RU2361910C2 - Способ перегонки - Google Patents

Способ перегонки Download PDF

Info

Publication number
RU2361910C2
RU2361910C2 RU2005136479/04A RU2005136479A RU2361910C2 RU 2361910 C2 RU2361910 C2 RU 2361910C2 RU 2005136479/04 A RU2005136479/04 A RU 2005136479/04A RU 2005136479 A RU2005136479 A RU 2005136479A RU 2361910 C2 RU2361910 C2 RU 2361910C2
Authority
RU
Russia
Prior art keywords
distillation column
membrane
distillate
permeate
fed
Prior art date
Application number
RU2005136479/04A
Other languages
English (en)
Other versions
RU2005136479A (ru
Inventor
Штефан Рюдигер БЛУМ (CA)
Штефан Рюдигер Блум
Бернхард КАЙЗЕР (DE)
Бернхард КАЙЗЕР
Original Assignee
2С-Софистикейтед Системс Лимитед
Бусс-Смс-Канцлер Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 2С-Софистикейтед Системс Лимитед, Бусс-Смс-Канцлер Гмбх filed Critical 2С-Софистикейтед Системс Лимитед
Publication of RU2005136479A publication Critical patent/RU2005136479A/ru
Application granted granted Critical
Publication of RU2361910C2 publication Critical patent/RU2361910C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/16Rotary, reciprocated or vibrated modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/02Rotation or turning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2008By influencing the flow statically
    • B01D2321/2016Static mixers; Turbulence generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S159/00Concentrating evaporators
    • Y10S159/27Micropores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S159/00Concentrating evaporators
    • Y10S159/28Porous member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/09Plural feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/17Saline water conversion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к мембранным процессам разделения, в том числе к способам перегонки, в частности перегонки этанола из затора. Согласно способу исходный поток подают в первую перегонную отпарную колонну, а отбираемый из нее дистиллят подают во вторую перегонную ректификационную колонну. Исходный поток подвергают очистке первым мембранным методом разделения. Получают концентрат, который подают в первую перегонную колонну, и пермеат, который подают во вторую перегонную колонну. Дистиллят, отбираемый из второй перегонной колонны, подвергают очистке вторым мембранным методом разделения. Чистота выделенного этанола составляет свыше 99%. 16 з.п. ф-лы, 2 ил., 2 табл.

Description

Изобретение относится к способу перегонки, прежде всего перегонки этанола из затора.
При перегонке и дегидратации этанола из пивного затора, который после брожения содержит около 10% этанола, 85% воды и 5% твердых веществ, обычным способом затор в подогретом состоянии подают в первую перегонную колонну. В первой перегонной колонне затор упаривают, получая кубовый продукт из содержащихся в заторе твердых компонентов, которые можно удалять из колонны с водой. Обычно часть этого кубового продукта после нагревания вновь возвращают в перегонную колонну (кипятильник).
Первый парообразный дистиллят, который еще содержит воду, этанол и сивушные масла, подают, необязательно через сборник-смеситель, во вторую перегонную колонну, выполненную в виде ректификационной колонны. В этой ректификационной колонне происходит дальнейшее разделение, при котором сивушные масла отводятся в виде бокового потока. Небольшую часть образовавшейся во второй перегонной колонне в виде кубового продукта воды после нагревания вновь возвращают в ректификационную колонну (кипятильник), а остальную часть также удаляют, полностью выводя ее из технологического процесса. Полученный во второй перегонной колонне дистиллят, который все еще содержит воду и этанол, можно вновь частично, необязательно через уже упомянутый выше сборник, возвращать в первую и вторую перегонные колонны.
Преобладающее количество образующей второй дистиллят водно-этанольной смеси, содержащей около 95% этанола и 5% воды, подвергают последней дегидратации для получения этанола с максимально возможной степенью чистоты порядка 99-99,8%. На этой последней стадии дегидратации используют молекулярные сита, у которых кристаллические цеолиты по типу губки адсорбируют молекулы Н2О.
Однако цеолиты молекулярных сит быстро насыщаются водой. Поэтому для возможности постоянной дегидратации насыщенные водой цеолиты необходимо регенерировать. По этой причине молекулярные сита обычно применяют попарно. В этом случае от первого, активного молекулярного сита можно получать высокочистый этанол, который можно использовать также для регенерации второго, неактивного молекулярного сита. При регенерации неактивного молекулярного сита применяемый для этой цели этанол можно возвращать в перегонную колонну обратным потоком, на долю которого может приходиться около 30% от всего чистого этанола, полученного на активном молекулярном сите. При этом постоянная смена действующей на молекулярные сита нагрузки, обусловленной периодическим их нагружением давлением и снятием действующего на них давления, приводит к истиранию подобного заполнителя, которым являются молекулярные сита, и образованию пыли. Такие пылевидные продукты истирания молекулярных сит загрязняют последующие ступени установки, которые по этой причине приходится периодически заменять. В результате возрастают капитальные затраты и эксплуатационные расходы.
Дегидратация этанола является энергоемким процессом. Так, в частности, упаривание затора в первой перегонной колонне, равно как и необходимость возврата в нее больших количеств дистиллята, связаны со значительными эксплуатационными расходами и капитальными затратами. Помимо этого и водно-этанольная смесь перед ее обработкой молекулярными ситами должна иметь высокую степень чистоты, при которой содержание в ней этанола должно составлять около 90-95%, для чего эту смесь веществ приходится подвергать исключительно сложной с точки зрения аппаратурного оформления и исключительной дорогой с точки зрения эксплуатационных расходов ректификации максимально близко к азеотропной точке. По этой причине в ректификационной колонне требуется предусматривать множество ступеней разделения и возвращать в нее большое количество флегмы.
Исходя из описанного выше уровня техники в основу настоящего изобретения была положена задача разработать способ перегонки, который позволял бы существенно повысить экономичность процесса прежде всего при дегидратации этанола из затора.
В отношении способа перегонки, прежде всего этанола из затора, при осуществлении которого исходный поток подают в первую перегонную колонну, часто называемую также отпарной колонной, а отбираемый из нее дистиллят подают во вторую перегонную колонну, часто называемую также ректификационной колонной, указанная задача решается благодаря тому, что исходный поток подвергают очистке первым мембранным методом разделения с получением концентрата, который подают в первую перегонную колонну, и пермеата, который подают во вторую перегонную колонну, и/или дистиллят, отбираемый из второй перегонной колонны, подвергают очистке вторым мембранным методом разделения.
Мембранные процессы разделения, большое разнообразие которых известно из уровня техники, хорошо зарекомендовали себя на практике. Преимущество большинства мембранных процессов разделения состоит в том, что в процессе разделения обрабатываемый продукт не подвергается никаким фазовым превращениям и поэтому не происходит выделения или поглощения никаких количеств скрытой энергии. Помимо этого, сами мембраны инертны по отношению к компонентам разделяемой смеси веществ, благодаря чему исключается возможность дополнительного загрязнения продукта примесями, источником которых являются вспомогательные вещества, используемые в процессах разделения. Тем самым отпадает и необходимость в последующей очистке продукта от подобных загрязняющих его вспомогательных веществ, используемых в процессах разделения. Такие разделительные устройства не требуют также их регенерации.
В качестве мембранных методов разделения предпочтительно использовать так называемые мембранные технологии, а из них, прежде всего для обработки исходного потока, главным образом пивного затора при получении этанола, - фильтрацию через мембрану. В результате подобной фильтрации через мембрану, например, затора в качестве пермеата получают только жидкую смесь этанола, воды и сивушных масел. Остающийся концентрат с повышенным содержанием в нем заторной кашицы подают обычным путем, предпочтительно после его подогрева, в первую перегонную колонну.
Как указано выше, пермеат, полученный в результате мембранного процесса разделения исходного потока, подают в обход первой перегонной колонны непосредственно во вторую перегонную колонну. При получении этанола, в частности из пивного затора, пермеат, полученный в результате мембранного процесса разделения, уже имеет в основном такой же состав, что и дистиллят, получаемый в первой перегонной колонне. Поэтому пермеат нет необходимости направлять на обработку в первой перегонной колонне, а можно сразу подавать во вторую перегонную колонну. Благодаря этому уже обеспечивается значительная экономия энергии, поскольку подаваемый сразу во вторую перегонную колонну пермеат более не требуется, в отличие от традиционных способов, полностью выпаривать в первой перегонной колонне. Сказанное в особенности справедливо в том случае, когда массовое отношение концентрата к пермеату, полученному в результате первого мембранного процесса разделения исходного потока, составляет от 1 до 8.
В предпочтительном варианте можно использовать динамическую фильтрацию через мембрану с поперечным движением потока. Эта технология фильтрации основана на использовании дисковых мембран, смонтированных на полых валах, при этом дисковые мембраны, смонтированные на различных валах, взаимно перекрываются. Поток разделяемого продукта набегает на дисковые мембраны снаружи, а пермеат, проникая сквозь дисковую мембрану внутрь нее, отводится через полый вал. Приведение дисковых мембран во вращение с высокой скоростью относительно разделяемого продукта, а также возникновение значительной турбулентности в зонах взаимного перекрытия дисковых мембран существенно уменьшают вероятность загрязнения мембран или их забивания. В результате повышается удельная производительность по пермеату и снижается расход энергии на единицу количества пермеата. Помимо этого циклы очистки мембран при этом длятся гораздо дольше, чем в других мембранных технологиях, благодаря чему повышается коэффициент готовности и снижаются эксплуатационные расходы. Технология динамической фильтрации через мембрану с поперечным движением потока известна, например, из международной публикации WO 98/23724.
С технологической точки зрения предпочтительно далее подавать пермеат, полученный в результате первого мембранного процесса разделения исходного потока, в виде смеси с первым дистиллятом, т.е. дистиллятом, отбираемым из первой перегонной колонны, во вторую перегонную колонну. В этом случае обеспечивается возможность равномерного регулирования количества подаваемого во вторую перегонную колонну материала и сглаживания колебаний производительности первой перегонной колонны и мембранного процесса разделения. В другом варианте пермеат, полученный в результате первого мембранного процесса разделения исходного потока, и дистиллят, отбираемый из первой перегонной колонны, можно подавать во вторую перегонную колонну отдельно друг от друга.
В зависимости от того или иного варианта осуществления предлагаемого в изобретении способа подаваемые в виде смеси друг с другом или отдельно друг от друга во вторую перегонную колонну пермеат и/или дистиллят, отбираемый из первой перегонной колонны, поддерживают в жидком состоянии в сравнительно горячем состоянии, например с температурой 120°С, но предпочтительно практически в виде жидкой фазы в отличие от уровня техники, согласно которому эти материалы подают во вторую перегонную колонну в парообразном виде при температуре, близкой к точке росы. Иными словами, указанные пермеат и/или дистиллят, по отдельности или в смеси, поддерживают в жидком состоянии при температуре, близкой к температуре кипения.
Из второй перегонной колонны вода отбирается из ее куба в жидкой фазе. Поэтому еще одно преимущество предлагаемого в изобретении способа состоит также в том, что водный компонент пермеата, полученного в результате первого мембранного процесса разделения исходного потока, остается или присутствует во второй перегонной колонне в жидкой фазе. По этой причине во второй перегонной колонне из поступившей в нее смеси необходимо выпаривать только ее этанольный компонент. В отличие от традиционных способов предлагаемый в изобретении способ позволяет экономить энергию, которую потребовалось бы затратить на испарение водного компонента, поскольку вода подается во вторую перегонную колонну в виде жидкой фазы, а не в парообразном виде и остается в этой колонне также в виде жидкой фазы.
В зависимости от выбранного мембранного метода разделения подаваемое в первую перегонную колонну количество жидкости сокращается в сравнении с известным из уровня техники способом на 15-50%. Соответственно на упаривание поданного в первую перегонную колонну количества жидкости требуется и меньшее количество энергии.
Благодаря описанным выше мерам в первую перегонную колонну подается продукт с уже повышенной концентрацией в нем заторной кашицы, содержащей твердые вещества. Несмотря на поступление в первую перегонную колонну меньшего количества жидкости, в подаваемом в нее исходном потоке концентрация кубового продукта, равно как и состав дистиллята, соответствуют обычным способам, однако концентрация в ректификационной колонне выше.
Содержание этанола в дистилляте, отбираемом из второй перегонной колонны, составляет от 75 до 95 мас.%. Преимущество предлагаемого в изобретении способа состоит в том, что даже при сравнительно высоком содержании воды в дистилляте в сопоставлении с обычными способами, при осуществлении которых содержание этанола в дистилляте перед стадией окончательной дегидратации должно составлять порядка 90-95 мас.%, для окончательной дегидратации можно использовать еще один мембранный процесс разделения, прежде всего также мембранную технологию, а в данном случае предпочтительно испарение через мембрану. Благодаря этому появляется возможность снизить стоимость изготовления второй перегонной колонны и расходы на ее эксплуатацию.
Для окончательной дегидратации целесообразно предусмотреть группу параллельно включенных мембранных аппаратов, в которую подают, предпочтительно через перегреватель, дистиллят, отбираемый из второй перегонной колонны (ректификационной колонны), и отводимый из которой в качестве конечного продукта концентрат, в данном случае прежде всего этанол, имеет высокую степень чистоты, превышающую 99%, а преимущественно составляющую от 99 до 99,95%.
Эффективность разделения в мембранных аппаратах можно повысить, вновь подавая небольшую часть являющегося конечным продуктом концентрата, полученного в мембранных аппаратах, в каждый из них в качестве промывного потока на стороне пермеата и вновь возвращая этот концентрат после прохождения через соответствующий мембранный аппарат вместе с полученным в нем пермеатом во вторую перегонную колонну в качестве второго питающего потока.
Промывной поток, отбираемый от получаемого в мембранных аппаратах концентрата, непрерывно возвращается в мембранные аппараты и снижает в них на стороне пермеата парциальное давление воды, что позволяет экономичным путем дополнительно повысить степень чистоты концентрата до величины, достигающей 99,95%.
Для реализации подобного процесса очистки мембран путем их промывки предпочтительно использовать так называемый внутренний промывной поток в виде частичного потока концентрата или же внешний промывной поток, например поток азота. Общая особенность обоих этих методов состоит в физическом (конвективном) отводе или выносе пермеата дополнительным потоком.
Поскольку в предпочтительном варианте в мембранных аппаратах происходит испарение через мембрану, а являющийся конечным продуктом концентрат находится в газовой фазе, промывной поток можно без каких-либо проблем также подавать в мембранные аппараты в газообразном виде. Подобная возможность обеспечивается также благодаря тому, что за дросселем создается разрежение в пермеате и поэтому существенно возрастает объемный расход промывного потока, за счет чего повышается эффективность конвективного уноса пермеата движущимся в противотоке к нему промывным потоком.
Пермеат, полученный в мембранных аппаратах, перед его подачей во вторую перегонную колонну целесообразно подогревать теплом образующегося в ней и отбираемого из нее кубового продукта.
Равным образом тепло конечного продукта и/или кубового продукта, образующегося во второй перегонной колонне и отбираемого из нее, можно использовать для подогрева концентрата, полученного в результате первого мембранного процесса разделения исходного потока, для чего обычно применяются традиционные теплообменники.
Для отвода тепла, подведенного в первую перегонную колонну для испарения жидкости и ставшего после этого избыточным, в подводящей линии, ведущей во вторую перегонную колонну, предпочтительно непосредственно перед входом в нее, целесообразно установить теплообменник, прежде всего конденсатор.
В частном случае осуществления предлагаемого в изобретении способа вторая перегонная колонна может быть образована двумя отделенными одна от другой перегонными колоннами.
Ниже предлагаемый в изобретении способ более подробно рассмотрен со ссылкой на прилагаемые чертежи, на которых представлены лишь технологические схемы и на которых, в частности, показано:
на фиг.1 - схема, иллюстрирующая первый технологический процесс,
на фиг.2 - схема, иллюстрирующая второй технологический процесс.
Помимо этого в прилагаемых к чертежам таблицах 1 и 2 только в качестве примера представлены соответствующие позициям 1-10 и 31-40 конкретные значения встречающихся физических величин, при этом оба технологических процесса, которые проиллюстрированы на фиг.1 и 2, различаются между собой в основном лишь различным использованием выделяющегося в ходе них тепла.
На фиг.1 схематично показана установка для перегонки, соответственно дегидратации этанола из пивного затора, служащего исходным потоком 1, подаваемым на переработку.
Затор содержит около 10 мас.% этанола, 85 мас.% воды и 5 мас.% твердых веществ и имеет температуру, например, 20°С. В ступени 11 мембранного разделения затор разделяют на концентрат 2, содержащий заторную кашицу в повышенной концентрации и твердые вещества, и на пермеат 3, представляющий собой только жидкую фазу, состоящую из смеси воды, этанола и сивушных масел. Концентрат 2 с повышенным содержанием в нем заторной кашицы и твердыми веществами нагревают в теплообменнике 12, например, на 10°С до температуры 30°С и подают в первую перегонную колонну 13 или отпарную колонну.
Жидкий пермеат 3, отбираемый из ступени 11 мембранного разделения исходного потока 1, подают непосредственно во вторую перегонную колонну 14, представляющую собой ректификационную колонну.
Наличие повышенной концентрации заторной кашицы в концентрате 2, подаваемом в первую перегонную колонну 13, позволяет эффективно вести процесс в первой перегонной колонне 13 и исключает необходимость в полном испарении в ней пермеата. Более того, в этой колонне от заторной кашицы отделяется водно-этанольная смесь с повышенным содержанием в ней этанола, который в конечном итоге требуется лишь выпарить из нее, тогда как скапливающиеся в кубе вода и твердые вещества выводятся из процесса в виде кубового продукта 5 (барды).
Часть кубового продукта 5 после нагревания с помощью теплообменника 15 можно обычным путем вновь подавать в первую перегонную колонну 13.
Дистиллят 4, полученный в первой перегонной колонне 13 и содержащий, например, 30% этанола, отводят еще через один теплообменник 16 и затем смешивают с пермеатом 3. Образовавшуюся смесь 6 подают, предпочтительно с постоянным объемным расходом, во вторую перегонную колонну 14. Содержание этанола в этой смеси 6 составляет, например, 20 мас.%, а содержание воды - 80 мас.% при температуре 120°С (см. также данные в таблицах). При этом смесь 6 предпочтительно должна оставаться в жидкой фазе при температуре, близкой к температуре ее кипения.
Дистиллят 7, отбираемый из второй перегонной колонны 14, при температуре, например, 125°С все еще содержит 85 мас.% этанола и 15 мас.% воды. Дистиллят 7, отбираемый из второй перегонной колонны 14, уже при содержании в нем этанола около 80 мас.% в отличие от обычных способов, при осуществлении которых его содержание в дистилляте должно составлять 90-95 мас.%, можно согласно предлагаемому в изобретении способу подвергать окончательной дегидратации мембранным методом разделения.
С этой целью дистиллят 7, отбираемый из второй перегонной колонны 14, подают в группу 17 из нескольких, а в данном примере - из трех параллельно включенных мембранных аппаратов 18, 19, 20. Концентрат 9, получаемый в результате фильтрации через мембранный фильтр, прежде всего испарения через мембрану, представляет собой конечный продукт, а именно высокочистый этанол, содержащий лишь 0,2 мас.% или менее вплоть до 0,05 мас.% воды. Конечный продукт окончательно отбирают после его охлаждения в теплообменнике 12, через который его пропускают в целях подогрева им подаваемого в первую перегонную колонну 13 концентрата 2.
Процесс в мембранных аппаратах 18-20 можно проводить в режиме с очисткой мембран, для чего некоторое количество концентрата 9, представляющего собой конечный продукт, вновь возвращают в каждый из мембранных фильтровальных аппаратов 18-20, пропускают через них в качестве промывного потока, после чего вместе с полученным в них пермеатом в виде смеси 10, содержащей, например, 57,2 мас.% этанола и 42,8 мас.% воды, конденсируют в теплообменнике 21 под вакуумом и подают не показанным на чертеже насосом, необязательно через сборник, обратно во вторую перегонную колонну 14 для обогащения. В теплообменнике 21 в данном случае используется отходящее тепло воды, которая является единственным кубовым продуктом 8, образующимся во второй перегонной колонне 14, и которая выходит из теплообменника охлажденной, например, до 30°С.
В технологическом процессе, осуществляемом в показанной на фиг.2 установке, дистилляции, соответственно дегидратации подвергают этанол из пивного затора, являющегося исходным потоком 31, который подают на переработку и состав которого соответствует составу исходного пивного затора в рассмотренном выше первом примере осуществления изобретения.
В ступени 41 мембранного разделения затор и в этом варианте разделяют на концентрат 32 и пермеат 33. Концентрат 32 пропускают через два теплообменника 42, 43 и/или головной конденсатор первой перегонной колонны 44, нагревая приблизительно до 115°С, и подают в первую перегонную колонну 44.
Часть сгущенного в первой перегонной колонне 44 пивного затора, отбираемого из нее в качестве кубового продукта 35, возвращают через теплообменник 45 обратно в первую перегонную колонну 44, которая благодаря этому может работать в оптимальном режиме (кипятильник). Избыточный кубовый продукт 35 выводят из процесса.
Пермеат 33, а также дистиллят 34, отбираемый из первой перегонной колонны 44, совместно подают в виде их смеси 36 во вторую перегонную колонну 46.
Часть отбираемой из куба второй перегонной колонны 46 очищенной воды после ее испарения в теплообменнике 53 вновь возвращают непосредственно во вторую перегонную колонну 46 (кипятильник), а избыточную воду 38, отбираемую из второй перегонной колонны 46, удаляют, предварительно пропуская через теплообменник 42. Еще один частичный поток 55 очищенной воды испаряют в теплообменнике 52 и используют затем в качестве вспомогательного материала во второй перегонной колонне 46. Теплообменник 52 служит при этом кипятильником, в котором происходит испарение частичного потока 55 очищенной воды. При этом дистиллят 34, отбираемый из первой перегонной колонны 44, конденсируется.
Смесь 36, которая состоит из дистиллята 34, отбираемого из первой перегонной колонны 44, и пермеата 33, получаемого в ступени 41 мембранного разделения исходного потока 31, и которая нагрета до высокой температуры, лежащей вблизи температуры ее кипения, но все еще остается в жидкой фазе, подают во вторую перегонную колонну 46 через расположенный непосредственно перед входом 56 в нее теплообменник 54, прежде всего конденсатор. Посредством теплообменника 54 избыточное тепло, выделившееся в результате испарения жидкости в первой перегонной колонне 44, можно отводить из процесса и использовать в дальнейшем в различных целях.
Часть дистиллята, отбираемого из второй перегонной колонны 46, в виде частичного потока 57 вновь возвращают в нее (флегма), тогда как основной поток 37 дистиллята подают через перегреватель 51 в группу 47 мембранных аппаратов 48-50.
Процесс в мембранных аппаратах 48-50 и в этом варианте можно проводить в режиме с очисткой мембран, для чего часть потока концентрата 39, являющегося конечным продуктом, возвращают обратно в каждый из мембранных фильтровальных аппаратов 48-50, пропускают через них аналогично рассмотренному выше примеру и возвращают в виде смеси 40 с полученным в мембранных аппаратах 48-50 пермеатом во вторую перегонную колонну 46.
Таблица 1
1 2 3 4 5 6 7 8 9 10
Объемный расход, кг/ч 12,000 8,955 3,045 2,955 6,000 6,000 1,842 4,798 1,202 640
Этанол, мас.% 10 9,8 10,5 30 0 20 85 0 99,8 57,2
Вода, мас.% 85 83,5 89,5 70 90 80 15 100 0,2 42,8
Затор, мас.% 5 6,7 0 0 10 0 0 0 0 0
Абсолютное давление, бары 1,013 2,5 2,5 2,5 2,5 2,5 2,5 1,013 1,013 0,1
Температура, °С 20 30 30 120 120 120 125 30 25 120
Таблица 2
31 32 33 34 35 36 37 38 39 40
Объемный расход, кг/ч 12,000 8,955 3,045 2,955 6,000 6,000 1,842 4,798 1,202 640
Этанол, мас.% 10 9,8 10,5 30 0 20 85 0 99,8 57,2
Вода, мас.% 85 83,5 89,5 70 90 80 15 100 0,2 42,8
Затор, мас.% 5 6,7 0 0 10 0 0 0 0 0
Абсолютное давление, бары 1,013 3 3 3 1,013 3 3 1,013 1,013 0,1
Температура, °С 20 115 30 120 30 120 125 50 30 120

Claims (17)

1. Способ перегонки прежде всего этанола из затора, при осуществлении которого исходный поток подают в первую перегонную колонну (отпарную колонну), а отбираемый из нее дистиллят подают во вторую перегонную колонну (ректификационную колонну), отличающийся тем, что исходный поток (1) подвергают очистке первым мембранным методом разделения с получением концентрата (2), который подают в первую перегонную колонну (13), и пермеата (3), который подают во вторую перегонную колонну (14), и/или дистиллят (7), отбираемый из второй перегонной колонны (14), подвергают очистке вторым мембранным методом разделения.
2. Способ по п.1, отличающийся тем, что в качестве мембранных методов разделения используют мембранную технологию.
3. Способ по п.2, отличающийся тем, что мембранная технология представляет собой динамическую фильтрацию через мембрану с поперечным движением потока.
4. Способ по п.1, отличающийся тем, что пермеат (3), полученный в результате первого мембранного процесса разделения исходного потока (1), подают во вторую перегонную колонну (14) в виде смеси (6) с дистиллятом (4), отбираемым из первой перегонной колонны (13).
5. Способ по п.1, отличающийся тем, что пермеат (3), полученный в результате первого мембранного процесса разделения исходного потока, и дистиллят, отбираемый из первой перегонной колонны, подают во вторую перегонную колонну отдельно друг от друга.
6. Способ по п.4 или 5, отличающийся тем, что подаваемые в виде смеси друг с другом или отдельно друг от друга во вторую перегонную колонну пермеат и/или дистиллят, отбираемый из первой перегонной колонны, поддерживают в жидком состоянии при температуре, близкой к температуре кипения.
7. Способ по п.1, отличающийся тем, что массовое отношение концентрата (3) к пермеату (2), полученному в результате первого мембранного процесса разделения исходного потока (1), составляет от 1 до 8.
8. Способ по п.1, отличающийся тем, что водный компонент пермеата (3). полученного в результате мембранного процесса разделения исходного потока (1), остается или присутствует во второй перегонной колонне (14) в жидкой фазе.
9. Способ по п.1, отличающийся тем, что содержание этанольного компонента в дистилляте (7), отбираемом из второй перегонной колонны (14), составляет от 75 до 95 мас.%.
10. Способ по п.1, отличающийся тем, что дистиллят (7), отбираемый из второй перегонной колонны (14), подают в группу (17) параллельно включенных мембранных аппаратов (18-20).
11. Способ по п.1, отличающийся тем, что дистиллят (7), отбираемый из второй перегонной колонны (46), подают в мембранные аппараты (48-50) через перегреватель (51).
12. Способ по п.10, отличающийся тем, что часть являющегося конечным продуктом концентрата (9), полученного в мембранных аппаратах (18-20), вновь подают в каждый из них в качестве промывного потока на стороне пермеата и после прохождения через соответствующий мембранный аппарат вновь возвращают вместе с полученным в нем пермеатом во вторую перегонную колонну (14) в качестве питающего потока (10).
13. Способ по п.10, отличающийся тем, что пермеат (10), полученный в мембранных аппаратах (18-20), подогревают теплом кубового продукта (8), образующегося во второй перегонной колонне (14) и отбираемого из нее.
14. Способ по п.12, отличающийся тем, что тепло конечного продукта (9) и/или кубового продукта (38), образующегося во второй перегонной колонне (46), используют для подогрева концентрата (соответственно 2, 32), полученного в результате первого мембранного процесса разделения исходного потока (соответственно 1,31).
15. Способ по п.1, отличающийся тем, что в подводящей линии (56), ведущей во вторую перегонную колонну (46), установлен теплообменник.
16. Способ по п.1, отличающийся тем, что вторая перегонная колонна образована двумя отделенными одна от другой перегонными колоннами.
17. Способ по п.15, отличающийся тем, что дистиллят, отбираемый из второй перегонной колонны (46), подают через перегреватель (51) в группу (47) мембранных аппаратов.
RU2005136479/04A 2003-04-25 2004-04-24 Способ перегонки RU2361910C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10319046 2003-04-25
DE10319046.5 2003-04-25

Publications (2)

Publication Number Publication Date
RU2005136479A RU2005136479A (ru) 2007-06-10
RU2361910C2 true RU2361910C2 (ru) 2009-07-20

Family

ID=33393925

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005136479/04A RU2361910C2 (ru) 2003-04-25 2004-04-24 Способ перегонки

Country Status (7)

Country Link
US (1) US7744727B2 (ru)
EP (1) EP1620191B1 (ru)
CN (1) CN100536974C (ru)
CA (1) CA2523099C (ru)
DE (1) DE112004000372D2 (ru)
RU (1) RU2361910C2 (ru)
WO (1) WO2004096403A1 (ru)

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020076A1 (ja) * 2002-08-30 2004-03-11 Mitsubishi Heavy Industries, Ltd. 分離装置、反応装置、及び芳香族カルボン酸の製造方法
EP1888193A1 (de) * 2005-04-20 2008-02-20 White Fox Technologies Limited Trennverfahren
US8002874B2 (en) * 2007-03-06 2011-08-23 Membrane Technology And Research, Inc. Liquid-phase and vapor-phase dehydration of organic/water solutions
US8425734B2 (en) * 2007-07-02 2013-04-23 I3 Nanotec Llc Membrane-based hybrid process for separation of mixtures of organics, solids, and water
DE102007043998A1 (de) * 2007-09-14 2009-03-19 White Fox Technologies Ltd. Vorrichtung für die Ethanolgewinnung
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
US8309773B2 (en) 2010-02-02 2012-11-13 Calanese International Corporation Process for recovering ethanol
US8114255B2 (en) * 2008-08-27 2012-02-14 Membrane Technology & Research, Inc. Membrane-augmented distillation with compression to separate solvents from water
US9138678B2 (en) * 2008-08-27 2015-09-22 Membrane Technology And Research, Inc. Membrane-augmented distillation with compression and condensation to separate solvents from water
US8460405B2 (en) 2010-02-02 2013-06-11 Celanese International Corporation Ethanol compositions
US8314272B2 (en) 2010-02-02 2012-11-20 Celanese International Corporation Process for recovering ethanol with vapor separation
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US8747492B2 (en) 2010-02-02 2014-06-10 Celanese International Corporation Ethanol/fuel blends for use as motor fuels
US8680343B2 (en) 2010-02-02 2014-03-25 Celanese International Corporation Process for purifying ethanol
US8728179B2 (en) 2010-02-02 2014-05-20 Celanese International Corporation Ethanol compositions
US8344186B2 (en) * 2010-02-02 2013-01-01 Celanese International Corporation Processes for producing ethanol from acetaldehyde
US8668750B2 (en) 2010-02-02 2014-03-11 Celanese International Corporation Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8541633B2 (en) 2010-02-02 2013-09-24 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8552224B2 (en) 2010-05-07 2013-10-08 Celanese International Corporation Processes for maximizing ethanol formation in the hydrogenation of acetic acid
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8754267B2 (en) 2010-05-07 2014-06-17 Celanese International Corporation Process for separating acetaldehyde from ethanol-containing mixtures
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8604255B2 (en) 2010-05-07 2013-12-10 Celanese International Corporation Process for recovering ethanol with sidedraws to regulate C3+ alcohols concentrations
US8704011B2 (en) 2010-05-07 2014-04-22 Celanese International Corporation Separating ethanol and ethyl acetate under low pressure conditions
US8536384B2 (en) 2010-07-09 2013-09-17 Celanese International Corporation Recovering ethanol sidedraw by separating crude product from hydrogenation process
US8846986B2 (en) 2011-04-26 2014-09-30 Celanese International Corporation Water separation from crude alcohol product
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8884080B2 (en) 2010-07-09 2014-11-11 Celanese International Corporation Reduced energy alcohol separation process
US9150474B2 (en) 2010-07-09 2015-10-06 Celanese International Corporation Reduction of acid within column through esterification during the production of alcohols
US8809597B2 (en) 2010-07-09 2014-08-19 Celanese International Corporation Separation of vapor crude alcohol product
US8710280B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Weak acid recovery system for ethanol separation processes
US8664454B2 (en) 2010-07-09 2014-03-04 Celanese International Corporation Process for production of ethanol using a mixed feed using copper containing catalyst
US9126125B2 (en) 2010-07-09 2015-09-08 Celanese International Corporation Reduced energy alcohol separation process having water removal
WO2012148509A1 (en) 2011-04-26 2012-11-01 Celanese International Corporation Process for producing ethanol using a stacked bed reactor
US8859827B2 (en) 2011-11-18 2014-10-14 Celanese International Corporation Esterifying acetic acid to produce ester feed for hydrogenolysis
US8710279B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8846988B2 (en) 2010-07-09 2014-09-30 Celanese International Corporation Liquid esterification for the production of alcohols
CN102008831A (zh) * 2010-09-27 2011-04-13 浙江金安制药机械有限公司 一种高纯度酒精精馏回收系统
CN102120093A (zh) * 2010-12-28 2011-07-13 南京工业大学 一种制药工业溶媒回收的工艺
US8907141B2 (en) 2011-04-26 2014-12-09 Celanese International Corporation Process to recover alcohol with secondary reactors for esterification of acid
US9000232B2 (en) 2011-04-26 2015-04-07 Celanese International Corporation Extractive distillation of crude alcohol product
US9024084B2 (en) 2011-04-26 2015-05-05 Celanese International Corporation Reduced energy alcohol separation process having controlled pressure
US8927787B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process for controlling a reboiler during alcohol recovery and reduced ester formation
US8927784B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process to recover alcohol from an ethyl acetate residue stream
US8461399B2 (en) 2011-04-26 2013-06-11 Celanese International Corporation Separation process having an alcohol sidestream
US8686200B2 (en) 2011-04-26 2014-04-01 Celanese International Corporation Process to recover alcohol from an acidic residue stream
US8927780B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process for removing aldehydes from ethanol reaction mixture
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
TW201302684A (zh) 2011-04-26 2013-01-16 Celanese Int Corp 由醋酸進料及再循環醋酸乙酯進料生產乙醇之製程
US9000233B2 (en) 2011-04-26 2015-04-07 Celanese International Corporation Process to recover alcohol with secondary reactors for hydrolysis of acetal
US8927783B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Recovering ethanol with sidestreams to regulate C3+ alcohols concentrations
US8884081B2 (en) 2011-04-26 2014-11-11 Celanese International Corporation Integrated process for producing acetic acid and alcohol
US9024082B2 (en) 2011-04-26 2015-05-05 Celanese International Corporation Using a dilute acid stream as an extractive agent
US8933278B2 (en) 2011-04-26 2015-01-13 Celanese International Corporation Process for producing ethanol and reducing acetic acid concentration
US8686199B2 (en) 2011-04-26 2014-04-01 Celanese International Corporation Process for reducing the concentration of acetic acid in a crude alcohol product
US8592635B2 (en) 2011-04-26 2013-11-26 Celanese International Corporation Integrated ethanol production by extracting halides from acetic acid
US8748675B2 (en) 2011-06-16 2014-06-10 Celanese International Corporation Extractive distillation of crude alcohol product
US8927788B2 (en) 2011-04-26 2015-01-06 Celanese International Corporation Process to recover alcohol with reduced water from overhead of acid column
US8754268B2 (en) 2011-04-26 2014-06-17 Celanese International Corporation Process for removing water from alcohol mixtures
US9024085B2 (en) 2011-04-26 2015-05-05 Celanese International Corporation Process to reduce ethanol recycled to hydrogenation reactor
US8704012B2 (en) 2011-06-16 2014-04-22 Celanese International Corporation Distillation of crude alcohol product using entrainer
US8877987B2 (en) 2011-08-03 2014-11-04 Celanese International Corportation Process for producing anhydrous ethanol using extractive distillation column
US8440866B2 (en) 2011-08-03 2013-05-14 Celanese International Corporation Process for separating ethanol having low acid
US8927782B2 (en) 2011-08-03 2015-01-06 Celanese International Corporation Vapor separation in alcohol production
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US8877986B2 (en) 2011-08-03 2014-11-04 Celanese International Corporation Process for recovering alcohol
US8829249B2 (en) 2011-11-18 2014-09-09 Celanese International Corporation Integrated esterification and hydrogenolysis process for producing ethanol
US8802901B2 (en) 2011-11-18 2014-08-12 Celanese International Corporation Continuous ethyl acetate production and hydrogenolysis thereof
US8829251B2 (en) 2011-11-18 2014-09-09 Celanese International Corporation Liquid esterification method to produce ester feed for hydrogenolysis
US8748673B2 (en) 2011-11-18 2014-06-10 Celanese International Corporation Process of recovery of ethanol from hydrogenolysis process
US9024089B2 (en) 2011-11-18 2015-05-05 Celanese International Corporation Esterification process using extractive separation to produce feed for hydrogenolysis
US8853468B2 (en) 2011-11-18 2014-10-07 Celanese International Corporation Vapor esterification method to produce ester feed for hydrogenolysis
EP2782890A1 (en) 2011-11-22 2014-10-01 Celanese International Corporation Esterifying an ethanol and acetic acid mixture to produce an ester feed for hydrogenolysis
US9029614B2 (en) 2011-12-14 2015-05-12 Celanese International Corporation Phasing reactor product from hydrogenating acetic acid into ethyl acetate feed to produce ethanol
US8907139B2 (en) 2011-12-28 2014-12-09 Celanese International Corporation Process for acetal removal in the purification of a crude ethanol product
US8802902B2 (en) 2011-12-30 2014-08-12 Celanese International Corporation Pressure driven distillation for ethanol production and recovery from hydrogenation process
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
CN104039446B (zh) 2012-01-06 2016-12-28 国际人造丝公司 加氢催化剂
US9353034B2 (en) 2012-02-07 2016-05-31 Celanese International Corporation Hydrogenation process with reduced residence time for vapor phase reactants
US9051235B2 (en) 2012-02-07 2015-06-09 Celanese International Corporation Process for producing ethanol using a molar excess of hydrogen
JP6266876B2 (ja) * 2012-11-15 2018-01-24 東洋エンジニアリング株式会社 蒸留装置とその制御方法
US8853469B2 (en) 2012-11-20 2014-10-07 Celanese International Corporation Combined column for separating products of different hydrogenation reactors
US8729318B1 (en) 2012-11-20 2014-05-20 Celanese International Corporation Process for producing ethanol from methyl acetate
US8957262B2 (en) 2012-11-20 2015-02-17 Celanese International Corporation Olefin hydration for hydrogenation processes
US9000237B2 (en) 2012-12-20 2015-04-07 Celanese International Corporation Ethanol refining process using intermediate reboiler
US8926718B2 (en) 2013-03-15 2015-01-06 Celanese International Corporation Thermochemically produced ethanol compositions
US8975451B2 (en) 2013-03-15 2015-03-10 Celanese International Corporation Single phase ester feed for hydrogenolysis
CN103319040B (zh) * 2013-07-08 2015-04-22 云南七彩环保科技有限公司 甘蔗糖厂废醪液的处理方法
US10486079B1 (en) 2016-01-08 2019-11-26 Whitefox Technologies Limited Process and system for dehydrating a byproduct stream in ethanol production
CN105586231A (zh) * 2016-03-24 2016-05-18 龙岩市铭威厨房设备有限公司 一种二次蒸馏二次冷却的酿酒提取装置
US10729987B1 (en) 2016-12-09 2020-08-04 Whitefox Technologies Limited Process and system for heat integration in ethanol production
EP3790638A1 (en) * 2018-05-07 2021-03-17 Whitefox Technologies Limited Process and system for dehydrating a product stream in ethanol production with molecular sieve and membranes
EP3962865A4 (en) 2019-04-29 2023-02-08 Zero Discharge, LLC ZERO DISCHARGE WATER TREATMENT APPARATUS AND METHOD
CN110404285A (zh) * 2019-07-18 2019-11-05 肥城金塔酒精化工设备有限公司 四塔蒸馏与膜分离集成系统及其蒸馏乙醇的方法
CN111036083B (zh) * 2019-12-30 2024-05-17 山东金塔机械集团有限公司 用于制取无水酒精的三效膜分离脱水节能方法和装置
EP4370225A2 (en) * 2021-07-12 2024-05-22 Whitefox Technologies Limited Organic solvent production via distillation and dehydration
US12005381B2 (en) 2021-10-15 2024-06-11 Whitefox Technologies Limited Heat integrated process and system for ethanol production using vapor recompression
CN114602319B (zh) * 2022-04-08 2023-01-20 浙江汇甬新材料有限公司 膜分离提纯方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2981680A (en) * 1957-03-28 1961-04-25 Standard Oil Co Separation of mixtures
US2970106A (en) * 1958-01-31 1961-01-31 American Oil Co Aromatic separation process
DE3037736C2 (de) * 1980-10-06 1984-01-26 Achim Dipl.-Ing. 6650 Homburg Ballweg Verfahren zur Entwässerung von Gemischen aus organischen Flüssigkeiten und Wasser
DE3413085A1 (de) * 1984-04-06 1985-10-24 Henkell & Co, 6200 Wiesbaden Verfahren zum herabsetzen des alkoholgehalts alkoholhaltiger getraenke, insbesondere wein und schaumwein
US5143526A (en) * 1985-10-11 1992-09-01 Sepracor, Inc. Process of treating alcoholic beverages by vapor-arbitrated pervaporation
DE3610011A1 (de) * 1986-03-25 1987-10-08 Geesthacht Gkss Forschung Verfahren zur trennung der komponenten eines fluessigkeitsgemisches voneinander
GB8625070D0 (en) * 1986-10-20 1986-11-26 Brewing Res Found Separation of wort from brewing mash
US5177008A (en) * 1987-12-22 1993-01-05 Kampen Willem H Process for manufacturing ethanol and for recovering glycerol, succinic acid, lactic acid, betaine, potassium sulfate, and free flowing distiller's dry grain and solubles or a solid fertilizer therefrom
DE4137572C1 (en) 1991-11-15 1992-08-20 Deinhard & Co Kgaa, 5400 Koblenz, De Reducing alcohol content of alcoholic drinks, esp. wine - by sepn. of drink in reverse osmosis plant with water- and alcohol-permeable membrane
EP0639105B1 (en) * 1992-05-08 1998-09-23 SMITH, Clark Robert Apparatus and method for removing compounds from a solution
DE4302030C1 (de) 1993-01-26 1994-03-17 Inst Umwelttechnologie Und Umw Verfahren zur energetischen Nutzung alkoholhaltiger Abwässer
FR2743069B1 (fr) * 1996-01-03 1998-03-27 Procedes Et Services Proser Procede de regeneration d'un compose liquide de la famille des glycols, utilise dans la deshydratation d'un gaz
WO2001010540A2 (en) * 1999-08-05 2001-02-15 Microfiltration Technology Aps A method of cross-flow filtration and a cross-flow filtration installation
US20040000473A1 (en) * 2002-06-20 2004-01-01 Willi Hofen Process of separating 1-methoxy-2-propanol and 2-methoxy-1-propanol from aqueous compositions
EP1888193A1 (de) * 2005-04-20 2008-02-20 White Fox Technologies Limited Trennverfahren

Also Published As

Publication number Publication date
EP1620191A1 (de) 2006-02-01
US7744727B2 (en) 2010-06-29
CN100536974C (zh) 2009-09-09
WO2004096403A1 (de) 2004-11-11
CA2523099A1 (en) 2004-11-11
CN1802194A (zh) 2006-07-12
RU2005136479A (ru) 2007-06-10
CA2523099C (en) 2012-01-17
US20070131533A1 (en) 2007-06-14
DE112004000372D2 (de) 2005-11-10
EP1620191B1 (de) 2016-11-23

Similar Documents

Publication Publication Date Title
RU2361910C2 (ru) Способ перегонки
JP5442621B2 (ja) 主にエタノール及び水の混合物を脱水するための方法
US7297236B1 (en) Ethanol distillation process
US8128826B2 (en) Ethanol processing with vapour separation membranes
US20080135396A1 (en) Separation Method
CN112118897B (zh) 在具有分子筛和膜的乙醇生产中使产物流脱水的方法和系统
EP1888194B1 (en) New stripper configuration for the production of ethylene oxide
JP3221695B2 (ja) 不揮発物を含む原液からのヒートポンプ方式による溶剤回収方法
JP2020075864A (ja) アルコールの製造方法
US20090178564A1 (en) Chromatographic Rectification of Ethanol
JPH09508568A (ja) 水蒸気系蒸気ストリームをコンディショニングするための最適化方法
US6395142B1 (en) Method and apparatus for purifying low grade acetonitrile and other constituents from hazardous waste
US20150166444A1 (en) Method for purification of alcohols
CN102203042A (zh) 改进的纯羧酸过滤
WO2009136181A1 (en) Method of purification of glycerine
RU2315108C2 (ru) Способ получения ректификованного спирта
RU2270048C2 (ru) Способ получения ректификованного спирта
RU2270047C2 (ru) Способ получения ректификованного спирта
RU2277433C2 (ru) Способ получения этанола
RU2270049C2 (ru) Способ получения ректификованного спирта
SU1659465A1 (ru) Способ получени реактификованного спирта
JP2014176369A (ja) エタノール濃度低減清酒の製造方法及び製造システム
CA2622737A1 (en) Ethanol processing with vapour separation membranes
JPH025441B2 (ru)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130425