RU2388775C2 - Синтетический загуститель для краски, совместимый с красителем - Google Patents

Синтетический загуститель для краски, совместимый с красителем Download PDF

Info

Publication number
RU2388775C2
RU2388775C2 RU2006128611/04A RU2006128611A RU2388775C2 RU 2388775 C2 RU2388775 C2 RU 2388775C2 RU 2006128611/04 A RU2006128611/04 A RU 2006128611/04A RU 2006128611 A RU2006128611 A RU 2006128611A RU 2388775 C2 RU2388775 C2 RU 2388775C2
Authority
RU
Russia
Prior art keywords
group
synthetic thickener
alkyl
hydrophobic
water
Prior art date
Application number
RU2006128611/04A
Other languages
English (en)
Other versions
RU2006128611A (ru
Inventor
Кирилл Н. БАКЕЕВ (US)
Кирилл Н. БАКЕЕВ
Де-Кай ЛУ (US)
Де-Кай ЛУ
Анджи Х. МА (US)
Анджи Х. МА
Туйен Т. НГУЙЕН (US)
Туйен Т. НГУЙЕН
Джеффри К. ПОЛИТИС (US)
Джеффри К. ПОЛИТИС
Original Assignee
Геркулес Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34794328&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2388775(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Геркулес Инкорпорейтед filed Critical Геркулес Инкорпорейтед
Publication of RU2006128611A publication Critical patent/RU2006128611A/ru
Application granted granted Critical
Publication of RU2388775C2 publication Critical patent/RU2388775C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/43Thickening agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyethers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Изобретение относиться к синтетическому загустителю, используемому в композициях для приготовления красок. Синтетический загуститель включает растворимый в воде или набухающий в воде синтетический полимер, основная цепь которого содержит концевые и/или промежуточные блоки олигомерных гидрофобных фрагментов. Гидрофобные фрагменты выбирают из группы, включающей алкильные или арильные фрагменты, содержащие полимеризующийся циклический мономер или их смесь. Причем мономер выбирают из группы, включающей алкилглицидиловые простые эфиры, арилглицидиловые простые эфиры, алкилэпоксид и их смеси. Или гидрофобные фрагменты выбирают из группы, включающей полимеризующийся алкен или их смесь и их производные. Причем полимеризующийся алкеновый мономер выбрают из группы, включающей стирол и соединения стирола. Основная цепь растворимого в воде или набухающего в воде синтетического полимера выбрана из группы, включающей полиэтиленгликоль, полиацеталевые простые полиэфиры и полиуретан. Использование синтетического загустителя в покрытиях на водной основе обеспечивает хорошее загущение, выравнивание и незначительное образование потеков. Синтетический загуститель можно применять и в качестве модификатора реологических характеристик, особенно в латексных красках. 4 н. и 28 з.п. ф-лы, 4 табл.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к композициям красок, в которых используются совместимые с красителем синтетические загустители. Более конкретно, настоящее изобретение относится к применению в композициях красок синтетического загустителя, обладающего растворимым в воде или набухающим в воде полимером, основная цепь которого включает концевые группы, представляющие собой гидрофобные олигомеры алкильных или арильных соединений, содержащих полимеризующийся циклический мономер (т.е. эпоксид, глицидильный простой эфир, циклический оксид, оксазолин) или полимеризующуюся двойную связь (т.е. стирол, виниловый простой эфир, акриламиды, акрилаты) или их производные.
УРОВЕНЬ ТЕХНИКИ
Гидрофобно модифицированные растворимые в воде полимеры различных типов применяют для загущения латексных красок с целью придания определенных рабочих характеристик при изготовлении, хранении и применении. Некоторые из этих характеристик включают легкость приготовления композиции, предотвращение оседания пигмента, образование пленки при нанесении, устойчивость к разбрызгиванию, незначительное образование потеков, хорошую текучесть и выравнивание красочной пленки. Эти растворимые в воде полимеры могут происходить из натуральных источников, таких как целлюлоза, крахмал, полидекстран, гуаровая камедь или их ионогенные и неионогенные производные (гидроксиэтил-, гидроксипропил-). Некоторыми примерами синтетических растворимых в воде полимеров являются полиакриламиды, полиакрилаты, поливиниловый спирт, поливинилсульфонаты, полиэтиленимин, поли(диаллилдиметиламмонийхлорид), поливинилпирролидон, полиаспартаты, полиацеталевые простые полиэфиры, полиалкиловые простые эфиры и полиалкиловые простые тиоэфиры. Большинство типов растворимых в воде полимеров описано в публикации Yale Meltzer "Water soluble polymers" (Noyes Data Corporation, Parkridge, New Jersey, USA, 1981).
Присоединение гидрофобной группы обычно выполняется с помощью одной алкильной группы или алкилфенолэтоксилата, содержащего галогенид или эпоксид. Также имеются примеры того, что гидрофобные группы перед присоединением объединяются, например, в патенте US 4426485, заявке на патент US 0045724 A1 (2002), патенте US 5292828 и патенте US 6337366. В этих патентах гидрофобные группы предварительно соединяются друг с другом с помощью соединяющего реагента, такого как диизоцианат, диэпоксид, эпихлоргидрин или первичный амин.
ЕР 0718310 А2 описывает производные простых эфиров целлюлозы, включающие гидрофобный заместитель, имеющий порцию ненасыщенного алкила.
ЕР 0323627 А2 направлен на модификацию галактоманнанов, содержащих в среднем между 0,7 и 4 гидрофильных заместителей и между 0,0001 и 0,02 гидрофобных заместителей на ангидрогликозидную единицу.
US 4432881 описывает водные жидкие среды, содержащие (1) водорастворимый полимер, имеющий дополнительные гидрофобные группы, и (2) водно-диспергируемое поверхностно-активное вещество.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к полимерной композиции, включающей растворимый в воде или набухающий в воде синтетический полимер, основная цепь которого содержит ковалентно связанные концевые и/или промежуточные блоки олигомерных гидрофобных фрагментов, которые выбраны из группы, включающей i) алкильные и арильные фрагменты, содержащие полимеризующийся циклический мономер, ii) полимеризующуюся двойную связь и iii) производные i) и ii), в которой эти блоки состоят из двух или большего количества звеньев одинаковых или разных гидрофобных фрагментов.
Настоящее изобретение также относится к способу получения указанной выше растворимой в воде или набухающей в воде полимерной композиции, включающему
а) реакцию обладающего растворимой в воде или набухающей в воде основной цепью полимера с каталитическим реагентом для активации основной цепи полимера,
б) прибавление олигомеризующегося гидрофобного мономера (мономеров) к реакционной массе и
в) полимеризацию реакционной массы при температуре и в течение времени, достаточных для присоединения олигомеризующегося гидрофобного мономера (мономеров) к основной цепи в виде концевых групп или промежуточных групп.
Настоящее изобретение также относится к водной защитной композиции покрытия, включающей (а) указанную выше полимерную композицию, (б) краситель и (в) пленкообразующий латекс, причем после прибавления красителя вязкость водной защитной композиции покрытия не меняется или незначительно уменьшается по сравнению со случаем использования обычных модификаторов реологических характеристик.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Согласно изобретению обнаружено, что новый класс гидрофобно модифицированных растворимых в воде/диспергирующихся в воде полимеров обеспечивает хорошее загущение, выравнивание и незначительное образование потеков в покрытиях на водной основе, и их можно использовать по отдельности, без других добавок в композиции покрытий, которые ранее применялись для изменения покрытий с целью сбалансирования этих характеристик. Согласно изобретению обнаружено, что все, что необходимо, это предоставление структур синтетических растворимых в воде полимерных основных цепей, обладающих способностью растворяться в воде или диспергироваться в воде в степени, необходимой для нанесения вручную, которые модифицированы в соответствии с настоящим изобретением. Новый класс модификаторов реологических характеристик представляет собой гидрофобно модифицированный полимер, который обладает растворимым в воде/диспергирующимся в воде участком основной цепи и олигомерным гидрофобным участком (участками) в виде блоков звеньев. Олигомерный гидрофобный блок обладает следующей химической структурой:
Figure 00000001
в которой n является целым числом, равным 1-100;
R обозначает алкильную или арильную группу, содержащую от 2 до 100 атомов углерода.
Алкильная группа может быть насыщенной или ненасыщенной, циклической или нециклической, линейной или разветвленной, или галогенированной, т.е. фторированной, хлорированной или бромированной. Алкильная и арильная группа может быть замещенной, такой как алкилсилоксановая, простая алкилэфирная, простая арилалкилэфирная, простая алкилариленэфирная, простая алкиленэфирная, простая алкилтиоэфирная, простая алкилентиоэфирная, алкиламиновая, диалкиламиновая, диалкиламиноксидная, триалкиламмониевая, диариламиновая, диалкилфосфиновая, диарилфосфиновая, диалкилфосфиноксидная, диарилфосфиноксидная, диалкилфосфатная и т.п.
А обозначает соединительный дирадикал вида -О-, -S-, -СН2-, -О-СН2-, -S-СН2-, -NH-, -NR'-, -NH-СН2-, -NR-СН2-, -PR'-, -POR'- (где R'=1-12 атомов углерода), полиалкиленовый простой эфир (Mw = от 44 до 50000), полиалкиленизоцианат - ГЭУР (Mw = от 100 до 50000).
В обозначает соединительную группу: -СН2-, -СН2О-, CH2S-, -СН2-NH-, -CR"H-O-, -CR"H-S-, -CR"H-NH- и -CH2NR"- (где R"=1-12 атомов углерода).
С обозначает соединительную группу, такую же, как А, или концевую группу, представляющую собой -ОН, SH, -NHR''', -OR''', -SR''' и -Н.
Для иллюстрации этой гидрофобной структуры ниже приведено несколько конкретных химических структур.
Структура 1
Figure 00000002
В этом случае А=-ОСН2-, В=-O-СН2-, R=-CH2O-C8H18 и С=-ОН.
Структура 2
Figure 00000003
В этом примере А=-NHCH2-, В=-О-СН2-, R=-CH2O-C8H18 и С=ОС6Н13.
Структура 3
Figure 00000004
В этой структуре А=-ОСН2-, В=-ОСН2-, С=-C6H13 и R=-OC6H5.
Структура 4
Figure 00000005
В этой структуре А = полиалкиленоксид-СН2-, В=-О-СН2-, С=-ОН и R=нонилфеноксигруппа.
Структура 5
Figure 00000006
В этой структуре А=-СН2-, В=-СН2-, С=Н и R=Ph (отметим, что Ph обозначает фенильный фрагмент).
Структура 6
Figure 00000007
В этой структуре A=-СН2-, В=-СН2-, С=-Н и R=-O-C8H17.
Эти гидрофобные блоки можно синтезировать из соответствующих алкилглицидильных простых эфиров (или тио-, или амидо-) путем нагревания с основанием или соответствующим нуклеофилом. Структуры 1-4 получены из соответствующих алкилглицидильных простых эфиров. Регулирование олигомеризации, такой как полимеризация с переносом атома, "живая" радикальная полимеризация, катионная полимеризация, анионная полимеризация и полимеризация с переносом групп, с помощью надлежащего останавливающего реагента дает искомую гидрофобную форму реакционноспособных виниловых мономеров, таких как стирол, виниловый простой эфир, виниловый сложный эфир, акрилатные сложные эфиры, акриламидные сложные эфиры. Структуры 5 и 6 являются примерами продуктов регулируемой радикальной олигомеризации и соответствующего блокирования концевых групп.
Гидрофобные блоки можно присоединить к растворимому в воде/диспергирующемуся в воде полимеру посредством простого эфира, сложного эфира, уретана, амида, амина, имина или мочевины в зависимости от выбора специалиста в данной области техники. Присоединение можно выполнить посредством диэпоксида, диизоцианата, диалкилгалогенида, сложного диэфира или соединения, содержащего не одну реакционноспособную группу (например, эпоксиалкилгалогенида, алкилгалогенидизоцианата).
Обычно применяющаяся методика присоединения гидрофобной группы к растворимому в воде/диспергирующемуся в воде полимеру, содержащему реакционноспособные гидроксигруппы, такому как производные целлюлозы, заключается в нагревании содержащего атом щелочного металла производного целлюлозы с гидрофобным галогенидом или эпоксидом. Одним примером реакции этого типа является синтез гидрофобно модицифированной гидроксиэтилцеллюлозы (ГМГЭЦ). В качестве гидрофобного модификатора можно использовать алкилгалогенид и алкилглицидильный простой эфир. Поэтому можно превратить гидрофобное соединение, предлагаемое в настоящем изобретении, в эпоксид (с использованием эпигалогенгидрина) или с помощью галогенирующего реагента, такого как PBr3 или PCl5, получить реакционноспособный гидрофобный фрагмент.
Удобнее включать этот тип гидрофобных фрагментов в присоединяемый полимер (винилового спирта, акриламида, акрилатов) с помощью мономера, содержащего эту гидрофобную группу. Например, акрилоиловый сложный эфир этого типа гидрофобной группы структуры 4 можно полимеризовать с акриловой кислотой и акриламидом и получить соответствующие гидрофобно модифицированные растворимые в щелочи эмульсии (ГРЩЭ).
Также удобно получать телехелатный полиуретан гидрофобно модифицированного блок-сополимера этиленоксида с уретаном (ГЭУР) с использованием предварительно приготовленной гидрофобной структуры. Гидрофобную структуру, содержащую одну или две гидроксигруппы можно прибавить к смеси полиэтиленоксида с реакционноспособной концевой гидроксигруппой и затем ввести в реакцию с диизоцианатом. Однако намного удобнее получить основную цепь ГЭУР и полученные олигомеры нагреть с выбранным алкилглицидильным простым эфиром. Алкилглицидильный простой эфирный фрагмент олигомеризуется на конце основной цепи ГЭУР с образованием телехелатного ГЭУР.
Для получения гидрофобно модифицированного ПЭГ (полиэтиленгликоля) удобнее всего просто нагревать смесь полиэтиленгликоля и алкилглицидильного простого эфира в присутствии основания. Основную цепь полимера можно предварительно модифицировать одним или несколькими алкилдиолами или алкилтриолами с получением разветвленной структуры или превратить в ацеталь сложного полиэфира, как это описано в патенте US 5574127 или в патенте US 6162877. Приведенная ниже схема иллюстрирует простоту синтеза телехелатного полимера этого типа.
Схема 1
Figure 00000008
Настоящее изобретение относится к ассоциативному полимеру, который обладает растворимой в воде или набухающей в воде основной цепью и представляет собой синтетический полимер. Эту основную цепь выбирают из группы, включающей полиакриламиды, полиакрилаты, поливиниловый спирт, поливинилсульфонаты, полиэтиленимин, поли(диаллилдиметиламмонийхлорид), поливинилпирролидон, полиаспартаты, полиацеталевые простые полиэфиры, полиалкиловые простые эфиры и полиалкиловые простые тиоэфиры. Большинство типов растворимых в воде полимеров описано в публикации Yale Meltzer "Water soluble polymers" (Noyes Data Corporation, Parkridge, New Jersey, USA, 1981). Сама основная цепь не является реакционноспособной и может представлять собой любой из указанных выше синтетических полимеров при условии, что основная цепь полимера является растворимой в воде или набухающей в воде. Основная цепь становится реакционноспособным центром, если гидрофобные группы являются внутренними для основной цепи или являются боковыми для основной цепи. Гидрофобные группы также могут быть концевыми группами основной цепи (также известными, как телехелатные группы). Образующий основную цепь полимер может быть линейным или разветвленным или дендритным (т.е. обладать конфигурацией, в которой три ветви присоединены к одному атому, такому как атом углерода). Если гидрофобные олигомерные блоки являются выбранными из алкильных и арильных фрагментов, содержащих полимеризующийся циклический мономер, то полное количество атомов углерода в алкильном или арильном участках гидрофобных олигомерных групп может составлять от 1 до 100.
Олигомерные гидрофобные блоки фрагментов являются реакционноспособными центрами. Блоки гидрофобных фрагментов должны содержать по меньшей мере 2 звена, предпочтительно по меньшей мере 3 звена, более предпочтительно по меньшей мере 7 звеньев и еще более предпочтительно 10 звеньев. Следует понимать, что в гидрофобных фрагментах может содержаться более 10 звеньев и что количество звеньев ограничивается только возможностью и экономичностью получения таких фрагментов с точки зрения размера, структуры, стерических препятствий и других химических и физических факторов, влияющих на близость друг к другу звеньев, присоединенных к блокам.
В соответствии с настоящим изобретением олигомерными гидрофобными структурами могут быть выбранные из алкильных или арильных фрагменты, содержащие полимеризующийся циклический мономер или полимеризующуюся двойную связь или производные этих фрагментов. Если гидрофобной структурой является выбранный из алкильного фрагмент, содержащий полимеризующийся циклический мономер, то алкильная группа может содержать от 1 до 40 атомов углерода, предпочтительно от 3 до 24 атомов углерода и более предпочтительно от 6 до 18 атомов углерода. Если гидрофобной структурой является выбранный из арильного фрагмент, содержащий полимеризующийся циклический мономер, то арильная группа может содержать от 6 до 40 атомов углерода, предпочтительно от 6 до 29 атомов углерода и более предпочтительно от 7 до 15 атомов углерода. Примерами полимеризующихся циклических мономеров являются алкилглицидиловые простые эфиры, арилглицидиловые простые эфиры, арилалкилэпоксид, алкилоксазолин и арилоксазолин.
Если гидрофобной структурой является выбранная из полимеризующейся двойной связи, то она может представлять собой выбранный из алкена мономер, такой как стирол и соединения стирола, виниловые соединения, акрилаты и их производные, норборнены и их производные и алкены и их производные, алкенилсилоксаны и их производные, алкенилсиланы и их производные, фторированные и перфорированные алкены. Примерами алкенов являются этилен, пропилен, бутилен и т.п.
В соответствии с настоящим изобретением полимерная композиция обладает среднемассовой молекулярной массой (Mw) полимера, верхнее предельное значение которой равно 10000000, предпочтительно примерно 1000000 и более предпочтительно примерно 100000. Нижнее предельное значение молекулярной массы полимера составляет примерно 400, предпочтительно примерно 1000 и более предпочтительно примерно 4000.
Одним применением гидрофобно модифицированного растворимого в воде полимера этого типа является композиция краски. Эти композиции красок являются основанными на латексе, такие как на акриловой основе, винилакриловой основе или стирольной основе. Согласно изобретению обнаружено, что телехелатные полимеры, предлагаемые в настоящем изобретении, обеспечивают баланс характеристик в различных композициях красок. Однако для акриловой краски (SG10M) неожиданно обнаружено, что полученная краска также обладает превосходной способностью сохранять вязкость при добавлении различных красителей (СВК). Такие рабочие характеристики не обнаруживаются у регулярных гидрофобных полимеров по отдельности.
В латексных композициях красок полимер, предлагаемый в настоящем изобретении, можно использовать по отдельности или в комбинации с другими обычными модификаторами реологических (или загустителями) характеристик предшествующего уровня техники, такими как гидроксиэтилцеллюлоза (ГЭЦ), гидроксипропилцеллюлоза (ГПЦ), метилцеллюлоза (МЦ), карбоксиметилцеллюлоза (КМЦ), метилгидроксиэтилцеллюлоза (МГЭЦ), этилгидроксиэтилцеллюлоза (ЭГЭЦ) и гидрофобно модифицированная гидроксиэтилцеллюлоза (ГМГЭЦ). Типичные латексные композиции красок, предлагаемые в настоящем изобретении, являются композициями на акриловой основе, винилакриловой основе или стирольной основе. Эти краски на основе латексов обладают объемной концентрацией пигмента (ОКП), составляющей от 15 до примерно 80.
Ниже приведена группа примеров синтеза телехелатного гидрофобно модифицированного ПЭГ и сложного эфира полиацеталя и их рабочих характеристик в двух композициях красок: SG 10M и UCAR 379G (краска на винилакриловой основе). Если не указано иное, то все части и проценты являются массовыми.
Пример 1
(ПЭГ 20К, с прибавлением 16,4% глицидил-2-метилфенилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой и нагревательным кожухом, смесь 30 г 20000 Mw ПЭГ (0,0015 моль) и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (2,1 г, 0,06 моль, в 3 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли глицидил-2-метилфениловый эфир (5,91 г, 0,036 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования и промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый порошкообразный полимер (33,7 г). Ядерный магнитный резонанс на ядрах водорода (1Н ЯМР) показал, что включено 12% гидрофобных групп. Вязкость по Брукфилду 5% водного раствора этого олигомера составляла 67000 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG10M (стандартная композиция) ЭЗ%=0,11, снижение вязкости после прибавления красителя (СВК)=-4 ЕК (единиц Креббса). Для UCAR 379 G, ЭЗ%=0,54, СВК=-10 ЕК.
Пример 2
(ПЭГ 35К, с прибавлением 9,3% глицидилфенилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой и нагревательным кожухом, смесь 40 г 35000 Mw ПЭГ (0,0011 моль) и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (1,54 г, 0,0275 моль, в 10 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли глицидилфениловый эфир (4,12 г, 0,0275 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования и промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый полимер (40,5 г). 1Н ЯМР показал, что включено 8% гидрофобных групп. Вязкость по Брукфилду 5% водного раствора этого олигомера составляла 124000 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG 10M (стандартная композиция). ЭЗ%=0,14, снижение вязкости после прибавления красителя (СВК)=-6 ЕК. Для UCAR 379 G, ЭЗ%=0,68, СВК=-13 ЕК.
Пример 3
(ПЭГ 35К, с прибавлением 10,4% глицидил-2-метилфенилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой и нагревательным кожухом, смесь 30 г 35000 Mw ПЭГ (0,0015 моль) и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (1,15 г, 0,02 моль, в 3 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли глицидил-2-метилфениловый эфир (3,38 г, 0,02 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования и промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый порошкообразный полимер (31 г). 1Н ЯМР показал, что включено 6,8% гидрофобных групп. Вязкость по Брукфилду 5% водного раствора этого олигомера составляла 184000 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG 10M (стандартная композиция) ЭЗ%=0,11, снижение вязкости после прибавления красителя (СВК)=-12 ЕК. Для UCAR 379 G, ЭЗ%=0,57, СВК=-11 ЕК.
Пример 4
(ПЭГ 20К, 14% глицидил-2-метилфенилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 30 г 20000 Mw ПЭГ (0,0015 моль) и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (3,37 г, 0,06 моль, в 3 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли глицидил-2-метилфениловый эфир (4,93 г, 0,03 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С толуол (80 мл) дополнительно прибавляли. Раствор подвергали осаждению в 300 мл гексана. После фильтрования, промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый порошкообразный полимер (33 г). Вязкость по Брукфилду 5% водного раствора этого олигомера составляла 37200 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG 10M (стандартная композиция) ЭЗ%=0,12, снижение вязкости после прибавления красителя (СВК)=-7 ЕК. Для UCAR 379 G, ЭЗ%=0,47, СВК=-8 ЕК.
Пример 5
(ПЭГ 30К, с прибавлением 27% глицидил-2-метилфенилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 30 г 12000 Mw ПЭГ (0,0015 моль) и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (1,7 г, 0,03 моль, в 3 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли глицидил-2-метилфениловый эфир (10,9 г, 0,02 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования, промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый порошкообразный полимер (35 г). 1Н ЯМР показал, что включено 20% гидрофобных групп. Вязкость по Брукфилду 5% водного раствора этого олигомера показала наличие геля. Характеристики краски: SG 10M (стандартная композиция): нерастворим в краске. Для UCAR 379 G, ЭЗ%=0,57, СВК=-1 ЕК.
Пример 6
(ПАПЭ 35К, с прибавлением 6,9% бутилглицидилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 30 г 35000 Mw ПАПЭ и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (0,95 г, 0,02 моль, в 1 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли бутилглицидиловый эфир (2,23 г, 0,02 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования, промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый полимер (30 г). 1Н ЯМР показал, что включено 4,7% гидрофобных групп. Вязкость 5% водного раствора этого олигомера составляла >200,000 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG 10M (стандартная композиция). ЭЗ%=0,11, снижение вязкости после прибавления красителя (СВК)=-30 ЕК. Для UCAR 379 G, ЭЗ%=0,47, СВК=-35 ЕК.
Пример 7
(ПЭГ 20К, с прибавлением 16,3% бутилглицидилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 30 г 20000 Mw ПЭГ (0,0015 моль) и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (0,77 г, 0,015 моль, в 1 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли бутилглицидиловый эфир (5,86 г, 0,045 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования, промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый полимер (31 г). 1Н ЯМР показал, что включено 9,5% гидрофобных групп. Характеристики краски: SG 10M (стандартная композиция): нерастворим в краске. Для UCAR 379 G, ЭЗ%=0,40, СВК=3 ЕК.
Пример 8
(ПЭГ 35К, с прибавлением 8,2% бутилглицидилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 30 г 35000 Mw ПЭГ и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (0,77 г, 0,02 моль, в 1 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли бутилглицидиловый эфир (2,68 г, 0,02 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования и промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый полимер (33 г). 1Н ЯМР показал, что включено 7,3% гидрофобных групп. Вязкость по Брукфилду 5% водного раствора этого олигомера составляла 836000 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG10 M (стандартная композиция). ЭЗ%=0,15, снижение вязкости после прибавления красителя (СВК)=-21 ЕК. Для UCAR 379 G, ЭЗ%=0,32, СВК=-37 ЕК.
Пример 9
(ПЭГ 35К, с прибавлением 6% 2-этилгексилглицидилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 30 г 35000 Mw ПЭГ и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (0,77 г, 0,02 моль, в 1 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли 2-этилгексилглицидиловый эфир (1,91 г, 0,02 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования и промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый полимер (31 г). 1Н ЯМР показал, что включено 5,2% гидрофобных групп. Вязкость по Брукфилду 5% водного раствора этого олигомера составляла >200,000 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG10 M (стандартная композиция). ЭЗ%=0,11, снижение вязкости после прибавления красителя (СВК)=-24 ЕК. Для UCAR 379 G, ЭЗ%=0,28, СВК=-30 ЕК.
Пример 10
(ПЭГ 10К, с прибавлением 16,2% С12-глицидилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 30 г 10000 Mw ПЭГ и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (1,52 г, 0,04 моль, в 1,5 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли додецилглицидиловый эфир (5,81 г, 0,024 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования, промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый полимер (31,8 г). 1Н ЯМР показал, что включено 11% гидрофобных групп. Вязкость по Брукфилду 5% водного раствора этого олигомера составляла >400000 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG10 M (стандартная композиция). Материал нерастворим в этой краске. Для UCAR 379 G, ЭЗ%=0,52, СВК=-17 ЕК.
Пример 11
(ПЭГ 10К, с прибавлением 23% С12-глицидилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 30 г 10000 Mw ПЭГ и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (2,19 г, 0,04 моль, в 2 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли додецилглицидиловый эфир (8,71 г, 0,04 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования и промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый полимер (33 г). 1Н ЯМР показал, что включено 11% гидрофобных групп. Вязкость по Брукфилду 5% водного раствора этого олигомера составляла >200,000 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG 10M (стандартная композиция). Материал нерастворим в этой краске. Для UCAR 379 G, ЭЗ%=0,52, СВК=-6 ЕК.
Пример 12
(ПЭГ 20К, с прибавлением 7,2% С12-эпоксида)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 30 г 20000 Mw ПЭГ и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (0,67 г, 0,04 моль, в 1 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли 1,2-эпоксидодекан (2,33 г, 0,012 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования и промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый полимер (31 г). 1Н ЯМР показал, что включено 6% гидрофобных групп. Вязкость по Брукфилду 5% водного раствора этого олигомера составляла >400,000 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG 10M (стандартная композиция). Материал нерастворим в этой краске. Для UCAR 379 G, ЭЗ%=0,38, СВК=-24 ЕК.
Пример 13
(ПЭГ 12К, с прибавлением 8,4% С12-эпоксида)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 30 г 12000 Mw ПЭГ и толуола (80 мл) нагревали до 60°С. При этой температуре прибавляли КОН (0,84 г, 0,015 моль, в 1 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли 1,2-эпоксидодекан (2,33 г, 0,012 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С толуол (80 мл) дополнительно прибавляли. Раствор подвергали осаждению в 300 мл гексана. После фильтрования, промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый полимер (31,2 г). 1Н ЯМР показал, что включено 7,3% гидрофобных групп. Вязкость 5% водного раствора этого олигомера составляла >400000 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG 10M (стандартная композиция). Материал нерастворим в этой краске. Для UCAR 379 G, ЭЗ%=0,49, СВК=-4 ЕК.
Пример 14
(ПАПЭ, 22% глицидил-2-метилфенилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 50 г 4000 Mw ПЭГ (0,012 моль) и гранул NaOH (3 г) нагревали при 80°С в течение 1 ч. При этой температуре прибавляли дибромметан (1,65 г, 9,4 ммоль) и реакционную смесь перемешивали в течение 4 ч. Прибавляли глицидил-2-метилфениловый эфир (14,23 г, 0,09 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (100 г). Раствор подвергали осаждению в 300 мл гексана. После фильтрования, промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый порошкообразный полимер (50 г). 1Н ЯМР показал, что включено 14,9% гидрофобных групп. Вязкость по Брукфилду 5% водного раствора этого олигомера составляла 58800 сП. Вязкость по Брукфилду 25% раствора в 25% бутилкарбиноле составляла 1,500 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG 10M (стандартная композиция). ЭЗ%=0,30. Снижение вязкости после прибавления красителя (СВК)=3 ЕК.
Пример 15
(ПАПЭ, 16% глицидил-2-метилфенилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 40,6 г 4000 Mw ПЭГ (0,01 моль) и гранул NaOH (1,6 г) нагревали при 80°С в течение 1 ч. При этой температуре прибавляли дибромметан (1,32 г, 7,5 ммоль) и реакционную смесь перемешивали в течение 4 ч. Прибавляли глицидил-2-метилфениловый эфир (7,22 г) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (130 г). Раствор подвергали осаждению в 300 мл гексана. После фильтрования и промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый порошкообразный полимер (45,5 г). 1Н ЯМР показал, что включено 10,9% гидрофобных групп. Вязкость по Брукфилду 5% водного раствора этого олигомера составляла 19000 сП. Вязкость по Брукфилду 25% раствора в 25% бутилкарбиноле составляла 684 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG 10M (стандартная композиция). ЭЗ%=0,25, снижение вязкости после прибавления красителя (СВК)=-1 ЕК. Для UCAR 379 G, ЭЗ%=0, 63, СВК=-8 ЕК.
Пример 16
(ПЭГ 20К, 15% глицидил-2-метилфенилового эфира)
В круглодонной 3-горлой колбе объемом 250 мл, снабженной холодильником, патрубком впуска/выпуска азота, механической мешалкой, термореле и нагревательным кожухом, смесь 20 г 20000 Mw ПЭГ (0,0015 моль) и толуола (120 г) нагревали до 60°С. При этой температуре прибавляли КОН (3,4 г, 0,06 моль, в 3,4 г воды) и реакционную смесь перемешивали в течение 1 ч. Прибавляли глицидил-2-метилфениловый эфир (9,12 г, 0,055 моль) и температуру реакционной смеси поддерживали равной 110°С в течение 5 ч. После охлаждения реакционной смеси до 60°С дополнительно прибавляли толуол (80 мл). Раствор подвергали осаждению в 300 мл гексана. После фильтрования и промывки этилацетатом (100 мл × 3Х) и сушки в вакууме получали белый порошкообразный полимер (56 г). Вязкость 5% водного раствора этого олигомера составляла 211600 сП (BF LV, S-63, 0,3 об/мин при 25°С). Характеристики краски: SG10 M (стандартная композиция) ЭЗ%=0,18, снижение вязкости после прибавления красителя (СВК)=-1 ЕК. Для UCAR 379 G, ЭЗ%=0,61, СВК=-5 ЕК.
Данные приведенных выше примеров сведены в представленной ниже таблице 1 и сопоставлены с данными для контроля имеющегося в продаже загустителя, NLS 200.
Таблица 1
Характеристики краски при использовании некоторых загустителей
Образцы Тип гидрофобного соединения Тип основной цепи НМ, % ЭЗ% 1 Уменьшение ЕК ЭЗ% 2
Контроль С16 ПАПЭ 2% 0,11 -48 0,56
Пример 1 МФГЭ ПЭГ, 20К 12% 0,11 -4 0,54
2 МФГЭ ПЭГ, 35К 8% 0,14 -6 0,68
3 МФГЭ ПЭГ, 35К 7% 0,11 -12 0,57
4 МФГЭ ПЭГ, 20К 9% 0,12 -7 0,47
5 МФГЭ ПЭГ, 30К 20% Нер. НД 0,57
6 БГЭ ПАПЭ, 35К 5% 0,11 -30 0,47
7 БГЭ ПЭГ, 20К 10% Нер. НД 0,4
8 БГЭ ПЭГ, 35К 7% 0,15 -21 0,32
9 ЭГГЭ ПЭГ, 35К 5% 0,11 -24 0,28
10 С12ГЭ ПЭГ, 10К 15% Нер. НД 0,52
11 С12ГЭ ПЭГ, 10К 16% Нер. НД 0,52
12 С12Э ПЭГ, 20К 6% Нер. НД 0,38
13 С12Э ПЭГ, 12К 7% Нер. НД 0,49
14 МФГЭ ПАПЭ, 16К 15% 0,3 3 0,3
15 МФГЭ ПАПЭ, 20К 11% 0,25 1 0,63
16 МФГЭ ПЭГ, 20К 10% 0,18 -1 0,61
Нер.: нерастворим
НД: нет данных
МФГЭ: метилфенилглицидиловый эфир
БГЭ: бутилглицидиловый эфир
ЭГГЭ: этилгексилглицидиловый эфир
С12ГЭ: додецилглицидиловый эфир
С12Э: 1,2-эпоксидодекан
ПАПЭ: полиацеталевый простой эфир
ПЭГ: полиэтиленгликоль
ЭЗ%: эффективность загущения
Пример 17
Гидрофобно модифицированный полиуретан
Смесь ПЭГ (40 г, Mw=8000), толуола (50 мл) и 4,4'-метилен-бис-(циклогексилизоцианата) (0,9 г) и дибутиллаурата (10 мг) совместно нагревали при 80°С в течение 16 ч. К смеси прибавляли метилфенилдиглицидиловый эфир (8 г) и NaOH (1 г) и температуру реакционной смеси поддерживали равной 120°С в течение 2 ч. Полимер осаждали в гексане. После сушки получали 40 г полимерного продукта (содержание гидрофобных групп = 2%, Mw=15000).
Пример 18
Гидрофобно модифицированный разветвленный ПАПЭ
Смесь ПЭГ (40 г, 4000 Mw), триметилолпропанэтоксилата (0,4 г) и NaOH (2,4 г) выдерживали при 80°С в течение 1 ч. Прибавляли дибромметан (1,8 г) и толуол (30 мл) и смесь выдерживали при 80°С в течение 4 ч. К реакционной смеси прибавляли метилфенилдиглицидиловый эфир (4,87 г) и температуру повышали до 120°С. Через 4 ч реакцию останавливали. Для разбавления реакционной смеси прибавляли толуол (120 мл). Продукт выделяли осаждением в гексане (300 мл) и промывали этилацетатом. После сушки получали полимер (46 г). Вязкость по Брукфилду 5% водного раствора этого материала составляла 22000 сП. Эффективность загущения этого материала в SG10M составляла 0,13. Снижение вязкости после прибавления красителя составляло -23 ЕК.
Пример 19
Гидрофобно модифицированный диизоцианат
Смесь ПЭГ (60 г, Mw=4000) нагревали с изоферондиизоцианатом (1,8 г) и 2 каплями дибутиллаурата при 80°С в течение 6 ч; затем прибавляли NaOH (1 г). Через 1 ч прибавляли метилфенилдиглицидиловый эфир (6 г). Смесь нагревали при 120°С в течение 4 ч. Получали полимер.
Полученный указанным выше способом дигидроксителехелатный продукт можно дополнительно ввести в реакцию для увеличения его молекулярной массы путем прибавления реагентов реакции сочетания, содержащих 2 (или больше) реакционноспособные гидроксигруппы и получить линейные или разветвленные полимеры, которые содержат множество гидрофобных участков. Обычно использующимися ди-, три- или тетрафункциональными соединениями являются дигалогенид, диэпоксид, диуретан, тригалогенид, триэпоксид, триизоцианат. Дифункциональные молекулы реакции сочетания дают линейные продукты, а полифункциональные молекулы реакции сочетания дают разветвленные или дендритные продукты. Каждый тип продукта может обладать преимуществами для конкретного случая применения.
Пример 20
Линейное сочетание с использованием диизоцианата
Смесь ПЭГ (600 г, Mw=8000) нагревали с NaOH (12 г) и дибромметаном (8,5 г) при 80°С в течение 1 ч; затем прибавляли метилфенилглицидильный эфир (107 г) и нагревали в течение 3 ч при 120°С. После очистки с использованием толуола и гексана получали полимерный продукт (Mn=22000, содержание гидрофобных групп 8,2%). Раствор этого полимера (10 г) в толуоле (100 мл) нагревали с метилен-бис-фенилизоцианатом (1,1 г) при 60°С в течение 24 ч. После осаждения в гексане получали полимер. Полимер обладал среднечисловой молекулярной массой (Mn), равной 53000.
Пример 21
Линейное сочетание с использованием дибромметана
Смесь ПЭГ (60 г, Mw=8000), NaOH (1,2 г) и метилфенилдиглицидилового эфира (8 г) совместно нагревали при 120°С в течение 3 ч и получали телехелатный олигомер, обладающий Mn=9000. К этой реакционной смеси олигомера при 80°С прибавляли дибромметан (1,6 г). Через 1 ч получали полимер (62 г), обладающий среднечисловой молекулярной массой, равной 19000.
Пример 22
Линейное сочетание с использованием ПАПЭ
Смесь ПЭГ (27 г, Mw=4000), NaOH (0,7 г) и метилфенилдиглицидилового эфира (6 г) нагревали до 120°С в течение 2 ч. После охлаждения смеси до 80°С прибавляли NaOH (1,5 г), дибромметан (1,1 г) и ПЭГ (23 г, Mw=4000) и перемешивали в течение 2 ч. После коагуляции в гексане и сушки собирали полимер, имеющий Mw=13000 (52 г). Содержание гидрофобных групп составляло 2%.
В приведенных выше примерах гидрофобные группы, предлагаемые в настоящем изобретении, включали в основную цепь полимера поэтапно. Также можно предварительно сформировать гидрофобные группы, предлагаемые в настоящем изобретении, и связать их с основной цепью соответствующего полимера аналогично тому, как это было выполнено с помощью изоцианата (тип ГЭУР), целлюлозы, акрилата/акриламида (тип ГРЩЭ), поливинилового спирта в соответствии с описанием в предшествующем разделе.
Также можно использовать полимеризующийся мономер, содержащий гидрофобные группы, предлагаемые в настоящем изобретении, и получить другие продукты путем полимеризации с другими мономерами. Полимеризующиеся мономеры могут содержать двойные связи (такие как виниловые соединения, малеат, акрилат, акриламид) или быть способным к раскрытию цикла (такие как эпоксид, оксазолин, циклический оксид, циклический карбонат). Полимеризующиеся мономеры также могут быть мономерами, которые могут участвовать в поликонденсации, такие как дикислота, сложный диэфир, диол, диамин, диалкилгалогениды.
Пример 23
ПЭГ с полистирольными концевыми группами
ПЭГ с полистирольными концевыми группами синтезировали с помощью радикальной полимеризации с переносом атома (РППА). Макроинициаторы для РППА синтезировали с помощью реакций ПЭГ (Mw составляют 8000, 20000, 35000) с 2-хлор-2-фенилацетилхлоридом. Затем в присутствии макроинициатора полимеризовали стирол и ПЭГ с полистирольными концевыми группами получали, как это показано на схеме 2.
Figure 00000009
Схема 2. Синтез ПЭГ со стирольными концевыми группами из РППА
РППА является новой методикой радикальной полимеризации. При РППА соединение переходного металла выступает в качестве носителя атома галогена в обратимой окислительно-восстановительной реакции. Его "живые" характеристики позволяют включать количество стирола, линейно увеличивающееся в зависимости от времени полимеризации. Из ПЭГ синтезированы различные ПЭГ с полистирольными концевыми группами, обладающие различными молекулярными массами и различной длиной полистирольного сегмента, которые приведены в таблице 2.
Таблица 2
Синтез ПЭГ с полистирольными концевыми группами
Обозначение ПЭГ (Mw) Количество фенильных групп в каждой концевой группе Вязкость2, сП (T.S.)
А 20000 6 100000 (3,5%)
В 8000 5 11800 (4,0%)
С 35000 4 34000 (5,0%)
D 20000 4 420 (5,0%)
Е 8000 9 Плохая растворимость
F1 8000 5 13000 (4,0%)
1Повторение В.
2Вязкость по Брукфилду измеряли при 22°С.
1Н ЯМР использовали для исследования включения фенильных групп в каждую концевую группу для этих трехблочных сополимеров после перекристаллизации, проводимой для удаления небольших количеств гомополистирола. Трехблочный сополимер с ПЭГ, обладающий молекулярной массой, равной 8000, и 9 фенильными группами в каждой концевой группе, обладал ограниченной растворимостью. Трехблочный сополимер с ПЭГ, имеющий Mw 20000, и 4 фенильными группами в каждой концевой группе, обладал низкой вязкостью при содержании твердых веществ, равном 5,0%.
Оценка красок, содержащих эти трехблочные сополимеры, проведена с использованием полуматовых красок UCAR 379 G и SG 10М. Результаты приведены в таблице 3 и таблице 4.
Таблица 3
Оценка полуматовой краски UCAR 379 с прибавлением ПЭГ с полистирольными концевыми группами
Обозначение Эффективность Stormer ICI P Выравнивание 0-10 Потеки, мил Блеск 60 ΔЕК
#/100 галлонов мас.% Ini eq Ini eq
А 7,01 0,66 114 102 0,423 0 24 61 -12 -12
В 8,00 0,76 85 83 0,308 6 8 50 - -7
С 10,01 0,95 89 88 0,548 5 8 60 - -13
Смесь D и С' 12,00 1,14 80 81 0,548 6 6 63 - -6
Для этой смеси массовое отношение составляет 4/1.
Таблица 4
Оценка полуматовой краски SG-10M с полистирольными концевыми группами
Обозначение Эффективность Stormer ICI P Выравнивание 0-10 Потеки, мил Блеск 60 ΔЕК
#/100 галлонов мас.% Ini eq Ini eq
А 2,10 0,20 96 97 0,252 0 24 27 -5 -2
В 2,12 0,20 94 93 0,254 0 24 18 3 4
С 1,80 0,17 91 91 0,267 0 22 50 -5 -8
Смесь D и С 3,60 0,34 96 95 0,379 0 24 57 -6 -5
Применение продукта, предлагаемого в настоящем изобретении, не ограничивается красками (как это продемонстрировано), и его можно применять в любых случаях, когда имеются несовместимые фазы (типа масло/вода, (гидрофобная поверхность)/(гидрофильная поверхность), поверхность раздела (высокое поверхностное натяжение/низкое поверхностное натяжение)). Типичными случаями применения могут являться стабилизация дисперсии, стабилизация эмульсии, эмульсионная полимеризация, средство содействия обезвоживанию бумаги, покрытие для бумаги, проклейка бумаги, регулирование содержания смолы в целлюлозной пульпе, обезжиривающие композиции, гели для ухода за волосами или кожей, буровые растворы, регулирование реологических характеристик бетона, добавка в сырье для керамики, термопластичные смеси и модификация характеристик поверхности.
Хотя настоящее изобретение проиллюстрировано приведенными выше примерами, их не следует рассматривать в качестве ограничивающих, напротив, настоящее изобретение включает типичные области применения, описанные выше. Без отклонения от сущности и объема настоящего изобретения в него можно внести различные изменения и предложить разные варианты осуществления.

Claims (32)

1. Синтетический загуститель для краски, включающий растворимый в воде или набухающий в воде синтетический полимер, основная цепь которого содержит ковалентно связанные концевые и/или промежуточные блоки олигомерных гидрофобных фрагментов, которые выбраны из мономеров, выбранных из группы, включающей
i) алкильные и арильные фрагменты, содержащие полимеризующийся циклический мономер, или их смесь, где мономер выбран из группы, включающей алкилглицидиловые простые эфиры, арилглицидиловые простые эфиры, алкилэпоксид, и их смеси,
ii) полимеризующийся алкен или их смесь, где полимеризующийся алкеновый мономер выбран из группы, включающей стирол и соединения стирола, и iii) производные i) и ii),
где эти блоки состоят из двух или большего количества звеньев, выбранных из одинаковых или разных мономеров, и основная цепь растворимого в воде или набухающего в воде синтетического полимера выбрана из группы, включающей полиэтиленгликоль, полиацеталевые простые полиэфиры и полиуретан.
2. Синтетический загуститель по п.1, в котором гидрофобная группа представляет собой алкильные фрагменты, содержащие полимеризующийся циклический мономер, в котором полное количество атомов углерода в алкильной группе составляет от 1 до 40 атомов углерода, или представляет собой собой арильные фрагменты, содержащие полимеризующийся циклический мономер, в котором полное количество атомов углерода в арильной группе составляет от 6 до 40 атомов углерода.
3. Синтетический загуститель по п.1, в котором верхнее предельное значение среднемассовой молекулярной массы полимера составляет примерно 10000000.
4. Синтетический загуститель по п.1, в котором нижнее предельное значение среднемассовой молекулярной массы полимера составляет примерно 400.
5. Синтетический загуститель по п.1, в котором содержатся промежуточные блоки олигомерных гидрофобных фрагментов и они являются боковыми группами основной цепи или внутренними группами основной цепи.
6. Синтетический загуститель по п.1, в котором основной цепью является полиацеталевый простой полиэфир, полиэтиленгликоль, полиуретан, а гидрофобный фрагмент представляет собой олигомер полимеризующегося циклического мономера или их смесь, содержащая алкильные или арильные группы, и полное количество атомов углерода в алкильных или арильных группах составляет от 1 до 100.
7. Синтетический загуститель по п.1, в котором основной цепью является полиэтиленгликоль, полиуретан, а гидрофобный фрагмент представляет собой олигомер полимеризующегося алкенового мономера или их смесь, содержащая алкильные или арильные группы, и полное количество атомов углерода в алкильных или арильных группах составляет от 1 до 100.
8. Синтетический загуститель по п.1, в котором гидрофобные фрагменты обладают следующей формулой:
Figure 00000010

в которой
а) n является целым числом от 1 до 100,
б) R обозначает алкильную или арильную группу, содержащую от 1 атома углерода до 100 атомов углерода,
в) А обозначает соединительный дирадикал, выбранный из группы, включающей -O-, -S-, -CH2-, -О-СН2-, -S-CH2-, -NH-, -NR'-, -NH-CH2-, -NR-CH2-, -PR'-, -POR'- где R' содержит от 1 до 12 атомов углерода, полиалкиленовый простой эфир, имеющий Mw=от 44 до 50000, и полиалкиленизоцианат, имеющий Mw=от 100 до 50000,
г) В обозначает соединительную группу, выбранную из группы, включающей -CH2-, -CH2O-, CH2S-, -CH2-NH-, -CR''H-O В -, -CR''H-S-, -CR''H-NH- и -CH2NR''-, где R'' содержит 1-12 атомов углерода.
д) С обозначает соединительную группу, такую же, как А, или концевую группу, представляющую собой: -ОН, SH, -NHR''', -OR''', -SR''' и -Н.
9. Синтетический загуститель по п.7, в котором n имеет нижнее предельное значение, равное 3.
10. Синтетический загуститель по п.7, в котором n имеет нижнее предельное значение, равное 7.
11. Синтетический загуститель по п.7, в котором n имеет нижнее предельное значение, равное 10.
12. Синтетический загуститель по п.7, в котором n имеет верхнее предельное значение, равное 75.
13. Синтетический загуститель по п.7, в котором n имеет верхнее предельное значение, равное 50.
14. Синтетический загуститель по п.7, в котором n имеет верхнее предельное значение, равное 20.
15. Синтетический загуститель по п.7, в котором R обозначает алкильную группу, которая является насыщенной или ненасыщенной, либо циклической или нециклической, либо линейной или разветвленной, или галогенированной.
16. Синтетический загуститель по п.7, в котором алкил является галогенированным, выбранным из группы, включающей фторированный, хлорированный и бромированный алкил.
17. Синтетический загуститель по п.7, в котором алкильная и арильная группы являются замещенными и выбранными из группы, включающей алкилсилоксановую, простую алкилэфирную, простую арилалкилэфирную, простую алкилариленэфирную, простую алкиленэфирную, простую алкилтиоэфирную, простую алкилентиоэфирную, алкиламиновую, диалкиламиновую, диалкиламиноксидную, триалкиламмониевую, диариламиновую, диалкилфосфиновую, диарилфосфиновую, диалкилфосфиноксидную, диарилфосфиноксидную и диалкилфосфатную.
18. Синтетический загуститель по п.7, в котором А=-ОСН2-, В=-О-СН2-, R=-CH2O-C8H18 и С=-ОН.
19. Синтетический загуститель по п.7, в котором A=-NHCH2-, B=-O-CH2-, R=-CH2O-C8H18 и С=ОС6Н13.
20. Синтетический загуститель по п.7, в котором А=-ОСН2-, В=-O-СН2-, С=-С6Н13 и R=-ОС6Н5.
21. Синтетический загуститель по п.7, в котором А = полиалкиленоксид-СН2-, В=-O-СН2-, С=-ОН, и R = нонилфеноксигруппа.
22. Синтетический загуститель по п.7, в котором А=-СН2-, В=-СН2-, С=7Н и R-Ph.
23. Синтетический загуститель по п.7, в котором А=-СН2-, В=-СН2-, С=-Н и R=-O-C8H17.
24. Способ получения растворимого в воде или набухающего в воде синтетического загустителя по п.1, включающий
а) реакцию обладающего растворимой в воде или набухающей в воде основной цепью полимера по п.1 с каталитическим реагентом для активации основной цепи полимера,
б) прибавление олигомеризующегося гидрофобного мономера (мономеров) к реакционной массе и
в) полимеризацию реакционной массы при температуре и в течение времени, достаточных для присоединения олигомеризующегося гидрофобного мономера (мономеров) к основной цепи в виде концевых групп и/или промежуточных групп.
25. Способ по п.24, в котором гидрофобные группы представляют собой ковалентно связанные концевые и/или промежуточные блоки олигомерных гидрофобных фрагментов, которые выбраны из группы, включающей i) алкильные и арильные фрагменты, содержащие полимеризующийся циклический мономер, ii) полимеризующуюся двойную связь (или алкен), и iii) производные i) и ii), в которых эти блоки представляют собой два или большее количество звеньев одинаковых или разных мономеров.
26. Способ по п.25, в котором гидрофобный фрагмент или полимер получен как описано в любом из пп.2-7.
27. Водная композиция защитного покрытия, включающая (а) синтетический загуститель по п.1, (б) краситель и (в) пленкообразующий латекс, причем после прибавления красителя вязкость водной защитной композиции покрытия не меняется или незначительно уменьшается по сравнению со случаем использования обычных модификаторов реологических характеристик.
28. Водная композиция защитного покрытия по п.27, которая представляет собой латексную краску.
29. Водная композиция защитного покрытия по п.27, в которой латекс выбран из группы, включающей акриловые, виниалкриловые и стирольные латексы.
30. Водная композиция защитного покрытия по п.29, в которой латексная краска обладает объемной концентрацией пигмента, составляющей от примерно 15 до примерно 80.
31. Водная композиция защитного покрытия, включающая а) синтетический загуститель по п.1, б) по меньшей мере один загуститель, выбранный из группы, включающей ГЭУР, ГРЩЭ, производное целлюлозы и полиацеталевый простой полиэфир, в) краситель и г) пленкообразующий латекс.
32. Водная композиция защитного покрытия по п.31, которая содержит производное целлюлозы, выбранное из группы, включающей гидроксиэтилцеллюлозу (ГЭЦ), гидроксипропилцеллюлозу (ГПЦ), метилцеллюлозу (МЦ), карбоксиметилцеллюлозу (КМЦ), метилгидроксиэтилцеллюлозу (МГЭЦ), этилгидроксиэтилцеллюлозу (ЭГЭЦ) и гидрофобно модифицированную гидроксиэтилцеллюлозу (ГМГЭЦ).
RU2006128611/04A 2004-01-08 2005-01-07 Синтетический загуститель для краски, совместимый с красителем RU2388775C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53487304P 2004-01-08 2004-01-08
US60/534,873 2004-01-08

Publications (2)

Publication Number Publication Date
RU2006128611A RU2006128611A (ru) 2008-02-20
RU2388775C2 true RU2388775C2 (ru) 2010-05-10

Family

ID=34794328

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006128611/04A RU2388775C2 (ru) 2004-01-08 2005-01-07 Синтетический загуститель для краски, совместимый с красителем

Country Status (13)

Country Link
US (2) US7550542B2 (ru)
EP (1) EP1709126B1 (ru)
JP (1) JP5443668B2 (ru)
CN (1) CN1946815B (ru)
AT (1) ATE388999T1 (ru)
BR (1) BRPI0506446A (ru)
CA (1) CA2552723C (ru)
DE (1) DE602005005301T2 (ru)
ES (1) ES2299006T3 (ru)
PL (1) PL1709126T3 (ru)
RU (1) RU2388775C2 (ru)
TW (1) TW200602445A (ru)
WO (1) WO2005068564A1 (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531591B2 (en) * 2004-12-09 2009-05-12 Hercules Incorporated Aqueous dispersion of poly(acetal-polyether) and its use in protective coatings
US7803864B2 (en) 2006-01-05 2010-09-28 Rohm And Haas Company Associative thickener compositions and methods of use
PL2013261T3 (pl) * 2006-04-19 2019-04-30 Hercules Llc Stabilizatory dla polepszonego czasu otwartego powłok wodnych
NZ574310A (en) * 2006-07-26 2012-05-25 Hercules Inc Hydrophobically modified poly(ethylene glycol) for use in pitch and stickies control in pulp and papermaking processes
EP2166043B1 (en) * 2008-09-19 2016-04-27 Rohm and Haas Company Thickener composition and method for thickening aqueous systems
US7973004B2 (en) * 2009-02-12 2011-07-05 Hercules Incorporated Rheology modifier for aqueous surfactant-based formulations
US9814885B2 (en) 2010-04-27 2017-11-14 Medtronic, Inc. Stimulation electrode selection
US8406890B2 (en) 2011-04-14 2013-03-26 Medtronic, Inc. Implantable medical devices storing graphics processing data
EP2716680A1 (de) * 2012-10-04 2014-04-09 Basf Se Fluorierte polymerisierbare Verbindung
CN103980433B (zh) * 2014-05-16 2015-09-16 武汉汉星盛新型建材有限公司 羧酸乙烯基共聚物混凝土增稠剂及其制备方法
US10358574B2 (en) 2016-07-01 2019-07-23 Hercules Llc Coating compositions containing lactam-functionalized polymer
US10370482B2 (en) 2016-07-01 2019-08-06 Hercules Llc Lactam-functionalized polymer, compositions and applications thereof
AU2017239546B2 (en) 2016-10-21 2022-01-13 Rohm And Haas Company Deep base paint formulation
CN107141936B (zh) * 2017-06-06 2019-07-30 厦门富思特新材料科技有限公司 一种超疏水耐沾污多彩涂料及其制备方法
WO2019091819A1 (en) 2017-11-08 2019-05-16 Basf Se Polymeric additives for reducing the viscosity loss on tinting
AU2019200390B2 (en) * 2018-01-31 2024-04-11 Dow Global Technologies Llc Coating formulation with a poly(oxyalkylene-urethane) associative thickener modified with a hydrophobic oligomer
BR102020001678A2 (pt) 2019-02-15 2020-09-15 Rohm And Haas Company Polímero de óxido de alquileno capeado com um copolímero em bloco de alcoxilato de éter arílico
WO2023230470A1 (en) * 2022-05-24 2023-11-30 Hercules Llc Surfactant comprising polyol/ monool - epoxy products and its process for preparation, composition and method of use thereof

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2065150A (en) * 1936-01-02 1936-12-22 O'brien Eugene Fruit container
US3445436A (en) * 1966-06-14 1969-05-20 Tremco Mfg Co Polyurethane polyepoxides
JPS4920950B1 (ru) * 1970-07-11 1974-05-28
US4079028A (en) * 1975-10-03 1978-03-14 Rohm And Haas Company Polyurethane thickeners in latex compositions
JPS5345965A (en) * 1976-10-07 1978-04-25 Toshiba Corp Fluorescent material slurry
US4411819A (en) * 1979-10-22 1983-10-25 Basf Wyandotte Corporation Thickening aqueous compositions with polyethers modified with alpha-olefin oxides
US4709099A (en) * 1979-10-22 1987-11-24 Basf Corporation Polyethers modified with alpha olefin oxides
US4665239A (en) * 1979-10-22 1987-05-12 Basf Corporation Polyethers modified with alpha olefin oxides
US4354956A (en) * 1979-10-22 1982-10-19 Basf Wyandotte Corporation Thickening aqueous systems with alpha-olefin oxide-modified liquid polyether thickeners
US4288639A (en) 1979-10-22 1981-09-08 Basf Wyandotte Corporation Alpha-olefin oxide-modified liquid polyether thickeners
US4432881A (en) * 1981-02-06 1984-02-21 The Dow Chemical Company Water-dispersible hydrophobic thickening agent
JPS5827771A (ja) * 1981-08-11 1983-02-18 Nippon Oil & Fats Co Ltd 水系増粘剤
US4426485A (en) * 1982-06-14 1984-01-17 Union Carbide Corporation Polymers with hydrophobe bunches
CA1210187A (en) * 1983-06-30 1986-08-19 Yasumi Shimizu Rubbery solid polymer or copolymer of glycidyl carboxylate and composition thereof
FI843517L (fi) 1983-10-17 1985-04-18 Hercules Inc Belaeggningskompositioner innehaollande kopolymerer av etylenoxid och laongkedjade epoxider.
US4673518A (en) * 1986-03-07 1987-06-16 Basf Corporation Synthetic polyether thickeners and thickened aqueous systems containing them
GB8625659D0 (en) * 1986-10-27 1986-11-26 Secr Defence Polymeric ion conductors
US4810503A (en) * 1987-03-31 1989-03-07 Basf Corporation Polymers which form gels at low concentrations in water
IT1224421B (it) 1987-12-29 1990-10-04 Lamberti Flli Spa Galattomannani modificati e realtivo procedimento di preparazione
JPH0826105B2 (ja) * 1989-11-22 1996-03-13 株式会社日本触媒 低比重で耐衝撃性の優れた光学材料、該光学材料を用いた光学成形体およびそれらの製法
US5292828A (en) * 1992-05-29 1994-03-08 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing complex hydrophobic groups
US5504123A (en) * 1994-12-20 1996-04-02 Union Carbide Chemicals & Plastics Technology Corporation Dual functional cellulosic additives for latex compositions
US5574127A (en) * 1995-04-05 1996-11-12 Aqualon Hydrophobically modified poly(acetal-polyethers)
EP0997502A1 (en) * 1998-10-30 2000-05-03 Hercules Incorporated Combinations of associative thickeners and aqueous protective coating compositions
US6162877A (en) * 1998-12-04 2000-12-19 Hercules Incorporated Hydrophobically modified comb copolymers
US6337366B1 (en) * 1999-03-25 2002-01-08 Rohm And Haas Method of improving viscosity stability of aqueous compositions
JP2001164087A (ja) * 1999-12-03 2001-06-19 Polyplastics Co 分岐ポリアセタール樹脂組成物
DE60044741D1 (de) * 2000-04-07 2010-09-09 Mitsui Chemicals Inc Kammförmiges diol, wasserlösliche polyurethane und ihre verwendung
JPWO2002083326A1 (ja) * 2001-04-13 2004-08-05 関西ペイント株式会社 断熱塗装仕上げ方法
WO2002083813A1 (en) * 2001-04-16 2002-10-24 Wsp Chemicals & Technology Llc Compositions for treating subterranean zones penetrated by well bores
KR20040094800A (ko) 2002-04-03 2004-11-10 교와 핫꼬 케미카루 가부시키가이샤 폴리알케닐 에테르계 수지
FR2840907B1 (fr) * 2002-06-14 2005-11-25 Polymerexpert Sa Polymere thermo-sensible ameliore susceptible de former des gels thermoreversibles a haut indice de viscosification
DE10310175A1 (de) * 2003-03-08 2004-09-16 Süd-Chemie AG Assoziativverdickerpräparation
US6900255B2 (en) * 2003-05-16 2005-05-31 Hercules Incorporated Suppression of aqueous viscosity of nonionic associative thickeners
US7402627B2 (en) * 2003-08-18 2008-07-22 Columbia Insurance Company Precursor colorant composition for latex paint

Also Published As

Publication number Publication date
US7550542B2 (en) 2009-06-23
CN1946815A (zh) 2007-04-11
EP1709126A1 (en) 2006-10-11
US20090253832A1 (en) 2009-10-08
PL1709126T3 (pl) 2008-10-31
JP5443668B2 (ja) 2014-03-19
US20050150418A1 (en) 2005-07-14
WO2005068564A1 (en) 2005-07-28
DE602005005301T2 (de) 2009-03-26
RU2006128611A (ru) 2008-02-20
TW200602445A (en) 2006-01-16
ES2299006T3 (es) 2008-05-16
US8748542B2 (en) 2014-06-10
CA2552723A1 (en) 2005-07-28
CN1946815B (zh) 2015-06-17
BRPI0506446A (pt) 2006-12-26
JP2007519784A (ja) 2007-07-19
CA2552723C (en) 2014-03-18
DE602005005301D1 (de) 2008-04-24
ATE388999T1 (de) 2008-03-15
EP1709126B1 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
RU2388775C2 (ru) Синтетический загуститель для краски, совместимый с красителем
CN100368462C (zh) 经疏水改性的梳形共聚物
RU2181365C2 (ru) Ассоциативные загустители
AU769521B2 (en) Method of improving viscosity stability of aqueous compounds
US20100069536A1 (en) Process for tailoring water-borne coating compositions
JP2009521574A (ja) 分岐ポリグリコール及び分岐ポリエーテル官能性有機ポリシロキサン、並びにそれを含む被覆
CN101676342A (zh) 增稠的组合物和使水性聚合物组合物增稠的方法
SE463313B (sv) Vattenloesliga, nonjoniska cellulosaetrar och deras anvaendning i maalarfaerger
JPH08501329A (ja) ポリウレタン、その用途およびポリウレタンを増粘剤として含む水性塗料
CA2335688C (en) Nonionic cellulose ether with improved thickening properties
CA2162899C (en) Polymeric thickeners for aqueous compositions
CA1335855C (en) Polymers comprised of fully and partially hydrolyzed poly(vinyl acetate) and alkyl ketene dimer repeating units and aqueous solutions containing such polymers
MXPA06007751A (en) Colorant compatible synthetic thickener for paint

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20180606