RU2372612C2 - Способ и устройство для непрерывного контроля качества проволоки из сплава с памятью формы - Google Patents

Способ и устройство для непрерывного контроля качества проволоки из сплава с памятью формы Download PDF

Info

Publication number
RU2372612C2
RU2372612C2 RU2006142096/28A RU2006142096A RU2372612C2 RU 2372612 C2 RU2372612 C2 RU 2372612C2 RU 2006142096/28 A RU2006142096/28 A RU 2006142096/28A RU 2006142096 A RU2006142096 A RU 2006142096A RU 2372612 C2 RU2372612 C2 RU 2372612C2
Authority
RU
Russia
Prior art keywords
wire
temperature
speed
points
length
Prior art date
Application number
RU2006142096/28A
Other languages
English (en)
Other versions
RU2006142096A (ru
Inventor
Джованни САЛЬВАГО (IT)
Джованни САЛЬВАГО
Лука ТОЯ (IT)
Лука ТОЯ
Original Assignee
Саес Геттерс С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Саес Геттерс С.П.А. filed Critical Саес Геттерс С.П.А.
Publication of RU2006142096A publication Critical patent/RU2006142096A/ru
Application granted granted Critical
Publication of RU2372612C2 publication Critical patent/RU2372612C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/16Investigating or analyzing materials by the use of thermal means by investigating thermal coefficient of expansion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means

Landscapes

  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Coating With Molten Metal (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

Изобретение относится к области неразрушающего контроля. Способ содержит: а) подачу проволоки через несколько зон контролируемой температуры, b) измерение удлинения проволоки в каждой зоне при контролируемой температуре, с) использование данных температуры и удлинения для получения точек гистерезисной кривой материала в диаграмме зависимости удлинения от температуры. Проволоку предпочтительно подают с постоянной скоростью и с постоянным натяжением, а измерение удлинения получают посредством измерения скорости проволоки. Устройство, выполняющее способ, содержит подающие блоки (B,B',V,V'), подходящие для регулирования натяжения и скорости подачи проволоки (F) через последовательность термостатных камер (Т), содержащих направляющие шкивы (М), на которые наматывается проволока (F) без скольжения, скорость которых можно измерять, например, с помощью датчиков положения высокого разрешения. Технический результат - повышение надежности контроля. 2 н. и 13 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к способу и устройству для непрерывного контроля качества проволоки, выполненной из сплава с памятью формы (называемого в последующем также SMA). Следует отметить, что хотя в последующем делается ссылка на проволоку, которая является наиболее важным применением, способ согласно изобретению применим также к другим формам с одним практически бесконечным размером и двумя другими конечными и в основном небольшими размерами, например, лентам или тому подобному.
Как известно, явление запоминания формы состоит в том, что механическая деталь, выполненная из сплава, обладающего этим свойством, способна изменяться за очень короткое время и без промежуточных равновесных положений между двумя формами, заданными во время изготовления, в ответ на изменение температуры. Явление может проявляться в так называемом «одностороннем» режиме, когда механическая часть может деформироваться в единственном направлении в результате изменения температуры, например переходить из формы В в форму А, в то время как переход в обратном направлении от А в В требует приложения силы; и в так называемом «двустороннем» режиме, наоборот, оба перехода могут вызываться изменением температуры.
Известно, что подобные материалы изменяют свою микрокристаллическую структуру, переходя из типа, называемого мартенситным, стабильного при низких температурах, в тип, называемый аустенитным, стабильным при высокой температуре, и наоборот. Переход между двумя формами происходит в соответствии с гистерезисным циклом в диаграмме зависимости удлинения от температуры, характеризуемым четырьмя значениями температуры: во время нагревания, начиная с низкой температуры, при которой мартенситная фаза стабильна, достигается первая температура As, при которой начинается переход в аустенитную фазу, а затем вторая температура Af, которая характеризует конец перехода в аустенитную фазу. Во время охлаждения, начиная с диапазона температур, в котором аустенитная фаза стабильна, достигается третья температура Ms, при которой начинается переход в мартенситную фазу, а затем четвертая температура Mf, при которой заканчивается переход. Графики этих гистерезисных циклов можно найти, например, в патентах US 4896955 и ЕР 0807276.
Действительные температуры этих указанных выше переходов зависят от типа материала и процесса изготовления, однако для каждого материала для этих температур справедливо Mf<Ms, As<Af, хотя может быть Ms<As или, наоборот, в соответствии со скоростью перехода между двумя фазами. Примеры составов сплавов с памятью формы можно найти в патенте US 6309184 на имя заявителя, это сплавы Ni-Ti, предпочтительно с содержанием Ni 54-55,5 мас.%, остальное титан (допускаются следы других компонентов).
Для практического использования проволока из сплава с памятью формы должна иметь несколько функциональных и технологических характеристик, которые оцениваются с помощью специальных испытаний. Обычно для проверки характеристик проволоки используют следующие четыре испытания:
1. Испытание на усталостную прочность: образец проволоки (например, отрезок длиной 10 см) помещают в печь в подвешенном за один конец положении с грузом на втором конце; груз выбирают в соответствии с диаметром проволоки, и он обычно аналогичен нагрузке, которую должна выдерживать проволока при реальном применении. Посредством циклического нагревания и охлаждения образца его подвергают цикличному удлинению и сокращению вплоть до разрушения.
2. Испытание на остаточную деформацию: состоит в оценке конечной остаточной деформация образца, такого же как в предыдущем испытании, испытываемого в тех же условиях, но с числом циклов, меньшим числа циклов, вызывающих разрушение (например, 75% или 90% числа циклов, вызывающих разрушение).
3. Испытание на гистерезисный цикл: используется для проверки, действительно ли проволока совершает переходы удлинения и сокращения при температурах, ожидаемых для этого состава.
4. Испытание на величину хода: состоит в оценке процентного удлинения или сокращения образца во время перехода. Это последнее испытание проводят также в тех же условиях и в той же экспериментальной установке, что и первое испытание.
Четыре указанных испытания являются дискретными испытаниями, которые можно выполнять, например, для каждого километра проволоки, в то время как два первых испытания являются разрушительными и, таким образом, должны проводиться на образцах, предпочтительно иметь возможность выполнять испытания 3 и 4 непрерывно. В действительности выполнение этих двух последних испытаний в качестве выборочных испытаний имеет некоторые недостатки.
Первый недостаток заключается в том, что могут иметься неравномерности в характеристиках проволоки, которые не обнаруживаются из-за очень низкой частоты выборки вдоль проволоки; кроме того, в современных рабочих режимах эти испытания проводятся параллельно процессу изготовления, и тем самым приводят к увеличению времени и стоимости для отбора проб с производственной линии и выполнения испытаний вне линии; наконец, при промышленном изготовлении желательно иметь возможно длинную проволоку, в то время как выполнение указанных испытаний делает необходимым разрезание проволоки на относительно короткие части.
Поэтому целью изобретения является создание способа и устройства, которые устраняют указанные недостатки. Эта цель достигается согласно изобретению тем, что согласно первому аспекту способ непрерывного управления качеством проволоки или подобного изделия из сплава с памятью формы запоминающего форму сплава характеризуется тем, что содержит этапы:
а) подачи проволоки через устройство, в котором она подвергается резкому росту температуры, который перекрывает диапазон, содержащий характеристические температуры перехода материала, из которого изготовлена проволока;
b) измерения на непосредственно линии или изменений длины проволоки опосредованно в заданных точках указанного устройства, соответствующих различным известным температурам;
с) использования данных изменения температуры и длины для получения точек гистерезисной кривой указанного материала для диаграммы зависимости удлинения от температуры.
Главное преимущество данного способа и соответствующего устройства состоит в обеспечении проверок характеристик проволоки не посредством выборок, а непрерывно, так что контроль качества изделия выполняется во всем производстве.
Другое значительное преимущество следует из того, что этот контроль выполняется на линии, что экономит время и деньги для отбора проб и выполнения испытаний вне линии.
Эти и другие преимущества и признаки способа и устройства согласно данному изобретению следуют для специалистов в данной области техники из приведенного ниже подробного описания варианта выполнения изобретения со ссылками на прилагаемые чертежи, на которых схематично изображено:
фиг.1 - устройство для выполнения способа согласно данному изобретению на виде спереди;
фиг.2 - устройство согласно фиг.1 на виде сверху.
Данное изобретение основано на идее непрерывного прохождения проволоки через измерительное устройство, в котором оно подвергается такому резкому росту температуры, что указанные выше характеристические температуры переходов охватываются диапазоном роста, и на линии измеряют изменения длины проволоки во время роста температуры. Температура проволоки, входящей и выходящей из измерительного устройства, предпочтительно является комнатной температурой, в то время как, по меньшей мере, в одной зоне устройства проволоку нагревают до температуры, по меньшей мере, равной (но предпочтительно превышающей) Af. Внутри устройства можно иметь термический профиль, который является непрерывным или прерывистым с шаговым изменением.
В первом варианте выполнения способа можно измерять непосредственно удлинение проволоки; например, за счет скольжения проволоки по точкам опоры устройства, при этом изменения длины проволоки вызывают последовательное появление и исчезновение провисания между указанными опорными точками, и посредством измерения указанного провисания можно получать изменения длины, которое происходит между опорными точками: поскольку известны температура в этих точках и изменения длины, то есть можно получать гистерезисную кривую проволоки.
Однако, поскольку удлинения являются небольшими, трудно выполнять их прямое измерение, в частности, потому что требуется использование оптических точных инструментов с целью исключения влияния на натяжение проволоки.
Поэтому в предпочтительном варианте выполнения изобретения способ состоит в измерении изменения скорости проволоки при прохождении между зонами системы с разными температурами. С учетом того, что изменение длины можно выразить в процентах относительно исходной длины, изменение длины при прохождении из зоны с одной температуры в другую можно измерять в виде ее первой производной относительно времени, то есть скорости: а именно, в способе согласно изобретению измеряют различие скорости проволоки в нескольких точках ее прохождения через устройство, в которых имеются различные температуры. Другими словами, посредством подачи проволоки с известной фиксированной скоростью и с подходящим постоянным натяжением через последовательность зон с различными температурами и измерения скорости проволоки при каждой температуре можно получать величину удлинения (или укорочения), возникающего во время перехода от одной температуры к другой. Таким образом, посредством интегрирования изменений скорости можно получать точки гистерезисной кривой в диаграмме зависимости удлинения от температуры, а также вычислять шаг в переходе между двумя температурами.
В данном способе измерения измерение скорости проволоки является более простым, чем прямое измерение удлинения или укорочения, подлежащее выполнению в указанном выше способе с провисанием.
Согласно своему второму аспекту изобретение предлагает устройство для выполнения способа согласно изобретению.
Пример устройства, способного выполнять измерение изменений скорости, показан на фиг.1 и 2, на которых показана проволока F, разматываемая входной разматывающей машиной B и наматываемая на выходную намоточную машину B'. Натяжение проволоки F контролируется блоком V, расположенным по потоку за входной размоточной машиной B и снабженным двумя приводными роликами R, на которые проволока F намотана несколько раз, и содержащим свободный рычаг C, который измеряет натяжение проволоки. Измерение натяжения с помощью рычага C предназначено для удерживания его постоянным посредством воздействия на управляющие ролики R' блока V', который управляет скоростью проволоки и который расположен перед выходной намоточной машиной B'. Блоки V и V' соединены с общей обратной связью.
Между двумя блоками V,V' расположено несколько термостатических камер T, в каждой из которых удерживается постоянной заданная температура с помощью известных систем регулирования, с целью создания определенного температурного профиля с дискретным шагом. В показанном примере предусмотрено тринадцать камер T с температурным «шагом», то есть разницей температуры между смежными камерами, равным 20°С, сначала с увеличением, а затем уменьшением, так что получается температурный профиль 40-60-80-100-120-140-160-120-100-80-60-40°С.
В каждой камере Т расположен направляющий шкив М, выдерживаемый при температуре камеры и на который наматывается проволока F без скольжения, который используется для измерения скорости проволоки F с помощью датчика положения высокого разрешения, который точно измеряет скорость вращения шкива M. Два других шкива M с соответствующими датчиками положения также расположены, соответственно, по потоку перед и за камерами T для измерения скорости проволоки при комнатной температуре, которая обычно составляет около 20°С.
За счет измерения скорости проволоки F в различных камерах T при каждой температуре и при известном шаге P между шкивами М можно получать соотношение между температурой проволоки и ее удлинением. Измеряемые параметры непрерывно регистрируются в реальном времени с помощью подходящих известных средств, и предпочтительно предусмотрено также средство для маркировки проволоки, которое автоматически активируется, если величины измеренных параметров находятся вне допустимого диапазона допусков.
В альтернативном варианте выполнения между двумя блоками V и V' расположена единственная нагревательная камера с открытыми концами, и шкивы М можно перемещать вдоль оси указанной камеры; при доведении центральной зоны камеры до максимальной представляющей интерес температуры (160°С в указанном выше примере) тепловое рассеяние на открытых концах камеры определяет «колоколообразный» температурный профиль вдоль единственной камеры с максимумом посредине и равномерным уменьшением в направлении концов. Если температурный профиль камеры известен, то можно перемещать каждый из шкивов М в положение в камере, которое имеет желаемую температуру (например, температуру, соответствующую тринадцати камерам указанного выше варианта выполнения). Тепловой профиль камеры может быть известен посредством измерения температуры в ряде точек, расположенных вдоль камеры, например, с помощью термопар или оптических пирометров или других подходящих систем; измерение температуры в указанной последовательности точек можно выполнять во время подходящего калибровочного испытания или непрерывно во время действительного испытания по проверке проволоки. Точки, в которых измеряется температура вдоль камеры, предпочтительно соответствуют точкам, в которых расположены шкивы М.
Понятно, что варианты выполнения способа и устройства, согласно изобретению раскрытые и показанные выше, являются лишь примерами, в которых можно выполнять различные изменения. В частности, можно варьировать несколько конструктивных и рабочих параметров, таких как число камер Т, температурный «шаг» между камерами, блоки размотки, намотки и подачи проволоки; даже шаг Р между смежными шкивами М может быть не постоянным, если он известен. Кроме того, в варианте выполнения со ступенчатым температурным профилем вдоль устройства можно отказаться от камер Т посредством использования нагревания проволоки с помощью теплового действия тока (по меньшей мере, для увеличения температуры): за счет приложения различных напряжений к различным точкам, с которыми проволока приходит в контакт (это могут быть шкивы М), можно устанавливать заданные падения напряжения в отдельных частях проволоки и, таким образом, при известном сопротивлении проволоки, можно задавать известные температуры в этих частях.
Аналогичным образом, скорость можно измерять с помощью других средств, отличных от указанных выше шкивов с датчиками положения, например с помощью оптических инструментов, которые обнаруживают прохождение меток, расположенных на проволоке с постоянным интервалом, или лазерных считывающих оптических инструментов, которые не требуют присутствия оптических меток на проволоке и в которых измерение скорости проволоки основано на эффекте Доплера.
Устройство согласно изобретению в любом варианте его выполнения может дополнительно содержать средство маркировки проволоки, позволяющее маркировать части проволоки, когда измеренные на этих частях параметры выходят за допустимый диапазон допусков; эти средства маркировки обычно активируются автоматически, когда система обнаруживает, что эти части проволоки не соответствуют техническим требованиям.
Устройство и способ согласно изобретению обеспечивают единственный известный путь для обеспечения проволоки, выполненной из сплава с памятью формы, в которой 100% проволоки сертифицировано на наличие требуемых характеристик. Однако для некоторых применений, имеющих не такие строгие требования к качеству, способ и устройство согласно изобретению можно использовать для проверки не всей проволоки, например 75% проволоки. Это можно осуществлять, например, посредством непропускания части длины проволоки через систему или же посредством нерегистрации данных, измеряемых системой, в части времени; в эти периоды проволока может проходить быстрее с входной размоточной машины В к выходной намоточной машине B', что сокращает полное рабочее время. При такой работе все еще возможно иметь хорошую степень надежности относительно свойств проволоки, достаточную для применений с более низкими требованиями, при меньших затратах.

Claims (15)

1. Способ непрерывного контроля качества проволоки или подобного изделия из сплава с памятью формы, отличающийся тем, что содержит следующие стадии:
a) подачи проволоки через устройство, в котором она подвергается резкому росту температуры, который перекрывает диапазон, содержащий характеристические температуры перехода материала, из которого изготовлена проволока;
b) измерения на линии непосредственно или опосредованно изменений длины проволоки в заданных точках указанного устройства, соответствующих различным известным температурам;
c) использования данных температуры и изменения длины для получения точек гистерезисной кривой указанного материала в диаграмме зависимости удлинения от температуры.
2. Способ по п.1, отличающийся тем, что проволоку подают с известной скоростью и с постоянным натяжением, при этом измерение изменений длины определяют из провисания между различными опорными точками, расположенными вдоль устройства.
3. Способ по п.1, отличающийся тем, что проволоку подают с известной скоростью и с постоянным натяжением, при этом измерение изменений длины определяют посредством измерения изменений скорости проволоки между различными точками устройства.
4. Устройство для непрерывного контроля качества проволоки (F) или подобного изделия из сплава с памятью формы, отличающееся тем, что содержит:
a) средства, подходящие для создания вдоль проволоки (F) известного температурного профиля в диапазоне, охватывающем характеристические температуры переходов материала проволоки;
b) средства, подходящие для измерения непосредственно или опосредованно изменения длины проволоки (F) при каждой различной температуре; и
c) блоки (B,B',V,V'), подающие проволоку (F).
5. Устройство по п.4, отличающееся тем, что изменение длины проволоки измеряется непосредственно посредством измерения провисания проволоки между различными опорными точками, имеющими различную температуру, с помощью оптического средства.
6. Устройство по п.4, отличающееся тем, что подающие средства (B,B',V,V') выполнены с возможностью регулирования натяжения и скорости подачи проволоки (F), при этом изменение длины проволоки измеряется опосредованно с помощью средств, подходящих для измерения скорости проволоки в различных точках, имеющих различную температуру.
7. Устройство по п.4, отличающееся тем, что указанные средства, подходящие для создания известного температурного профиля вдоль проволоки, содержат точки контакта с проволокой, имеющие различный электрический потенциал.
8. Устройство по п.4, отличающееся тем, что указанные средства, подходящие для создания известного температурного профиля вдоль проволоки, содержат одну или несколько термостатических камер (Т).
9. Устройство по п.4, отличающееся тем, что содержит несколько термостатических камер (Т), в каждой из которых с помощью автоматических систем регулирования поддерживается постоянной заданная температура, и при этом указанные средства, подходящие для измерения непосредственно или опосредованно изменения длины проволоки, расположены в каждой из указанных камер (Т).
10. Устройство по п.4, отличающееся тем, что содержит единственную термостатическую камеру (Т), нагреваемую в своей центральной зоне для создания непрерывного температурного профиля в указанном диапазоне, при этом указанные средства, подходящие для измерения непосредственно или опосредованно изменения длины проволоки, расположены в заданных точках вдоль указанной камеры (Т).
11. Устройство по п.10, отличающееся тем, что дополнительно содержит средства контролирования температуры в заданных точках вдоль указанной единственной термостатической камеры (Т).
12. Устройство по п.10, отличающееся тем, что указанные заданные точки контролирования температуры совпадают с точками, в которых расположены указанные средства, подходящие для измерения непосредственно или опосредованно изменения длины проволоки.
13. Устройство по п.6, отличающееся тем, что средства измерения скорости проволоки (F) являются направляющими шкивами (М), на которые наматывается проволока (F) без скольжения, и скорость которых измеряется с помощью датчиков положения высокого разрешения.
14. Устройство по п.13, отличающееся тем, что шаг (Р) между шкивами (М) является постоянным.
15. Устройство по любому из пп.4-14, отличающееся тем, что дополнительно содержит средство маркировки проволоки, которое автоматически активируется, если измеренные параметры достигают величин, которые находятся вне допустимого диапазона допусков.
RU2006142096/28A 2004-04-29 2005-04-28 Способ и устройство для непрерывного контроля качества проволоки из сплава с памятью формы RU2372612C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT000864A ITMI20040864A1 (it) 2004-04-29 2004-04-29 Metodo di apparecchiatura per il controllo di qualita' in continuo di filo in lega a memoria di forma
ITMI2004A000864 2004-04-29

Publications (2)

Publication Number Publication Date
RU2006142096A RU2006142096A (ru) 2008-06-10
RU2372612C2 true RU2372612C2 (ru) 2009-11-10

Family

ID=34968175

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006142096/28A RU2372612C2 (ru) 2004-04-29 2005-04-28 Способ и устройство для непрерывного контроля качества проволоки из сплава с памятью формы

Country Status (15)

Country Link
EP (1) EP1740931B1 (ru)
JP (1) JP4532543B2 (ru)
KR (1) KR101161462B1 (ru)
CN (1) CN100594377C (ru)
AT (1) ATE375507T1 (ru)
BR (1) BRPI0509190A (ru)
CA (1) CA2558291A1 (ru)
DE (1) DE602005002838T2 (ru)
ES (1) ES2293579T3 (ru)
IL (1) IL177748A (ru)
IT (1) ITMI20040864A1 (ru)
MX (1) MXPA06012417A (ru)
NO (1) NO20064154L (ru)
RU (1) RU2372612C2 (ru)
WO (1) WO2005106441A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA028027B1 (ru) * 2015-01-05 2017-09-29 Государственное Научное Учреждение "Институт Технической Акустики Национальной Академии Наук Беларуси" Способ контроля качества протяженных изделий из сплава с памятью формы
CN109186530B (zh) * 2018-09-10 2020-05-01 中国一冶集团有限公司 一种监测吊臂弯曲度的方法
CN109655482A (zh) * 2019-01-16 2019-04-19 长园电子(东莞)有限公司 一种热缩管在线测量轴向收缩率的装置
CN109916353B (zh) * 2019-04-01 2024-01-16 中国船舶重工集团公司第七一九研究所 一种浮筏双向位移监测装置及方法
CN110186420B (zh) * 2019-05-22 2022-04-08 中国铁道科学研究院集团有限公司铁道建筑研究所 一种隧道断面收敛变形自动监测系统
CN115655057B (zh) * 2022-12-27 2023-03-14 安徽建筑大学 一种老旧设施改造长度测量装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2103806U (zh) * 1990-12-29 1992-05-06 上海钢铁研究所 形状记忆合金特性测试装置
JPH0741341B2 (ja) * 1991-02-26 1995-05-10 日本オートマチックマシン株式会社 電線計測切断装置
JP3548746B2 (ja) * 1994-09-13 2004-07-28 住友金属工業株式会社 形状記憶合金線材製造装置
JPH1068705A (ja) * 1996-08-27 1998-03-10 Kobe Steel Ltd 鋼材の変態率測定方法および装置
DE19647312A1 (de) * 1996-11-13 1998-05-14 Siemens Ag Verfahren und Vorrichtung zur Bestimmung temperaturabhängiger Dehnungseigenschaften eines Prüflings
CN1084800C (zh) * 1997-04-25 2002-05-15 利塔那有限公司 双程形状记忆合金及器件的制造方法
JPH11750A (ja) * 1997-06-10 1999-01-06 Motojiro Honpo 形状記憶銅合金の製造方法
US6149742A (en) * 1998-05-26 2000-11-21 Lockheed Martin Corporation Process for conditioning shape memory alloys

Also Published As

Publication number Publication date
IL177748A0 (en) 2006-12-31
ATE375507T1 (de) 2007-10-15
JP4532543B2 (ja) 2010-08-25
IL177748A (en) 2010-12-30
ES2293579T3 (es) 2008-03-16
CN100594377C (zh) 2010-03-17
CA2558291A1 (en) 2005-11-10
JP2007537423A (ja) 2007-12-20
KR20070002099A (ko) 2007-01-04
EP1740931B1 (en) 2007-10-10
DE602005002838T2 (de) 2008-07-10
CN1930469A (zh) 2007-03-14
NO20064154L (no) 2006-10-23
DE602005002838D1 (de) 2007-11-22
MXPA06012417A (es) 2007-01-17
WO2005106441A1 (en) 2005-11-10
ITMI20040864A1 (it) 2004-07-29
RU2006142096A (ru) 2008-06-10
BRPI0509190A (pt) 2007-09-25
KR101161462B1 (ko) 2012-07-02
EP1740931A1 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
RU2372612C2 (ru) Способ и устройство для непрерывного контроля качества проволоки из сплава с памятью формы
US6916115B1 (en) System and device for characterizing shape memory alloy wires
JP6585915B2 (ja) 温度変調式熱重量分析
US8904852B2 (en) Method for establishing rheometric parameters of samples and rotational rheometer
JP6289997B2 (ja) 流量センサの検査方法、検査システム、及び、検査システム用プログラム
US4817427A (en) Device for measuring water flow rate in plant stem
KR100307270B1 (ko) 재료시험기
CN104011525B (zh) 材料测试装置与方法
US20110004346A1 (en) Feedback Control for Shape Memory Alloy Actuators
CN106153491A (zh) 一种碳纤维束氧化后质量损失率与应力应变实时测量系统及测量方法
JP2006078384A (ja) 荷重可変型強度試験機
Mayer et al. Design of a modular lifespan test bench for shape memory alloy wires
Grattan et al. In situ cross-calibration of in-fiber Bragg grating and electrical resistance strain gauges for structural monitoring using an extensometer
CN110431403B (zh) 涂层测定
EP1962067A2 (de) Verfahren zur Kalibrierung eines Strömungssensors mit einem oder zwei temperatursensitiven Widerständen
SU676901A1 (ru) Способ испытани материалов на релаксацию напр жений
Alalem Experimental Evaluation of Shape Memory Alloy Characteristics
JP2010054211A (ja) 検査装置および検査方法
ITMI20060889A1 (it) Apparecchiatura e metodo per la caratterizzazione di fili in lega a memoria di forma
SU1733919A1 (ru) Способ определени линейных перемещений
Mateiu et al. New thermo mechanic fatigue test installation
RU2521139C1 (ru) Способ определения коэффициента теплопроводности наноструктурированного поверхностного слоя конструкционных материалов
DE10340194A1 (de) Verfahren zur Anpassung der Gebläsedrehzahl eines gebläseunterstützten Heizgerätes
CN101879997A (zh) 用于校正两个折页辊之间的预调节的间隙宽度的方法
Kesavan et al. TEMPERATURE CALIBRATION OF EFPI FIBER OPTIC STRAIN SENSORS.