110975760A (zh) * 2019-11-13 2020-04-10 曲阜师范大学 一种无损伤可控制备金刚石中氮空位中心的方法
CN111172508A (zh) * 2020-02-24 2020-05-19 北京科技大学 一种提高金刚石对顶压砧压力极限的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2379451B (en) * 2000-06-15 2004-05-05 Element Six Thick single crystal diamond layer method for making it and gemstones produced from the layer
EP1807346A4 (en) * 2004-09-10 2010-04-28 Carnegie Inst Of Washington ULTRADUR VAPOR PHASE CHEMICAL DEPOSITED DIAMOND (CVD) AND THREE-DIMENSIONAL GROWTH OF THE SAME
TWI410538B (zh) * 2005-11-15 2013-10-01 Carnegie Inst Of Washington 建基於以快速生長速率製造之單晶cvd鑽石的新穎鑽石的用途/應用
FR2903546A1 (fr) * 2006-07-07 2008-01-11 St Microelectronics Sa Procede et dispositif de reduction de la composante continue d'un signal transpose en bande de base,en particulier dans un recepteur du type a conversion directe
GB0813490D0 (en) * 2008-07-23 2008-08-27 Element Six Ltd Solid state material
GB201320302D0 (en) * 2013-11-18 2014-01-01 Element Six Ltd Diamond components for quantum imaging sensing and information processing devices
US20150275396A1 (en) * 2014-03-26 2015-10-01 Reinhard Boehler High pressure single crystal diamond anvils
US9422720B2 (en) * 2014-07-31 2016-08-23 Renewable Elements, Llc Non-penetrating roof mount for a membrane roof
GB201522650D0 (en) * 2015-12-22 2016-02-03 Element Six Technologies Ltd Nitrogen containing single crystal diamond materials optimized for magnetometr applications
US10961449B2 (en) * 2016-04-12 2021-03-30 The Texas A&M University System Engineered fluorescent nanodiamond

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1612955A (zh) * 2001-12-14 2005-05-04 六号元素有限公司 硼掺杂的金刚石
RU2005136894A (ru) * 2005-11-28 2007-06-10 Федеральное государственное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГУ ТИСНУМ) (RU) Способ выращивания монокристаллов алмаза
CN106179124A (zh) * 2016-08-30 2016-12-07 四川大学 一种用于产生高压的压砧
CN110975760A (zh) * 2019-11-13 2020-04-10 曲阜师范大学 一种无损伤可控制备金刚石中氮空位中心的方法
CN111172508A (zh) * 2020-02-24 2020-05-19 北京科技大学 一种提高金刚石对顶压砧压力极限的方法

Also Published As

Publication number Publication date
CN114941173A (zh) 2022-08-26
US20230383437A1 (en) 2023-11-30
US11905620B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
Achard et al. Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications
US5908503A (en) Low defect density diamond single crystal and a process for the production of the same
Zhigadlo et al. Single crystals of superconducting SmFeAsO1− xFy grown at high pressure
JP5891636B2 (ja) 多結晶ダイヤモンドおよびその製造方法
CN103732535B (zh) 多晶金刚石及其制造方法
US4191735A (en) Growth of synthetic diamonds
Obraztsov et al. Production of single crystal diamond needles by a combination of CVD growth and thermal oxidation
EP4317545A1 (en) Single-crystal diamond and production method therefor
US4277293A (en) Growth of synthetic diamonds having altered electrical conductivity
Liang et al. Enhancing the mechanical properties of single-crystal CVD diamond
CN114941173B (zh) 一种高相干金刚石氮空穴及金刚石压砧的制备与应用
EP3393970B1 (en) Fluorescent diamond particles and methods of fabricating the same
CN110975760B (zh) 一种无损伤可控制备金刚石中氮空位中心的方法
Yu et al. Effects of phosphorus doping via Mn 3 P 2 on diamond growth along the (100) surfaces
Li et al. High-pressure synthesis and characterization of thermal-stable boron-doped diamond single crystals
EP4317540A1 (en) Single crystal diamond and method for producing same
Huang et al. Synthesis of large diamond crystals containing high-nitrogen concentration at high pressure and high temperature using Ni-based solvent by temperature gradient method
CN103764882A (zh) 单晶金刚石及其制造方法
EP4317539A1 (en) Single crystal diamond and method for producing same
Huang et al. Effects of additive NaN 3 on the HPHT synthesis of large single crystal diamond grown by TGM
Kurdyumov et al. The structural aspect of wurtzite boron nitride phase stabilization
Babich et al. Specifics of the distribution of nitrogen defects in synthetic diamonds of cubic habit: IR mapping data
EP4357490A1 (en) Synthetic single-crystal diamond and manufacturing method therefor
Moore et al. Nitrogen and silicon defect incorporation during homoepitaxial CVD diamond growth on (111) surfaces
Li et al. Characteristics of diamond crystals from FeNiCo-C system with Ge doping under high pressure and high temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Liu Xiaobing

Inventor after: Zhang Xiaoran

Inventor before: Zhang Xiaoran

Inventor before: Liu Xiaobing

GR01 Patent grant
GR01 Patent grant