JP3548577B2 - フェイルセーフ動作差分式gps地上局システム - Google Patents

フェイルセーフ動作差分式gps地上局システム Download PDF

Info

Publication number
JP3548577B2
JP3548577B2 JP50826196A JP50826196A JP3548577B2 JP 3548577 B2 JP3548577 B2 JP 3548577B2 JP 50826196 A JP50826196 A JP 50826196A JP 50826196 A JP50826196 A JP 50826196A JP 3548577 B2 JP3548577 B2 JP 3548577B2
Authority
JP
Japan
Prior art keywords
satellite
receiver
specific
pseudorange
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50826196A
Other languages
English (en)
Other versions
JPH10504653A (ja
Inventor
スタンゲランド,ロドニー・エル
Original Assignee
ハネウエル・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハネウエル・インコーポレーテッド filed Critical ハネウエル・インコーポレーテッド
Publication of JPH10504653A publication Critical patent/JPH10504653A/ja
Application granted granted Critical
Publication of JP3548577B2 publication Critical patent/JP3548577B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Radio Relay Systems (AREA)

Description

発明の背景
発明の分野
本発明は衛星航法システム(GPS)に関し、具体的には、GPS受信機によって受信した衛星信号に付随する衛星固有の疑似距離誤差を求める地上局に係わる。
関連技術の説明
一般に衛星航法システムまたは単にGPSと呼ばれている衛星測位システムは現在当技術分野で公知である。たとえばNAVSTAR−GPSなど、このような特定のシステムは、水上および陸上輸送手段、航空機、測量機器などをはじめとする移動体の地心位置の測定に急速に使用されるようになっている。
航空機では、GPSシステムはナビゲーション、飛行制御、および空域制御が使用されている。これらのGPSシステムは、航空機の飛行任務中に情報を提供するために、慣性基準システムまたは姿勢機首方向基準システムと独立して動作することも互いに組み合わせて動作することもできる。
NAVSTARに類似した衛星航法システムは通例、複数の衛星から送信される衛星情報信号を受信するために移動体に搭載されたGPS受信機を使用する。各GPS衛星は、ユーザが選択されたGPS衛星と移動体のGPS受信機に付随するアンテナとの間のレンジまたは距離を測定することができるようにする情報信号を発信する。これらの距離と衛星位置の知識とを使用し、周知の三角測量技法を使用して受信装置の位置を計算する。たとえば、NAVSTAR−GPSシステムでは、GPS受信機を備えた航空機などの移動体が、所与のGPS衛星情報信号に含まれた疑似距離コードを検出し、そこから衛星信号の送信とGPS受信機でのその信号の受信との間の「経過時間」または時間遅延を導き出す。GPS受信機はこの時間遅延から、GPS受信機アンテナと衛星との間の距離を導き出し、これを疑似距離または疑似距離測定と呼ぶ場合がある。本明細書では、GPS受信機の位置、すなわち移動体の位置を、対応するアンテナ位置と総称する。
さらに、NAVSTAR−GPSシステムの一部として、各衛星情報信号には精密な天体暦データと航路暦データも含まれ、これらは両方とも当技術分野で公知のように対応する地球中心空間の衛星軌道を表す。受信機測定時における衛星の軌道位置の座標は、天体暦データまたは航路暦データから導き出すことができる。衛星の地心位置は、航路暦データよりも天体暦データから高い精度で計算することができる。しかし、天体暦データは周知のように、衛星情報信号の送信の瞬間の衛星軌道を精密に表しているため、それから数時間の間しか有効ではない。
世界測地システム座標系における移動体の三次元地心位置座標は、4基以上の衛星から受信した天体暦データまたは航路暦データを使用して測定することができることを理解されたい。本明細書では、当業者は世界測地システムが地球中心、地球固定の地心座標系であり、ユーザはそれを必要に応じて他の任意の座標系に変換することができるものと認識されたい。前記の座標系をWGS84地球中心地球固定矩形座標枠と呼ぶことがある。本明細書では、世界測位システム座標を前提とし、位置はこの三次元WGS84座標系を指すものとする。
GPS受信機ユニットの位置を測定するためには、予想される3基ではなく最低4つの衛星信号が必要である。これは、GPS受信機が、衛星の原子時計ほど正確でない受信機時計を備えているためである。したがって、当技術分野でよくわかるように、4基の異なる衛星から衛星情報信号を受信することによって、受信機時計誤差の補正を可能にする完全な解決角が得られる。本明細書では、補正された受信機時計時間を受信機時間と呼ぶ。したがって、GPS受信機ユニットが4基以上の衛星からの信号を使用することができる場合、受信機の地心位置をその「真の」地心位置から約100メートルの範囲内で測定することができる。本明細書では、複数の衛星からのデータを使用して三角測量技法で導き出された受信機位置を、「推定位置」と呼ぶ。受信機ユニットの推定位置の正確さは、大気条件、衛星のセレクティブ・アベイラビリティおよび衛星の見通し線を基準とした相対位置などをはじめとする多くの要因によって左右される。
GPSと呼ばれる衛星測位システムは、これまでに考案された中でずば抜けて最も正確なグローバル・ナビゲーション・システムであるが、「差分式GPS」と呼ばれる技法を使用すれば信じられないほどの正確さに向上させることができる。差分式GPSは「DGPS」と呼ぶこともある。DGPSは、1メートルよりも正確な測定正確さを実現することができる。差分式GPSは測量応用分野で広く使用されており、現在その使用は航空機の進入および着陸の応用分野に展開されつつある。
後者については、航空無線技術委員会(RTCA)が米国の政府と産業界の両方の航空学機関と共同してGPSシステム標準を作成した。RTCAは、1993年8月27日付の文書RTCA/DO−217号に具体的に記載されているようにDGPSシステムの性能要件を規定し、1993年8月27日付の文書RTCA/DO−208号に具体的に記載されているようにGPSのナビゲーション機器の性能要件を規定している。この両者は参照により本明細書に組み込まれる。
当技術分野ではよく理解できるように、差分式GPSシステムは、測量現場に設置されたGPS受信機アンテナを備える基準または「地上局」を組み込んでいる。GPS受信機の地心位置は測量技法によってわかる。GPS地上局は受信機と複数の衛星との間の疑似距離値を求める。衛星の位置が衛星信号に付随する衛星データから導き出され、受信機の位置もわかっているため、各追跡衛星についてその間の計算距離値を求めることができる。さらに、各追跡衛星について疑似距離値と計算距離値との差も求めることができる。この差を一般に「差分式補正」と呼ぶ。差分補正値は、本質的に、衛星信号伝搬時間から導き出された「観測」または「測定」疑似距離値と、アンテナ位置とそれに対応する衛星位置との間の計算距離値との疑似距離誤差である。
差分式運用の動因は、セレクティブ・アベイラビリティや電離層効果などの最大GPS誤差原因の多くは、それらの変則要素が衛星信号伝搬時間に影響を与えるため、空間的および時間的に近接した2つ以上の受信機に共通していることである。これらの誤差原因は差分式モードでほぼ解消することができる。すなわち、差分補正値または疑似距離誤差を求めて性能を大幅に強化することができる。差分式GPSシステムについては、「Design and Flight Test of a Differential GPS/Inertial Navigation System for Approach/Landing Guidance」(Navigation:Journal of Institute of Navigation,Summer 1991,Vol.38,No.2,pp103−122)という刊行物で示され、説明されており、参照により本明細書に組み込まれる。
当該刊行物の記載によると、それらの差分補正は任意のデータ・リンク技法により、同じ追跡衛星について地上局の受信機とほぼ同じ疑似距離観測値の誤差を生じるGPS受信機とそれに付随するアンテナを組み込んだ移動体に送信することができる。したがって、移動体の疑似距離観測地を差分補正によって補正することができ、移動体の地心位置のより精密な測定が可能になる。補正の正確さは地上局を基準とした移動体の近接度に多少依存する。
差分式GPS地上局はある種の応用分野のGPSの技術を進歩させたが、上述のRTCA刊行物で具体的に特定されているように、保全性、連続性、および可用性が強化された差分式GPS地上局が必要である。
発明の概要
本発明の目的は、連続性、機能の可用性、および保全性が強化された差分式GPS地上局を提供することである。
本発明では、複数のGPS受信機が、選択された衛星信号を受信し、受信した各衛星信号に付随する衛星データから、(i)前記複数の受信機のうちの対応する1つと前記複数の衛星のうちの1つとの間の真の距離値の推定値であり、前記複数の衛星のうちの特定の1つから前記複数の受信機のうちの特定の1つまでの対応する衛星信号伝搬時間に関係する、対応する受信機−衛星固有測定時点での受信機−衛星固有の疑似距離値と、(ii)前記受信機−衛星固有測定時点での対応する衛星位置とを導き出すように動作可能である。地上局は差分補正プロセッサをさらに備え、前記差分補正プロセッサは、地上局の地心位置と受信した衛星信号を送信する衛星の地心位置との間の距離である受信機−衛星固有計算距離値を求める信号プロセッサと、受信機−衛星固有計算値のうちの対応する1つと前記受信機−衛星固有疑似距離値との間の受信機−衛星固有の差を計算する信号プロセッサと、各受信衛星信号に付随する衛星固有の疑似距離誤差を、同じ衛星に付随する複数の受信機−衛星固有疑似距離値の関数として導き出す信号プロセッサとを含む。
図面の簡単な説明
第1図は、航空機の空港着陸システム用の差分式を示す略図である。
第2図は、第1図のシステムの疑似距離と構成要素を図示する略図である。
第3図は、本発明による差分式GPSシステムを示す略ブロック図である。
第4図は、第3図の衛星固有同期ブロックの詳細を示す略ブロック図である。
第5図は、第3図の衛星固有平均ブロックの詳細を示す略ブロック図である。
第6図は、第3図の保全性監視ブロックの詳細を示す略ブロック図である。
第7図は、本発明によるフェイルオペレーショナル/フェイルセーフ・差分式衛星航法システムを示す略ブロック図である。
好ましい実施形態の説明
第1図に、空港用精密進入着陸システムに応用する本発明による差分式GPS地上局を示す略図を図示する。この図には、一対の滑走路5および10が図示されている。滑走路に近接して、受信機A、B、およびCとして識別された3個の遠隔GPSアンテナ−受信機ユニットがあり、そのそれぞれのアンテナ11、12、および13は互いに約100メートル間隔を置いて配置され、それによってGPS衛星信号を別々に受信すると同時に、マルチパス衛星信号、すなわち地表面または地表面物体からの信号反射を最小限にするようになっている。さらに、遠隔GPS受信機A、B、およびCからの情報に応答して、データ・リンク送信機20によって航空機または移動体に送信することができる衛星固有の疑似距離補正110を導き出す差分補正プロセッサ300も図示されている。
第2図は、本発明による差分式GPSシステムの機構を図示した図である。第2図には、本発明のシステムをわかりやすくするために3個の衛星が図示されているが、GPSナビゲーション解決策には一般に最低4個の衛星が必要であり、受信機自立保全性監視システムに応用するには一般に5個の衛星が必要である。第2図には、軌道J1を通り、座標x,y,zを有する位置R1(t)にある第1の衛星または衛星本体SV1が図示されている。同様に、それぞれ軌道J2およびJ3を通り、それぞれ位置R2(t)およびR3(t)にある衛星SV2およびSV3が図示されている。衛星の位置は当然、時間に関係し、したがって特定の時点について固有である。
また、それぞれ真の測量位置GA(x,y,z)、GB(x,y,z)、およびGC(x,y,z)に配置され、受信機RCVR−#A、#B、#Cとしてそれぞれ示されているGPS受信機A、B、Cも図示されている。さらに、GPS衛星三角測量測地方式によって測定される位置にあり、RCVR−#Mとして示されたGPS受信機を有する、たとえば航空機202などの移動体も図示されている。図示されていないが、航空機202またはその他の移動体は、送信機20または同様のものから補正メッセージを受信するデータリンク受信機も備える。補正メッセージには、本明細書で差分補正と呼ぶ疑似距離補正と、それに関連づけられた衛星本体識別標識(SV/ID)、補正時刻、疑似距離補正レートを含めることができる。おわかりのように補正時刻と疑似距離補正レートを使用して、補正時刻から移動体のGPS受信機情報への適用時刻を推定することができる。
本明細書では、GPS受信機はそれに付随するアンテナの地心位置を求めることを意図したものであると理解されたい。以下の説明では、「受信機」という用語は、アンテナだけでなく、アンテナによって受信した衛星信号を追跡するそれに付随する電子部品または信号処理構成部品も意味する。さらに、特定の空港滑走路または対象となる空間位置の付近にあるGPS地上局受信機の数を「K」とし、特定の測定時点に追跡された衛星の合計数を「N」とする。
当技術分野ではよくわかっているように、各衛星本体は、周知のように衛星本体識別番号、天体暦、および衛星本体の軌道を表す航路暦データ、送信正常度および状況情報などの衛星固有データを含む衛星信号を別々に送信する。当技術分野でわかっているように、天体暦データは、最も正確な衛星本体軌道情報を示し、航路暦データはNAVSTARシステムを構成する衛星群全体の地心軌道情報を提供し、そこから任意の時間の任意の1つの衛星の地心位置を導き出すことができる。
各GPSは一般に、衛星本体識別番号、疑似距離、(キャリヤ信号から導き出される)デジタ疑似距離、衛星軌道情報、受信機の信号対雑音比、およびIOD(データ発行時間)などの情報を含む衛星信号から導き出される標準情報を提供するように動作可能である。したがって、第2図に示すように、GPS受信機A、B、およびCはそれぞれ固有の受信機−衛星固有疑似距離情報を、以下に述べるようにして差分補正プロセッサ300に供給する。
GPS受信機Aは、衛星SV1から送信された衛星信号に応答し、その信号から、P(t)A,1として識別される受信機−衛星固有の疑似距離値を少なくとも測定する。ここで「A,1」は受信機Aおよびそれに対応する衛星「1」すなわちSV1からの疑似距離測定値を指す。これは数学的にはP(t)k,nで表すことができ、ここで「k」は指定受信機番号を表し、「n」は特定の衛星およびそれに対応する衛星信号、具体的には衛星信号伝搬時間を表し、これから疑似距離測定値が導き出される。この表記法によると、たとえば第2図に図示されている地上局GPS受信機Aは、疑似距離値P(t)A,1、P(t)A,2、およびP(t)A,3を測定する。同様に、地上局GPS受信機Bは疑似距離値P(t)B,1、P(t)B,2、およびP(t)B,3を測定し、地上局GPS受信機Cは疑似距離値P(t)C,1、P(t)C,2、およびP(t)C,3を測定する。移動体受信機Mは、擬似距離値P(t)M,1、P(t)M,2、およびP(t)M,3を測定する。さらに、各地上局受信機はそれぞれの受信機−衛星固有疑似距離値をそれぞれデータ信号線31、32、および33で差分補正プロセッサ300に供給する。差分補正値を計算するために、プロセッサ300はさらに、Gkとして識別される地上局受信機の位置、すなわちGA、GB、およびGCを有する。
本発明では、差分補正プロセッサ300は、以下に述べるようにして、各個別追跡衛星について、その同じ衛星の対応する受信機−衛星固有疑似距離値Pk,n
Figure 0003548577
各図の説明では、当業者は、ブロック図は本発明の理解を助けるための例示的な性質のものに過ぎないことを理解されたい。具体的には、図の各ブロックは単一のマイクロプロセッサまたは計算装置の一部として組み合わせることができる。図の各ブロック間の相互接続は、当技術分野で周知のように、選択された構成要素またはソフトウェア・プログラム・ブロックまたはモジュールの間で伝送されるデータを表すことを意図したものである。最後に、本発明が不明瞭にならないように、タイミング図は図示しておらず、粗く示してあるに過ぎない。それにもかかわらず、本発明は「フィードバック」プロセスまたは「段階的」プロセスおよび同様のもの使用する。
次に第3図を参照すると、個別の受信機−衛星固有疑似距離値P(tmk,n
Figure 0003548577
ある)を入力値として有する差分補正プロセッサ300が図示されている。また、
Figure 0003548577
R(tmも送られる。
差分補正プロセッサ300は、衛星位置に基づく距離計算ブロック310も含み、このブロック310は、各受信機および各追跡衛星について、個々の受信機の地心位置Gkと時点tmでの衛星の地心位置R(tmとの間の受信機−衛星固有の真の距離値を以下に数学的に示すようにして計算する。
Figure 0003548577
さらに、生差分補正ブロック320によって以下のように、受信機−衛星固有差分補正値C(tmk,nを受信機−衛星固有疑似距離P(tmk,nおよび受信機
Figure 0003548577
Figure 0003548577
しかし、生差分補正C(tmk,nは受信機固有のクロック・バイアスを含む。第3図に示すように、補正バイアスブロック330が、各受信機の受信機固有クロック・バイアスを計算する機能を果たす。受信機固有クロック・バイアスを求める1つの技法は、まず受信機−衛星固有差分補正平均値を各受信機について別々に計算することである。すなわち以下の通りである。
Figure 0003548577
さらに、これらの受信機−衛星差分補正平均値を、ロー・パス・フィルタ(図示せず)に通して生受信機−衛星固有差分補正値P(tmk,nに含まれる受信機
Figure 0003548577
さらに、受信機−衛星固有バイアス値を機能ブロック340内の同じ受信機の各受信機−衛星固有生差分補正値から引いて、受信機クロック・バイアス値に合
Figure 0003548577
スのない受信機−衛星固有補正値を意味する。
受信機−衛星固有差分補正値は、受信機−衛星固有疑似虚位測定値が測定され
Figure 0003548577
い。受信機測定クロック時刻間に差がある可能性があるため、好ましくは各差分
Figure 0003548577
定時刻の中間時刻に同期させるかまたは外挿する必要がある。第3図には、各受信機−衛星固有差分補正値(クロック・バイアスなし)を交通時刻に調整する機能を果たす測定時刻同期ブロック400が図示されており、その詳細を第4図に示す。
同期ブロック400の目的は、受信機測定時刻の偏差に合わせて差分補正値C
Figure 0003548577
定し、差分補正の変化のレートを計算し、その後で差分補正の値を、すべてが単一の同期時刻tSYNCにあるように調整することによって行う。
Figure 0003548577
ロック410を含む時間同期機能ブロック400が図示されている。同期時刻は、すべての受信機測定時刻の平均時刻または中間時刻を選択し、同期時刻tSYNCとして特定する方式を含む様々な方式で選択することができる。本発明の好ましい実施形態では、中間時刻を求める。さらに、差分ブロック415が同期時刻
Figure 0003548577
される出力値を出す。
差分補正を共通時刻に同期させるために、ブロック430で受信機−衛星固有差分補正レートを計算する。これを数学的に以下のように表すことができる。
Figure 0003548577
さらに、バイアスのない差分補正値を、補正同期ブロック445によって同期時刻に調整する。補正同期ブロック445は所望の値を計算し、これは数学的に以下のように表すことができる。
Figure 0003548577
これらの値は、共通の受信機測定時刻tSYNCに合わせて調整され、受信機クロック・バイアスに合わせて調整された、受信機−衛星固有差分補正値である。
Figure 0003548577
ック・バイアスは追跡衛星の変化によって、具体的には追跡している衛星の数の増加または減少によって、段階的に変化する傾向がある。クロック・バイアスのこのような変化のためにレート値に誤差がある場合、そのような誤差は同期された差分補正を通過して脈動することになる。したがって、追跡衛星の変化時に、
Figure 0003548577
を補正する機構を使用することが好ましい。このような補正のための機構が第4図に図示されており、衛星決定ブロック490および段階補正ブロック495に具体的に実施されている。
決定ブロック490は、複数の地上局受信機を監視して衛星の数の変化、すなわち増加または減少を検出することを意図している。変化がある場合、ブロック495が起動され、バイアスのない受信機−衛星固有差分補正値を処理してそれ
Figure 0003548577
化に合わせて補正する。たとえば、衛星の数が減少した場合は、追跡されなくなった衛星に付随する特定のデータのないクロック・バイアスを再計算し、誤差の
Figure 0003548577
を再計算することが好ましい。同様に、追加の衛星を追跡する場合は、まず第1に、追加の衛星データのないクロック・バイアスを再計算し、第2に、新たに追加された衛星に付随する差分補正値を、新たに達したクロック・バイアスまたは、さらにクロック時間または測定サンプル時間が続くに従って線形に変化するクロック・バイアスを使用して別に補正することが好ましい。当然ながら、差分補正レートの値を適切に適用してクロック・バイアスのない差分補正の共通時刻への意図された同期または外挿が実現されるように、意図された機能を実現する方法は多数ある。
Figure 0003548577
(tSYNCk,nに外挿された受信機−衛星固有差分補正値は、さらに衛星固有平均ブロック500によって処理され、以下のように数学的に表される衛星固有差分補正が計算される。
Figure 0003548577
平均ブロック500の詳細を第5図に示す。
第5図に示すように、衛星固有補正平均ブロック500は、衛星固有差分補正
Figure 0003548577
NCk,nの関数として計算する機能を果たす衛星固有平均ブロック510を含む。衛星固有平均ブロック510は、さらに、保全性モニタ600からのデータ選択入力線690を備え、これについては第6図に具体的に図示されているように以下で詳述する。ブロック510は、衛星固有補正値を計算し、それを前述のようにしてデータ信号線511で出力することを意図している。
第5図には、衛星固有補正平均ブロック500の一部として、差分補正値の衛星固有の1次および2次導関数を計算する機能ブロックも図示されている。図のように、1次導関数平均ブロック520は、補正レート機能ブロック430によって前もって計算されたデータ信号線435上の差分補正レート値
Figure 0003548577
に応答して以下のように平均を計算するように図示されている。
Figure 0003548577
2次導関数はブロック540で以下のように求められる。
Figure 0003548577
さらに、差分補正レート値
Figure 0003548577
の変化レートが機能ブロック560でブロック510および520と同様にして平均される。これらの値はそれぞれデータ線521および561で出力することができる。
本発明による差分式衛星航法システムは、第3図のブロック600で示され、第6図に詳細が図示されているように保全性モニタをさらに備える。保全性監視機能は、当然、受信機−衛星固有疑似距離測定または値から導き出される特定の衛星固有差分補正測定値の使用を検証する機能を果たし、前述のRTCA要件の要件を満たすように差分式GPS地上局の保全性を強化する。具体的には、後述するように、GPS受信機によって生じたマルチパス誤差を検出し、なくすことができる。
第6図に、本発明による差分式GPS地上局と共に使用するための保全性モニタを実施する一技法を図示する。第6図に図示されているように、保全性モニタ
Figure 0003548577
ク610が、以下に数学的に表すように、個々の受信機−衛星固有偏差を計算する。
Figure 0003548577
さらに、ブロック620で各受信機−衛星固有偏差devk,nが、検出しきい値機能ブロック650の出力である検出しきい値DTと比較される。
検出しきい値機能ブロック650は、様々な誤差しきい値方式を使用して、本発明による差分式GPS地上局の保全性を強化することができる。たとえば、最も単純な方式では、検出しきい値ブロック650は単に一定の値DTを出力する。この値DTは、GPS受信機信号雑音の推定値とガウス確率分布関数による適切な近似値とによって求めることができる。たとえば以下の通りである。
DT=2Q-1(Ppfd/2)
上式で、
Figure 0003548577
であり、これは雑音誤差が弁別器、すなわちそれぞれの受信機であることに関係している。
第6図に示すように、比較器620が偏差値devk,nをしきい値検出値DTと比較する。値devk,nがDTより大きい場合、比較器620は、誤りがあることが判明した、または具体的には保全性モニタ検出しきい値検査に合格しなかった、対応する差分補正値devk,nを有する特定の衛星−受信機の対「k,n」を表すデータ線675上の出力Dk,nを供給する。たとえばランダム信号雑音によってどの受信機−衛星固有測定値が誤っている可能性があるかわかっていれば、しきい値検査に合格しなかった個別値を含めずに差分計算を計算し直すことができる。
ブロック600の保全性監視機能の使用を、第5図に具体的に示す。第5図では、データ線690が各平均ブロック510、520、および540まで設けられている。これらの平均ブロックは、Dk,nデータに応答して、平均値を形成する特定の受信機−衛星値「k,n」の適切な除去を行い、その後で後りのある値のない平均値計算を行うことができるようにし、それによって衛星固有差分補正値と、データ線511、521、および541上のデータの保全性を強化するように構成されている。このようにして、衛星固有補正値が任意の特定の瞬間に特定の衛星を追跡する受信機に関してGPSシステムの力学に絶えず応答するため、衛星固有補正値の計算の性能が向上する。
第6図に示すように、検出しきい値ブロックはDk,nの値に応答して検出しきい値DTを精密化することができる。すなわち、たとえば受信機の信号雑音値はDTの値の直接関数とすることができ、誤りのある受信機−衛星固有値を前述の計算でなくすことができる。
本明細書で開示する平均値計算は変更することができ、そのような実施態様も本発明の真の精神および範囲内に含まれることに留意されたい。たとえば、平均ブロック510、520、および560は、たとえばランダム加速3次状態モデルを使用したカルマン・フィルタなど、多様なフィルタリング技法によって実施することができる。セレクティブ・アベイラビリティ(SA)誤差による変化を追跡するフィルタの能力を損なうことなく、受信機雑音をフィルタリングするように、フィルタ設計パラメータ(プロセスおよび測定雑音の変更)を選定することができる。
図には示していないが、データ平滑化技法の使用も本発明の範囲内に入る。平滑化技法は公知であり、GPS受信機によって衛星信号から一般に導き出されるデルタ疑似距離の高頻度値を使用する上記で言及した刊行物に例示されている変形とすることができる。
要するに、本発明による差分式衛星航法システムは、独立した受信機−衛星固有差分補正を得るために、複数のGPS受信機、好ましくはフェイル動作可能モードの3個の受信機を使用した。すなわち、各衛星について1セットの差分補正値を各受信機によって導き出す。以下のようにして、各受信機について1つずつの各差分補正セットを形成する。各受信機アンテナの測定された位置と受信機の衛星本体の位置または軌道情報の出力とを使用して距離計算値を求める。次に、計算された距離値とGPS受信機によって求められた適切な疑似距離値との間の差として生差分補正値を求める。追跡衛星のすべての受信機−衛星固有疑似距離値の受信機−衛星固有平均を大幅にフィルタリングした値を引くことによって、これらの生差分補正値からその中に含まれるクロック・バイアス誤差の推定値を得る。さらにこれらの値を選択された平均またはフィルタリング方式で処理して、衛星固有差分補正値または差分補正レートあるいはその両方を求め、それをさらに航空機などの遠隔移動体に周知の方式で送信することができる。
本発明による差分式衛星航法システムは、誤差または誤りのある可能性のある受信機−衛星固有値を判断する保全性監視機能をさらに備える。これは、選択された検出しきい値を基準にした偏差検査を適用することによって行うことができる。この検査は、受信機−衛星固有差分補正値と衛星固有差分補正値の平均値との間の偏差を調べることによって、各受信機−衛星固有差分補正値に一般に適用することができる。この検査に合格しない場合は、特定の受信機−衛星固有差分補正値を無視するかまたは除去し、その後で平均値を計算する。移動体のGPS受信機に、そこから判断された疑似距離の差分補正のために送信することができるのはこの結果の平均値である。
当技術分野ではよく理解されているように、単一の電子/ソフトウェア・サブシステムを使用して、衛星固有差分補正値の適切な計算および生成を実行することができ、保全性監視機能は本発明の真の精神および範囲内に含まれるものとする。
本発明は、NAVSTAR GPSシステムの操作を目的としているが、他に位置するシステムもまた、本発明の真の精神および範囲内に入るものとする。具体的には、衛星情報から地心位置情報を導き出すこのようないかなる衛星システムも同様のことがいえる。
第7図に、本発明によるフェイルセーフ動作システムを示す。第7図で、上記で説明した図にあるものと同じ機能を有する構成要素にはそのまま同じ数字が付されている。
第7図には、前述の情報と同じ情報を供給する4個のGPS受信機A、B、C、およびDが図示されている。このデータは、それぞれ前述のプロセッサ300と同じ差分補正プロセッサ300a、300b、および300cに供給される。データ線511a、511b、および511c上の衛星固有の差分補正出力データは、データ線511に関して説明したものと同じである。すなわち、受信機−衛星固有の差分補正値である。これらの各データ線は、それぞれボータ720および730を有する一対の同じ入出力制御装置702および704に送られる。ボータ720および730は、各プロセッサのパフォーマンスを検証することを意図したものである。すなわち、以下の各衛星固有差分補正値
Figure 0003548577
は、すべてのプロセッサからの値が同じでなければならない。入出力制御装置702および704は、衛星固有差分補正値の1対1比較を管理し、無効なデータを生成している1つの特定のプロセッサを使用不能にすることを意図したものである。
本システムは当然、2つのプロセッサが残っており、有効な同一のデータを生成している場合にのみ「フェイルセーフ」となる。ボータが残りのプロセッサのうちの1つに障害があることを検出した場合、システムは停止するように意図されている。
入出力制御装置702および704は、さらにデータリンクの監視機能としても機能する。すなわち、これらの入出力制御装置は、送信データと受信ラップアラウンド・データに応答して衛星固有差分補正と前述の補正メッセージを構成するその他のデータの適切な伝送を検証する。
したがって、本発明によるシステムは、個別の受信機−衛星固有差分補正の保全性監視を含む、強化された信頼性と障害検出を備えた、きわめて信頼性の高い差分式全地球測位地上局を提供する。

Claims (2)

  1. 複数の衛星から送信された各受信衛星信号に付随する衛星固有の疑似距離誤差を判断するフェイルセーフ・差分式衛星測位システム地上局であって、
    選択された衛星信号を受信し、前記受信衛星信号のそれぞれに付随する衛星データから少なくとも、i)前記衛星信号から導き出され、前記複数の衛星のうちの特定の衛星から前記複数の受信機のうちの特定の受信機までの対応する衛星信号伝搬時間に関係する、前記複数の受信機のうちの対応する1つと前記複数の衛星のうちの対応する1つとの間の真の距離地の推定値である、対応する受信機固有測定時点における衛星−受信機固有疑似距離値と、ii)前記衛星−受信機固有測定時点における前記1つの衛星の対応する衛星−受信機固有位置とを導き出す複数のGPS受信機と、
    それぞれが、
    前記複数の受信機のそれぞれの受信機の地心位置のうちの対応する地心位置と前記衛星のそれぞれの衛星の衛星−受信機固有地心位置との間の距離である、各受信機と前記選択された各衛星とに対する受信機−衛星固有の計算距離を求める手段、
    前記受信機−衛星固有の計算距離のうちの対応する計算距離と前記衛星−受信機固有疑似距離値との間の受信機−衛星固有の差を計算する手段、
    前記選択された複数の衛星のそれぞれから送信された前記衛星信号に付随する前記衛星−固有疑似距離誤差を、前記複数のGPS受信機からの複数の前記衛星−受信機固有疑似距離値の関数として、かつ特定の1つの衛星に付随させて導き出す手段、および
    少なくとも一対の入出力制御装置であって、それぞれが、前記複数のプロセッサのそれぞれから受信した同一データを検証するように動作可能な少なくとも1つのボータを備え、前記複数のプロセッサのうちの障害のある1つのプロセッサからのデータを除去するように動作可能であり、一対の入出力装置が、一対のデータリンク送信機からの送受信データを監視する手段をさらに備える少なくとも一対の入出力制御装置
    を含む複数の差分補正プロセッサと
    を備える地上局。
  2. 各衛星が、その衛星の位置を示し移動受信機によって受信されるときに特定の誤差を含む衛生情報信号を送信する複数の衛星からの信号を使用して移動受信機の位置を判断するシステムであって、
    既知の固定位置にあり、特定の誤差を含む衛星情報信号を受信し、衛星情報信号から求められた第1、第2、および第3の固定受信機の位置をそれぞれ示す少なくとも第1、第2、および第3の疑似距離出力信号を生成する少なくとも第1、第2、および第3の固定受信機と、
    各差分補正プロセッサ手段が固定受信機から疑似距離出力信号を受信し、疑似距離出力信号に誤差がないか検査し、誤差があると判断される疑似距離出力信号があればそれを廃棄し、残りの第1、第2、および第3の疑似距離出力信号をそれぞれ第1、第2、および第3の固定受信機の既知の位置と比較し、衛星情報信号内の特定の誤差を示す第1、第2、および第3の通常は同じ誤差信号を生成するように接続された少なくとも第1、第2、および第3の差分補正プロセッサ手段と、
    各ボーティング手段が第1、第2、および第3の誤差信号を受信し、他と同じでない誤差信号があればそれを廃棄するように接続されたボーティング手段を備え、第1、第2、および第3の誤差信号内の処理誤差を含む誤差信号を検出する手段と
    を備えるシステム。
JP50826196A 1994-08-23 1995-08-22 フェイルセーフ動作差分式gps地上局システム Expired - Fee Related JP3548577B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/294,283 1994-08-23
US08/294,283 US5596328A (en) 1994-08-23 1994-08-23 Fail-safe/fail-operational differential GPS ground station system
PCT/US1995/010645 WO1996006365A1 (en) 1994-08-23 1995-08-22 Fail-safe/fail-operational differential gps ground station system

Publications (2)

Publication Number Publication Date
JPH10504653A JPH10504653A (ja) 1998-05-06
JP3548577B2 true JP3548577B2 (ja) 2004-07-28

Family

ID=23132721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50826196A Expired - Fee Related JP3548577B2 (ja) 1994-08-23 1995-08-22 フェイルセーフ動作差分式gps地上局システム

Country Status (8)

Country Link
US (1) US5596328A (ja)
EP (1) EP0776483B1 (ja)
JP (1) JP3548577B2 (ja)
AT (1) ATE182688T1 (ja)
CA (1) CA2197561C (ja)
DE (1) DE69511094T2 (ja)
ES (1) ES2135759T3 (ja)
WO (1) WO1996006365A1 (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748651A (en) * 1995-05-05 1998-05-05 Trumble Navigation Limited Optimum utilization of pseudorange and range rate corrections by SATPS receiver
US5600329A (en) * 1995-06-30 1997-02-04 Honeywell Inc. Differential satellite positioning system ground station with integrity monitoring
US5828336A (en) * 1996-03-29 1998-10-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Robust real-time wide-area differential GPS navigation
DE19624719A1 (de) * 1996-06-21 1998-01-02 Claas Ohg System zur Positionsbestimmung von mobilen Objekten, insbesondere von Fahrzeugen
US5786773A (en) * 1996-10-02 1998-07-28 The Boeing Company Local-area augmentation system for satellite navigation precision-approach system
US6023239A (en) * 1997-10-08 2000-02-08 Arinc, Inc. Method and system for a differential global navigation satellite system aircraft landing ground station
US6144334A (en) * 1998-02-26 2000-11-07 Analytical Graphics, Inc. Method and apparatus for calculating access between satellite constellations and ground targets
US6067484A (en) * 1998-03-23 2000-05-23 Airsys Atm, Inc. Differential GPS landing system
US6268824B1 (en) * 1998-09-18 2001-07-31 Topcon Positioning Systems, Inc. Methods and apparatuses of positioning a mobile user in a system of satellite differential navigation
JP3970473B2 (ja) * 1999-05-19 2007-09-05 財団法人鉄道総合技術研究所 監視手段付きgps装置
US6397147B1 (en) 2000-06-06 2002-05-28 Csi Wireless Inc. Relative GPS positioning using a single GPS receiver with internally generated differential correction terms
DE10055087A1 (de) * 2000-11-07 2002-05-16 Bosch Gmbh Robert Verfahren zur Synchronisation eines Funkempfängers auf Funksignale
US6567041B1 (en) * 2001-04-18 2003-05-20 Sprint Spectrum, L.P. Network system and method for a remote reference receiver system
DE10119886A1 (de) * 2001-04-24 2002-10-31 Mueller Umwelttechnik Einrichtung und Verfahren zum Erfassen von Positionsdaten
US6839631B1 (en) * 2001-12-21 2005-01-04 Garmin Ltd. Space based augmentation system with hierarchy for determining geographical corrections source
US7948769B2 (en) * 2007-09-27 2011-05-24 Hemisphere Gps Llc Tightly-coupled PCB GNSS circuit and manufacturing method
US7885745B2 (en) * 2002-12-11 2011-02-08 Hemisphere Gps Llc GNSS control system and method
US9002565B2 (en) 2003-03-20 2015-04-07 Agjunction Llc GNSS and optical guidance and machine control
US8140223B2 (en) * 2003-03-20 2012-03-20 Hemisphere Gps Llc Multiple-antenna GNSS control system and method
US8271194B2 (en) 2004-03-19 2012-09-18 Hemisphere Gps Llc Method and system using GNSS phase measurements for relative positioning
US8214111B2 (en) * 2005-07-19 2012-07-03 Hemisphere Gps Llc Adaptive machine control system and method
US8265826B2 (en) 2003-03-20 2012-09-11 Hemisphere GPS, LLC Combined GNSS gyroscope control system and method
US8594879B2 (en) * 2003-03-20 2013-11-26 Agjunction Llc GNSS guidance and machine control
US8634993B2 (en) 2003-03-20 2014-01-21 Agjunction Llc GNSS based control for dispensing material from vehicle
US8138970B2 (en) * 2003-03-20 2012-03-20 Hemisphere Gps Llc GNSS-based tracking of fixed or slow-moving structures
US8686900B2 (en) * 2003-03-20 2014-04-01 Hemisphere GNSS, Inc. Multi-antenna GNSS positioning method and system
US8190337B2 (en) * 2003-03-20 2012-05-29 Hemisphere GPS, LLC Satellite based vehicle guidance control in straight and contour modes
JP2005077291A (ja) * 2003-09-02 2005-03-24 Nippon Gps Solutions Corp 三次元測位システム
US8583315B2 (en) * 2004-03-19 2013-11-12 Agjunction Llc Multi-antenna GNSS control system and method
USRE48527E1 (en) 2007-01-05 2021-04-20 Agjunction Llc Optical tracking vehicle control system and method
US8311696B2 (en) * 2009-07-17 2012-11-13 Hemisphere Gps Llc Optical tracking vehicle control system and method
US7835832B2 (en) * 2007-01-05 2010-11-16 Hemisphere Gps Llc Vehicle control system
US8000381B2 (en) * 2007-02-27 2011-08-16 Hemisphere Gps Llc Unbiased code phase discriminator
US7808428B2 (en) * 2007-10-08 2010-10-05 Hemisphere Gps Llc GNSS receiver and external storage device system and GNSS data processing method
US20100161179A1 (en) * 2008-12-22 2010-06-24 Mcclure John A Integrated dead reckoning and gnss/ins positioning
US9002566B2 (en) * 2008-02-10 2015-04-07 AgJunction, LLC Visual, GNSS and gyro autosteering control
US8626435B2 (en) * 2008-02-28 2014-01-07 Volvo Group North America Llc GPS filter algorithm
US8018376B2 (en) * 2008-04-08 2011-09-13 Hemisphere Gps Llc GNSS-based mobile communication system and method
US7940210B2 (en) * 2008-06-26 2011-05-10 Honeywell International Inc. Integrity of differential GPS corrections in navigation devices using military type GPS receivers
US8207890B2 (en) * 2008-10-08 2012-06-26 Qualcomm Atheros, Inc. Providing ephemeris data and clock corrections to a satellite navigation system receiver
US8217833B2 (en) * 2008-12-11 2012-07-10 Hemisphere Gps Llc GNSS superband ASIC with simultaneous multi-frequency down conversion
US8386129B2 (en) 2009-01-17 2013-02-26 Hemipshere GPS, LLC Raster-based contour swathing for guidance and variable-rate chemical application
US8085196B2 (en) 2009-03-11 2011-12-27 Hemisphere Gps Llc Removing biases in dual frequency GNSS receivers using SBAS
US8401704B2 (en) * 2009-07-22 2013-03-19 Hemisphere GPS, LLC GNSS control system and method for irrigation and related applications
US8174437B2 (en) * 2009-07-29 2012-05-08 Hemisphere Gps Llc System and method for augmenting DGNSS with internally-generated differential correction
US8334804B2 (en) * 2009-09-04 2012-12-18 Hemisphere Gps Llc Multi-frequency GNSS receiver baseband DSP
US8649930B2 (en) 2009-09-17 2014-02-11 Agjunction Llc GNSS integrated multi-sensor control system and method
US8548649B2 (en) 2009-10-19 2013-10-01 Agjunction Llc GNSS optimized aircraft control system and method
US20110172887A1 (en) * 2009-11-30 2011-07-14 Reeve David R Vehicle assembly control method for collaborative behavior
US8583326B2 (en) * 2010-02-09 2013-11-12 Agjunction Llc GNSS contour guidance path selection
CN105008956A (zh) * 2013-02-26 2015-10-28 日本电气株式会社 状态检测方法、校正值处理设备、定位系统和状态检测程序
US9746562B2 (en) 2014-06-30 2017-08-29 The Boeing Company Portable ground based augmentation system
DE102015119308B4 (de) * 2015-11-10 2019-02-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zum Bereitstellen von Daten für eine Satellitennavigation-basierte automatische Landung an ein Flugzeug
CN112799112B (zh) * 2021-04-06 2021-07-09 湖南中车时代通信信号有限公司 一种基于卫星的差分定位系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751512A (en) * 1986-01-21 1988-06-14 Oceanonics, Inc. Differential navigation system for remote mobile users
US5379224A (en) * 1991-11-29 1995-01-03 Navsys Corporation GPS tracking system
US5323322A (en) * 1992-03-05 1994-06-21 Trimble Navigation Limited Networked differential GPS system
US5416712A (en) * 1993-05-28 1995-05-16 Trimble Navigation Limited Position and velocity estimation system for adaptive weighting of GPS and dead-reckoning information

Also Published As

Publication number Publication date
US5596328A (en) 1997-01-21
ATE182688T1 (de) 1999-08-15
ES2135759T3 (es) 1999-11-01
EP0776483A1 (en) 1997-06-04
DE69511094T2 (de) 2000-01-05
EP0776483B1 (en) 1999-07-28
CA2197561A1 (en) 1996-02-29
CA2197561C (en) 2005-01-04
JPH10504653A (ja) 1998-05-06
DE69511094D1 (en) 1999-09-02
WO1996006365A1 (en) 1996-02-29

Similar Documents

Publication Publication Date Title
JP3548577B2 (ja) フェイルセーフ動作差分式gps地上局システム
JP3548576B2 (ja) 差分gps地上局システム
US6067484A (en) Differential GPS landing system
US6424914B1 (en) Fully-coupled vehicle positioning method and system thereof
EP1212634B1 (en) Solution separation method and apparatus for ground-augmented global positioning system
US5504492A (en) Look ahead satellite positioning system position error bound monitoring system
EP0835455B1 (en) Differential satellite positioning system ground station with integrity monitoring
US6496778B1 (en) Real-time integrated vehicle positioning method and system with differential GPS
US7098846B2 (en) All-weather precision guidance and navigation system
US11442174B2 (en) Systems and methods for inertial measurement unit aided detection and exclusion against spoofing attacks
US6266584B1 (en) Robust autonomous GPS time reference for space application
US20090091493A1 (en) Method for correcting ionosphere error, and system and method for determining precision orbit using the same
US8909471B1 (en) Voting system and method using doppler aided navigation
WO2011146196A2 (en) Gnss reference station and monitoring
JP2000512018A (ja) 衛星位置決定システムのためのスプーフィング検出システム
US11906640B2 (en) System and method for fusing sensor and satellite measurements for positioning determination
US6888498B2 (en) Method and system for compensating satellite signals
Murphy et al. Alternative architecture for dual frequency multi-constellation GBAS
US6650282B2 (en) Positioning equipment
WO1998047017A1 (en) Predictive approach integrity
WO2004030237A2 (en) Method and system for compensating satellite signals
JP2010060421A (ja) 移動体用測位システム及びgnss受信装置
RU2389042C2 (ru) Способ определения защитного предела вокруг местоположения движущегося тела, вычисленного по спутниковым сигналам
Rizos et al. High Precision GPS Kinematic Positioning: Progress and Outlook

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees