RU2383898C2 - Способ и система спутникового позиционирования - Google Patents

Способ и система спутникового позиционирования Download PDF

Info

Publication number
RU2383898C2
RU2383898C2 RU2008119347/09A RU2008119347A RU2383898C2 RU 2383898 C2 RU2383898 C2 RU 2383898C2 RU 2008119347/09 A RU2008119347/09 A RU 2008119347/09A RU 2008119347 A RU2008119347 A RU 2008119347A RU 2383898 C2 RU2383898 C2 RU 2383898C2
Authority
RU
Russia
Prior art keywords
information
beacons
navigation
decoder
transmitted
Prior art date
Application number
RU2008119347/09A
Other languages
English (en)
Other versions
RU2008119347A (ru
Inventor
Робер ЛЕНЕ (FR)
Робер ЛЕНЕ
Юг ФАВЭН-ЛЕВЕК (FR)
Юг ФАВЭН-ЛЕВЕК
Мартэн РИППЛЬ (FR)
Мартэн РИППЛЬ
Original Assignee
Астриум Сас
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Астриум Сас filed Critical Астриум Сас
Publication of RU2008119347A publication Critical patent/RU2008119347A/ru
Application granted granted Critical
Publication of RU2383898C2 publication Critical patent/RU2383898C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/08Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radio Relay Systems (AREA)

Abstract

Изобретение относится к способу и системе спутникового позиционирования. Техническим результатом является уменьшение времени между моментом, когда на спутнике возникает отклонение от нормы, и моментом, когда пользователь оповещен об этом. Технический результат достигается тем, что множество навигационных спутников, управляемых, по меньшей мере, одним наземным центром управления, размещены на средневысотных орбитах, передают посредством однонаправленных линий связи через систему опорных маяков в наземный центр управления индивидуальную для спутника информацию о времени и местоположении. 3 н.п. и 7 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к системам спутникового наземного позиционирования.
Известно, что системы спутникового позиционирования содержат созвездие навигационных спутников, размещенных на средневысотных орбитах (порядка 25000 км) вокруг Земли. Эти навигационные спутники и их орбиты обычно называются «MEO-спутниками» («среднеорбитальными спутниками») и «MEO-орбитами» («средневысотными орбитами»), соответственно (Medium Earth Orbit - средневысотная околоземная орбита) в данной области техники. MEO-спутники равномерно распределены по нескольким орбитальным плоскостям, так что в любой точке Земли пользователь может видеть несколько MEO-спутников, то есть быть на прямых линиях с ними (по меньшей мере тремя, однако четырьмя, если пользователь желает узнать свою высоту), и выводить свои собственные наземные координаты из этого.
Каждый MEO-спутник имеет атомные часы высокой стабильности и точности, а также электронный элемент оборудования, который адресует наземным пользователям сообщения, содержащие скорректированное время (относительно общего опорного сигнала) и эфемериды спутника. На основе этих сообщений, принятых с нескольких MEO-спутников, пользователь определяет свое расстояние от различных спутников в прямой видимости и, следовательно, выводит из него свое местоположение в наземных координатах. Чтобы гарантировать номинальную работу созвездия MEO-спутников, наземный центр управления выполняет измерение орбиты и бортового времени для каждого MEO-спутника. Этот центр управления вычисляет эфемериды MEO-спутников и поправку времени, которые должны транслироваться каждым MEO-спутником в предстоящие промежутки времени.
Основной недостаток этих систем наземного позиционирования состоит в том, что качество позиционирования наземных пользователей основано на качестве эфемерид и скорректированного времени, транслируемых каждым MEO-спутником. Поэтому вслед за ошибкой центра управления или неисправности на борту MEO-спутника может случиться, что реальное местоположение, скорректированное время и/или эфемериды, транслируемые одним или более MEO-спутниками, становятся ложными, тем самым вызывая увеличение погрешности позиционирования для всех пользователей в зоне видимости спутников. Ошибка в итоге будет обнаружена и исправлена центром управления, который отслеживает MEO-спутники, но, между тем, определенные пользователи, которые пользуются системой для важных функций, например навигации, могут оказаться в ситуации крайней небезопасности.
Уже было предложено несколько решений для изменения конструкции MEO-спутников и их синхронизации по внешним опорным тактовым сигналам, с тем чтобы повысить достоверность сообщений, передаваемых MEO-спутниками. Однако во всех этих решениях обнаружение аномалий на MEO-спутниках гарантируется сетью наземных станций мониторинга, которые передают в центр управления информационный сигнал касательно этих аномалий, а исправление последних поручается упомянутому центру управления. Дополнительно, чтобы быть эффективными, эти решения вводят в действие по меньшей мере пятьдесят станций мониторинга, постоянно соединенных с упомянутым центром управления параллельно, посредством многочисленных каналов. Это имеет следствием высокие затраты на монтаж и использование.
Более того, обнаружение аномалий сетью наземных станций мониторинга служит причиной сильного ослабления в точности нахождения местоположения MEO-спутников. Более точно, для конкретного MEO-спутника все измерения расстояний выполняются с наземных станций, которые поэтому все расположены в пределах уменьшенного пространственного угла, так как диаметр земли мал по отношению к диаметру MEO-орбит. В результате точность в горизонтальной плоскости ограничивается, соответственно снижая надежность мгновенного обнаружения аномалий.
Дополнительно все измерения, выполняемые такой сетью наземных станций мониторинга, нарушаются локальными эффектами (тропосферными, ионосферными ошибками, ошибками многолучевого распространения), тем самым вызывая погрешности измерений, которые ухудшают достоверность обнаружения аномалий и создают опасность формирования ложных предупредительных сигналов, если было зафиксировано пороговое значение допуска, очень близкое к этим погрешностям.
Дополнительный недостаток обнаружения аномалий сетью наземных станций мониторинга является результатом времени запаздывания между моментом, когда возникает аномалия на MEO-спутнике, и мгновением, когда пользователь, в конечном счете, оповещен об этой аномалии. Более точно, цепь обнаружения/уведомления включает в себя всемирную сеть станций, центр управления, который на основе всех измерений станций будет обнаруживать аномалию, станции для транслирования предупредительного сообщения на спутники и систему для ретрансляции предупредительного сообщения на борт MEO-спутника. Эта длинная и сложная цепь вызывает время запаздывания между наступлением аномалии и уведомлением пользователей, которое едва ли совместимо с высочайшими требованиями надежности в эксплуатации, например, такими как применимые в области аэронавтики.
Цель настоящего изобретения состоит в том, чтобы исправить эти недостатки.
Для этой цели согласно изобретению способ позиционирования пользователя на Земле, упомянутый способ, внедряет множество навигационных спутников, которые размещены на средневысотных орбитах и которые управляются по меньшей мере одним наземным центром управления, каждый из упомянутых навигационных спутников передает первую информацию о времени и местоположении, которые индивидуальны для него, примечателен тем, что:
- множество опорных маяков, управляемых упомянутым наземным центром управления, и при этом каждый способен передавать специальную вторую информацию о времени и местоположении, а также специальный радиоэлектрический сигнал распределены в пространстве; и
- на борту каждого навигационного спутника:
▪ детектируют упомянутую передаваемую вторую информацию о времени и местоположении по меньшей мере некоторыми из упомянутых опорных маяков;
▪ вычисляют первые значения и вторые значения, соответственно представляющие расстояния между упомянутым навигационным спутником и каждым из упомянутых маяков, и скорость изменения этих расстояний на основе упомянутой первой и второй информации о времени и местоположении;
▪ измеряют изменение в доплеровской частоте, появляющееся в упомянутых передаваемых радиоэлектрических сигналах, упомянутыми опорными маяками;
▪ вычисляют третьи значения и четвертые значения, соответственно представляющие расстояния между упомянутым навигационным спутником и каждым из упомянутых маяков, и скорость изменения этих расстояний на основе упомянутых изменений в доплеровской частоте;
▪ для каждого опорного маяка сравнивают упомянутое первое значение расстояния и упомянутое третье значение расстояния, а также упомянутое второе значение скорости изменения расстояния и упомянутое четвертое значение скорости изменения расстояния;
▪ генерируют сигнал, представляющий результаты упомянутых сравнений; и
▪ упомянутый навигационный спутник передает этот сигнал результата сравнения упомянутому пользователю по меньшей мере в случае, где упомянутое сравнение показывает аномалию.
Таким образом, в силу настоящего изобретения каждый навигационный MEO-спутник находится на однонаправленной связи с упомянутыми передающими маяками и может проверять автономным образом, что существенная информация, которую он передает пользователям, является действительной в каждый момент времени. Если проверка прерывается или если она показывает отклонения по отношению к этой существенной информации, рассматриваемый навигационный спутник включает в последнюю сообщение, указывающее, что упомянутая информация является либо сомнительной (случаи, в которых цепь проверки прерывается или обнаруженное отклонение является значительным, но приемлемым), либо ложной. Поэтому пользователи могут незамедлительно либо игнорировать информацию, возникающую из соответствующего навигационного спутника, либо снижать вес, выделенный последней в вычислении местоположения.
Упомянутые опорные маяки могут по меньшей мере частично быть расположены на Земле или, предпочтительно, на борту спутников на высоких орбитах (например, порядка 40000 км). В последнем случае преимущественно, чтобы упомянутые несущие маяки спутники были геосинхронными, с тем чтобы постоянно оставаться в пределах видимости упомянутого центра управления. В случае, где высокие орбиты не являются геосинхронными, предусмотрено несколько станций, распределенных вокруг Земли и связанных с упомянутым центром управления.
В соответствии с настоящим изобретением MEO-система спутникового позиционирования, содержащая множество навигационных спутников, которые размещены на средневысотных орбитах и которые управляются по меньшей мере одним наземным центром управления, при этом каждый из упомянутых навигационных спутников содержит атомные часы, приемник-декодер радиосигналов управления, передаваемых упомянутым наземным центром управления, формирователь первой информации о времени и местоположении, который связан с упомянутыми часами и с упомянутым приемником-декодером, и передатчик, передающий упомянутую первую информацию упомянутому пользователю, примечательна тем, что:
- упомянутая система содержит множество опорных маяков, распределенных в пространстве и управляемых упомянутым наземным центром управления, при этом каждый маяк способен передавать вторую информацию о времени и местоположении, а также радиоэлектрический сигнал; и
- каждый навигационный спутник, кроме того, содержит:
▪ средство для приема упомянутой второй информации, передаваемой по меньшей мере некоторыми из упомянутых опорных маяков, при этом упомянутое средство приема измеряет изменение в доплеровской частоте, возникающее в упомянутых радиоэлектрических сигналах, передаваемых упомянутыми опорными маяками;
▪ средство для декодирования упомянутой второй информации, принятой упомянутым средством приема;
▪ средство вычисления, принимающее упомянутую вторую информацию, декодированную упомянутым средством декодирования, упомянутые изменения в доплеровской частоте и упомянутую первую информацию, переданную упомянутым формирователем, при этом упомянутое средство вычисления:
* вычисляет упомянутое первое, второе, третье и четвертое значения на основе упомянутой первой и второй информации, с одной стороны, и упомянутых изменений в доплеровской частоте, с другой стороны;
* сравнивает, для каждого опорного маяка, упомянутое первое значение расстояния и упомянутое третье значение расстояния, а также упомянутое второе значение скорости изменения расстояния и упомянутое четвертое значение скорости изменения расстояния; и
* адресует результаты сравнений в упомянутый формирователь, так что последний, как только возможно, включает их в упомянутую первую информацию.
Логика решения, применяемая средством вычисления, чтобы определять качество и безопасность навигационных данных, может быть следующей:
- если все состоятельны в предопределенных предписанных пределах, то средство вычисления сигнализирует об этом факте в формирователь навигационного кадра MEO-спутника, который включает в навигационную информацию, отправляемую пользователям, сообщение, сигнализирующее, что данные позиционирования MEO-спутника корректны,
- если связь с маяками низкого качества (недостаточно доступных маяков или плохой энергетический потенциал линии связи), то данные сомнительны, и средство вычисления сигнализирует об этом факте в формирователь навигационного кадра (первой информации), который включает в навигационную информацию, отправляемую пользователям, сообщение, сигнализирующее, что качество данных позиционирования MEO-спутника недостоверно, а потому сомнительно,
- в заключение, если доплеровские сигналы, принятые от маяков, и/или расстояние MEO-спутника от этих маяков противоречивы с навигационными данными MEO-спутника, то компьютер сигнализирует об этом факте в формирователь навигационного кадра (первой информации), который включает в навигационную информацию, отправляемую пользователям, предупредительное сообщение, сигнализирующее, что данные позиционирования MEO-спутника являются ложными.
Упомянутая первая информация, адресованная в упомянутое средство вычисления, может дискретизироваться непосредственно на выходе упомянутого формирователя первой информации. Однако, с тем чтобы гарантировать, что качество сигнала, передаваемого в итоге, является хорошим, кроме того, возможно предусматривать на каждом навигационном спутнике вспомогательный приемник-декодер для приема и декодирования упомянутой первой информации, передаваемой упомянутым передатчиком, упомянутый вспомогательный приемник-декодер адресует упомянутую первую информацию в упомянутое средство вычисления.
Настоящее изобретение, более того, содержит навигационный спутник, такой как описанный выше.
Фигуры прилагаемых чертежей будут разъяснять способ, которым может быть воплощено изобретение. На этих фигурах идентичные ссылки обозначают подобные элементы.
Фиг.1 - схематический и частичный вид системы спутникового позиционирования в соответствии с настоящим изобретением.
Фиг.2 - схема электронного оборудования навигационного спутника в соответствии с настоящим изобретением.
Система спутникового позиционирования, схематично и частично изображенная на фиг.1, содержит:
- навигационные спутники 1, называемые MEO-спутниками, описывающие средневысотные орбиты 2 (MEO-орбиты) вокруг Земли T и оборудованные антенными системами 3; и
- наземный центр 4 управления, оборудованный системой антенн 5.
Известным образом на борту каждого MEO-спутника 1 находится электронный элемент оборудования 6 (см. фиг.2), способный принимать, через надлежащую часть 3.1 антенной системы 3, радиосигналы управления, передаваемые центром 4 управления, и передавать, через надлежащую часть 3.2 антенной системы 3, сигналы позиционирования пользователям, расположенным на земле T. Подобным известным образом, упомянутый электронный элемент оборудования 6 содержит приемник-декодер радиосигналов управления 7, связанный с частью 3.1 антенны, атомные часы 8, формирователь навигационных кадров 9, принимающий сигналы от приемника-декодера 7 и часов 8, и радиопередатчик 10, принимающий навигационные кадры (скорректированное время и эфемериды) из формирователя 9 и адресующий их пользователям через часть 3.2 антенны.
В соответствии с настоящим изобретением система спутникового позиционирования по фиг.1, кроме того, содержит опорные маяки 11, оборудованные антеннами 12 для передачи радионесущей с сообщением, содержащим их местоположения (в трехмерных координатах или в виде эфемерид) и временной опорный сигнал, повторяемый с частотой повторения, которая является большей, чем цикл передачи сигналов, передаваемых спутниками 1 на Землю T.
Опорные маяки 11 расположены либо на Земле T, либо на борту спутников 14, описывающих высокие орбиты 15. В последнем случае антенны 12 опорных маяков 11 составляют часть антенных систем 16 спутников 14.
Сигналы, передаваемые опорными маяками 11 посредством антенн 12, управляются и синхронизируются наземным центром 4 управления.
В соответствии с изобретением сигналы, приходящие от опорных маяков 11, используются спутниками 1 для подтверждения сигналов, которые они сами передают наземным пользователям.
Для этой цели, как схематически проиллюстрировано на фиг.2, к электронному элементу оборудования 6, установленному на борту каждого спутника 1, присоединен комплементарный элемент оборудования 17, принимающий сигналы от маяков 11 через надлежащую часть 3.3 антенной системы 3 упомянутого спутника 1.
Электронный элемент оборудования 17 содержит приемники 18, принимающие упомянутые сигналы от маяков 11 посредством упомянутой части 3.3 антенны. Приемники 18 измеряют доплеровские сигналы радиочастот, передаваемых различными опорными маяками 11, и адресуют эти доплеровские сигналы в компьютер 19 состоятельности через линию 20 связи. Более того, приемники 18 адресуют данные, принятые с опорных маяков 11, в декодер 21. Упомянутый декодер 21 извлекает информацию о местоположении и времени, принятую с упомянутых опорных маяков 11, и адресует ее в упомянутый компьютер 19 состоятельности.
Дополнительно по линии 22 связи компьютер 19 состоятельности принимает навигационные кадры, сформированные формирователем 9 электронного элемента оборудования 6. Таким образом, компьютер 19 состоятельности:
- вычисляет для спутника 1, который его несет, расстояния от различных опорных маяков 11, а также скорость изменения этих расстояний, учитывая, с одной стороны, декодированную информацию о местоположении и времени последних, доставленную декодером 21, и, с другой стороны, скорректированные бортовое время и эфемериды, возникающие из упомянутого формирователя навигационных кадров 9;
- проверяет, что эти вычисленные расстояния и скорости изменения расстояний непротиворечивы с доплеровскими сигналами, измеренными приемниками 18; и
- передает результат этой проверки состоятельности в формирователь навигационных кадров 9 через линию 23 связи.
На фиг.2, кроме того, изображен приемник-декодер навигационных кадров 24, снабженный приемной антенной 3.4, формирующей часть антенной системы 3. Приемник-декодер 24 способен принимать навигационные кадры, передаваемые радиопередатчиком 10, посредством его антенны 3.2, и отправлять их в компьютер 19 состоятельности. Приемник-декодер 24, следовательно, способен замещать и/или дополнять линию 22 связи.

Claims (10)

1. Способ позиционирования пользователя на Земле (Т), упомянутый способ внедряет множество навигационных спутников (1), которые размещены на средневысотных орбитах (2) и которые управляются по меньшей мере одним наземным центром (4) управления, каждый из упомянутых навигационных спутников (1) передает первую информацию о времени и местоположении, которые индивидуальны для него, в котором:
множество опорных маяков (11), управляемых упомянутым наземным центром (4) управления, и при этом каждый способен передавать вторую информацию о времени и местоположении, а также радиоэлектрический сигнал, распределены в космическом пространстве; и
на борту каждого навигационного спутника (I):
детектируют упомянутую передаваемую вторую информацию о времени и местоположении по меньшей мере некоторыми из упомянутых опорных маяков (11);
вычисляют первые значения и вторые значения, соответственно представляющие расстояния между упомянутым навигационным спутником (1) и каждым из упомянутых маяков (11), и скорость изменения этих расстояний, на основе упомянутой первой и второй информации о времени и местоположении;
измеряют изменение в доплеровской частоте, появляющееся в упомянутых передаваемых радиоэлектрических сигналах, упомянутыми опорными маяками (11);
вычисляют третьи значения и четвертые значения, соответственно представляющие расстояния между упомянутым навигационным спутником (1) и каждым из упомянутых маяков (11), и скорость изменения этих расстояний, на основе упомянутых изменений в доплеровской частоте;
для каждого опорного маяка (11), сравнивают упомянутое первое значение расстояния и упомянутое третье значение расстояния, а также упомянутое второе значение скорости изменения расстояния и упомянутое четвертое значение скорости изменения расстояния;
формируют сигнал, представляющий результаты упомянутых сравнений; и
упомянутый навигационный спутник (1) передает этот сигнал результата сравнения упомянутому пользователю, по меньшей мере в случае, где упомянутое сравнение показывает отклонение от нормы.
2. Способ по п.1, в котором по меньшей мере некоторые опорные маяки (11) расположены на Земле (Т).
3. Способ по п.1, в котором по меньшей мере некоторые опорные маяки (11) расположены на борту спутников (14) на высоких орбитах (15).
4. Способ по п.3, в котором спутники (14) на высоких орбитах (15) являются геосинхронными.
5. Система для реализации способа позиционирования пользователя на Земле (Т) по любому из пп.1-4, содержащая множество навигационных спутников (1), которые размещены на средневысотных орбитах (2) и которые управляются по меньшей мере одним наземным центром (4) управления, при этом каждый из упомянутых навигационных спутников (1) содержит атомные часы (8), приемник-декодер (7) радиосигналов управления, передаваемых упомянутым наземным центром (4) управления, формирователь (9) первой информации о времени и местоположении, который связан с упомянутыми часами (8) и с упомянутым приемником-декодером (7), и передатчик (10), передающий упомянутую первую информацию упомянутому пользователю, при этом
упомянутая система содержит множество опорных маяков (11), распределенных в пространстве и управляемых упомянутым наземным центром (4) управления, при этом каждый маяк (11) способен передавать вторую информацию о времени и местоположении, а также радиоэлектрический сигнал; и
каждый навигационный спутник (1), дополнительно содержит:
средство (18) для приема упомянутой второй информации, передаваемой по меньшей мере некоторыми из упомянутых опорных маяков (11), при этом упомянутое средство (18) приема измеряет изменение в доплеровской частоте, возникающее в упомянутых радиоэлектрических сигналах, передаваемых упомянутыми опорными маяками (11);
средство (21) для декодирования упомянутой второй информации, принятой упомянутым средством (18) приема;
средство (19) вычисления, принимающее упомянутую вторую информацию, декодированную упомянутым средством (21) декодирования, упомянутые изменения в доплеровской частоте и упомянутую первую информацию, переданную упомянутым формирователем (9) первой информации, упомянутое средство (19) вычисления:
вычисляет упомянутое первое, второе, третье и четвертое значения на основе упомянутой первой и второй информации, с одной стороны, и упомянутых изменений в доплеровской частоте, с другой стороны;
сравнивает для каждого опорного маяка (11) упомянутое первое значение расстояния и упомянутое третье значение расстояния, а также упомянутое второе значение скорости изменения расстояния и упомянутое четвертое значение скорости изменения расстояния; и
адресует результаты сравнений в упомянутый формирователь, так что последний, включает их в упомянутую первую информацию.
6. Система по п.5, в которой упомянутая первая информация, адресованная в упомянутое средство (19) вычисления, дискретизируется на выходе упомянутого формирователя (9) первой информации.
7. Система по п.5, в которой каждый навигационный спутник (1) дополнительно содержит вспомогательный приемник-декодер (24) для приема и декодирования упомянутой первой информации, передаваемой упомянутым передатчиком (10), при этом упомянутый вспомогательный приемник-декодер (24) адресует упомянутую первую информацию в упомянутое средство (19) вычисления.
8. Навигационный спутник для системы позиционирования по п.5, упомянутый навигационный спутник (1) содержит атомные часы (8), приемник-декодер (7) радиосигналов управления, передаваемых наземным центром (4) управления, формирователь (9) первой информации о времени и местоположении, который связан с упомянутыми часами (8) и с упомянутым приемником-декодером (7), и передатчик (10), передающий упомянутую первую информацию упомянутому пользователю, и при этом упомянутая навигационная система содержит множество опорных маяков (11), распределенных в пространстве и управляемых упомянутым наземным центром (4) управления, причем каждый маяк (11) способен передавать вторую информацию о времени и местоположении, а также радиоэлектрический сигнал, при этом он дополнительно содержит:
средство (18) для приема упомянутой второй информации, передаваемой по меньшей мере некоторыми из упомянутых опорных маяков (11), при этом упомянутое средство (18) приема измеряет изменение в доплеровской частоте, возникающее в упомянутых радиоэлектрических сигналах, передаваемых упомянутыми опорными маяками (11);
средство (21) для декодирования упомянутой второй информации, принятой упомянутым средством (18) приема;
средство (19) вычисления, принимающее упомянутую вторую информацию, декодированную упомянутым средством (21) декодирования, упомянутые изменения в доплеровской частоте и упомянутую первую информацию, переданную упомянутым формирователем (9) первой информации, при этом упомянутое средство (19) вычисления:
вычисляет упомянутое первое, второе, третье и четвертое значения на основе упомянутой первой и второй информации, с одной стороны, и упомянутых изменений в доплеровской частоте, с другой стороны;
сравнивает для каждого опорного маяка (11) упомянутое первое значение расстояния и упомянутое третье значение расстояния, а также упомянутое второе значение скорости изменения расстояния и упомянутое четвертое значение скорости изменения расстояния; и
адресует результаты сравнений в упомянутый формирователь, так что последний, включает их в упомянутую первую информацию.
9. Спутник по п.8, в котором упомянутая первая информация, адресованная в упомянутое средство (19) вычисления, дискретизируется на выходе упомянутого формирователя (9) первой информации.
10. Спутник по п.8, при этом он дополнительно содержит вспомогательный приемник-декодер (24) для приема и декодирования упомянутой первой информации, передаваемой упомянутым передатчиком (10), при этом упомянутый вспомогательный приемник-декодер (24) отправляет упомянутую первую информацию в упомянутое средство (19) вычисления.
RU2008119347/09A 2007-05-18 2008-05-16 Способ и система спутникового позиционирования RU2383898C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0703562A FR2916279B1 (fr) 2007-05-18 2007-05-18 Procede et systeme de positionnement par satellites.
FR0703562 2007-05-18

Publications (2)

Publication Number Publication Date
RU2008119347A RU2008119347A (ru) 2009-11-27
RU2383898C2 true RU2383898C2 (ru) 2010-03-10

Family

ID=38823506

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008119347/09A RU2383898C2 (ru) 2007-05-18 2008-05-16 Способ и система спутникового позиционирования

Country Status (11)

Country Link
US (1) US7932858B2 (ru)
EP (1) EP1992958B1 (ru)
JP (1) JP5344674B2 (ru)
CN (1) CN101308208B (ru)
BR (1) BRPI0802078A2 (ru)
CA (1) CA2631464C (ru)
DE (1) DE602008001124D1 (ru)
ES (1) ES2345175T3 (ru)
FR (1) FR2916279B1 (ru)
IL (1) IL191414A (ru)
RU (1) RU2383898C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698159C1 (ru) * 2019-05-06 2019-08-22 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") Система оценки устойчивости спутниковой системы позиционирования, например системы ГЛОНАСС, к неблагоприятным внешним воздействиям
RU2713477C1 (ru) * 2016-05-12 2020-02-05 Роузмаунт Инк. Система позиционирования
US10942250B2 (en) 2014-03-03 2021-03-09 Rosemount Inc. Positioning system
US11102746B2 (en) 2014-03-03 2021-08-24 Rosemount Inc. Positioning system
US11924924B2 (en) 2018-09-17 2024-03-05 Rosemount Inc. Location awareness system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918827B1 (fr) * 2007-07-10 2009-10-16 Astrium Sas Systeme pour le positionnement d'un utilisateur terrestre.
US20100117884A1 (en) * 2008-11-11 2010-05-13 Qualcomm Incorporated Method for performing consistency checks for multiple signals received from a transmitter
JP5424338B2 (ja) * 2010-03-18 2014-02-26 日本電気株式会社 衛星測位システムの異常値検出装置、異常値検出方法及び異常値検出プログラム
CN103017760B (zh) * 2011-09-27 2016-05-04 上海航天控制工程研究所 一种大椭圆轨道火星探测器自主对火定向方法
CN103338086B (zh) * 2013-07-10 2015-02-11 航天恒星科技有限公司 一种卫星移动通信终端射频一致性测试系统及其测试方法
CN105005056B (zh) * 2015-07-24 2017-12-05 上海微小卫星工程中心 一种基于动力学轨道外推的星载辅助gps方法及系统
CN108226863B (zh) * 2017-12-27 2021-12-03 武汉理工大学 一种单目卫星跟踪定位方法
CN111352133B (zh) * 2020-02-18 2022-04-08 北京空间飞行器总体设计部 一种基于时间模糊度解耦的高精度星历获取方法
CN113129472B (zh) * 2021-04-20 2023-07-25 树根互联股份有限公司 工况数据处理方法、装置、终端设备和可读存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125081A (ja) * 1984-07-06 1986-02-03 デツカ リミテツド 位置決定システム
JPS62228183A (ja) * 1986-03-28 1987-10-07 Nec Corp 周回人工衛星の姿勢および軌道の検知方法
JPH042913A (ja) * 1990-04-20 1992-01-07 Mitsubishi Electric Corp 宇宙機の航法装置
US5430657A (en) * 1992-10-20 1995-07-04 Caterpillar Inc. Method and apparatus for predicting the position of a satellite in a satellite based navigation system
JPH0743446A (ja) * 1993-08-02 1995-02-14 Aisin Seiki Co Ltd Gps衛星デ−タの検証装置
JPH07294620A (ja) * 1994-04-27 1995-11-10 Matsushita Electric Ind Co Ltd ドップラー測位装置
FR2741159B1 (fr) * 1995-11-14 1998-01-23 Centre Nat Etd Spatiales Systeme mondial de radiolocalisation et de radionavigation spatiale, balise, et recepteur mis en oeuvre dans un tel systeme
JP3656144B2 (ja) * 1996-02-21 2005-06-08 アイシン精機株式会社 Gps衛星を利用する測位装置
JP2953510B2 (ja) * 1997-03-19 1999-09-27 日本電気株式会社 衛星監視装置
US6229477B1 (en) * 1998-10-16 2001-05-08 Hughes Electronics Corporation Method and system for determining a position of a communication satellite utilizing two-way ranging
JP2000235067A (ja) * 1999-02-15 2000-08-29 Seiko Epson Corp Gps受信機
FR2808944B1 (fr) * 2000-05-12 2002-08-09 Agence Spatiale Europeenne Procede et systeme de localisation par satellites
US6603426B1 (en) * 2001-03-22 2003-08-05 Lockheed Martin Corporation Satellite integrity monitor and alert
US20040193373A1 (en) * 2003-03-25 2004-09-30 The Boeing Company Autonomous navigation error correction
JP4807728B2 (ja) * 2005-05-17 2011-11-02 富士重工業株式会社 車両の走行制御装置
CN100393583C (zh) * 2005-12-16 2008-06-11 西安电子科技大学 在轨地球同步自旋卫星红外弦宽差分定姿方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10942250B2 (en) 2014-03-03 2021-03-09 Rosemount Inc. Positioning system
US11102746B2 (en) 2014-03-03 2021-08-24 Rosemount Inc. Positioning system
US12000948B2 (en) 2014-03-03 2024-06-04 Rosemount Inc. Positioning system
RU2713477C1 (ru) * 2016-05-12 2020-02-05 Роузмаунт Инк. Система позиционирования
US11924924B2 (en) 2018-09-17 2024-03-05 Rosemount Inc. Location awareness system
RU2698159C1 (ru) * 2019-05-06 2019-08-22 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") Система оценки устойчивости спутниковой системы позиционирования, например системы ГЛОНАСС, к неблагоприятным внешним воздействиям

Also Published As

Publication number Publication date
RU2008119347A (ru) 2009-11-27
CN101308208A (zh) 2008-11-19
BRPI0802078A2 (pt) 2009-01-13
IL191414A0 (en) 2008-12-29
IL191414A (en) 2011-06-30
EP1992958B1 (fr) 2010-05-05
CN101308208B (zh) 2012-08-15
ES2345175T3 (es) 2010-09-16
DE602008001124D1 (de) 2010-06-17
CA2631464A1 (fr) 2008-11-18
JP5344674B2 (ja) 2013-11-20
EP1992958A1 (fr) 2008-11-19
FR2916279B1 (fr) 2009-08-07
JP2008292480A (ja) 2008-12-04
FR2916279A1 (fr) 2008-11-21
US7932858B2 (en) 2011-04-26
CA2631464C (fr) 2016-02-16
US20080284644A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
RU2383898C2 (ru) Способ и система спутникового позиционирования
US6667713B2 (en) Self-monitoring satellite system
CN103797727B (zh) 使用交联测距和准确时间源的用于卫星星座的先进定时和时间传递
US6674398B2 (en) Method and apparatus for providing an integrated communications, navigation and surveillance satellite system
JP3548577B2 (ja) フェイルセーフ動作差分式gps地上局システム
US7400292B2 (en) GPS Navigation system with integrity and reliability monitoring channels
KR101181990B1 (ko) 다중 위성 항법 원시 보정 통합 기준국 장치
US9513376B1 (en) Low-cost high integrity integrated multi-sensor precision navigation system
US5736960A (en) Atomic clock augmented global positioning system receivers and global positioning system incorporating same
US20110231038A1 (en) Aircraft landing system using relative gnss
CN109001766B (zh) 基于组网低轨卫星的卫星导航系统完好性监测方法和系统
KR101181989B1 (ko) 다중 위성 항법 상태를 감시하기 위한 통합 감시 보강 시스템
DK2078965T3 (en) Monitoring device for an augmented satellite-based positioning system and augmented satellite-based positioning system
EP2367023B1 (en) Aircraft landing system using relative GNSS
US20040193373A1 (en) Autonomous navigation error correction
US6172638B1 (en) Satellite signal receiver with detector of incoherence between code phase and carrier frequency measurements
RU2666554C1 (ru) Способ повышения безопасности полета и посадки воздушных судов с помощью локальной контрольно-корректирующей станции
RU2152050C1 (ru) Спутниковая радионавигационная система определения местоположения объекта
KR101223308B1 (ko) 운송수단용 위성항법시스템의 수신기 고장 검출 장치 및 그 방법
CA2697086C (en) Aircraft landing system using relative gnss
US20230412263A1 (en) Low cost, size, weight, and power (cswap) geolocation capability utilizing signal characteristics passed through to backhaul network
Son et al. Enhancing Coastal Air Navigation: eLoran 3D Positioning and Cycle Slip Mitigation
Lopez Beltran Advanced ground based and satellite based precision approach systems

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170517