RU2317273C1 - Способ регенерации асфальтобетона - Google Patents

Способ регенерации асфальтобетона Download PDF

Info

Publication number
RU2317273C1
RU2317273C1 RU2006116378/03A RU2006116378A RU2317273C1 RU 2317273 C1 RU2317273 C1 RU 2317273C1 RU 2006116378/03 A RU2006116378/03 A RU 2006116378/03A RU 2006116378 A RU2006116378 A RU 2006116378A RU 2317273 C1 RU2317273 C1 RU 2317273C1
Authority
RU
Russia
Prior art keywords
asphalt concrete
asphalt
mineral component
bitumen
recuperation
Prior art date
Application number
RU2006116378/03A
Other languages
English (en)
Inventor
Андрей Павлович Лупанов
Нина Борисовна Котлярова
Сергей Федорович Балашов
Алексей Сергеевич Суханов
Иосиф Иванович Капанадзе
Василий Андреевич Лупанов
Original Assignee
Общество с ограниченной ответственностью "ДОРЭКСПЕРТ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ДОРЭКСПЕРТ" filed Critical Общество с ограниченной ответственностью "ДОРЭКСПЕРТ"
Priority to RU2006116378/03A priority Critical patent/RU2317273C1/ru
Application granted granted Critical
Publication of RU2317273C1 publication Critical patent/RU2317273C1/ru

Links

Landscapes

  • Road Paving Structures (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к области ремонтных работ, а именно ремонта асфальтобетонных покрытий, и может быть использовано при повторном применении асфальтобетона. Технический результат: оптимизация процесса регенерации старого асфальтобетона с уменьшением себестоимости изготавливаемого асфальтобетона за счет использования его компонентов, выделенных при переработке старого асфальтобетона. Способ регенерации асфальтобетона включает измельчение дробленого асфальтобетона и смешение с минеральным компонентом. Причем в качестве минерального компонента используют минеральный порошок в количестве от 30 до 100% от массы асфальтобетона, а измельчение асфальтобетона проводят в электромагнитном измельчителе с использованием рабочих тел в переменном магнитном поле напряженностью от 35 до 65 кА/м и частотой от 35 до 100 Гц. Полученную смесь продуктов разделяют на фракции, которые смешивают с добавлением битума. 2 з.п. ф-лы.

Description

Изобретение относится к области ремонтных работ, а именно ремонта асфальтобетонных покрытий, и может быть использовано при повторном применении асфальтобетона.
Известные способы регенерации (заводской переработки) старого асфальтобетона предусматривают его дробление и использование полученного гранулята (смеси щебня, песка, минерального порошка и битума) в качестве добавки к новым материалам при приготовлении асфальтобетонных смесей.
Известен (SU, авторское свидетельство 894034, Е01С 7/18, 1981) способ регенерации использованного асфальтобетона, включающий его пластификацию путем введения в старый измельченный асфальтобетон пластифицирующих добавок, совместимых с высокомолекулярными соединениями вяжущего - битума, входящего в состав перерабатываемого асфальтобетона. Указанное введение увеличивает пластичность и влагостойкость асфальтобетонной смеси при одновременном уменьшении вязкости и хрупкости.
Известен (SU, авторское свидетельство 1213107, Е01С 19/10, 1986) способ регенерации старого асфальтобетона, включающий его дезинтегрирование, нагрев нового минерального материала потоком горячих газов, перемещение потока отработанных горячих газов со взвешенным в них мелкодисперсным минеральным порошком, введение в смеситель пластификатора, битума, нагретого нового минерального материала и дезинтегрированного старого асфальтобетона и перемешивание компонентов с образованием однородной равномерно нагретой смеси, при этом дезинтегрирование старого асфальтобетона осуществляют в нагретой водной среде с мелкодисперсным минеральным порошком.
Известен также (SU, авторское свидетельство 933858, Е01С 19/10, 1982) способ регенерации асфальтобетона, включающий дробление асфальтобетона, разогрев его в печи, сушку и нагрев инертных наполнителей, дозирование компонентов и их перемешивание, причем дробление асфальтобетона осуществляют в жидкой среде гидравлическими ударами, генерированными импульсами электрического тока.
Наиболее близким аналогом разработанного способа можно признать (RU, патент 2004513, С04В 26/26, 1993) способ регенерации асфальтобетона, включающий измельчение его и смешение с минеральным компонентом - фосфогипсом дигидратом и пластифицирующим компонентом, в качестве которого используют отходы производства конденсированной канифольно-малеиновой смолы.
Известен (RU, патент 2164900) способ регенерации асфальтобетона, включающий измельчение асфальтобетона и смешение его с минеральным компонентом - минеральным порошком, взятым в количестве от 20 до 40% от массы асфальтобетона.
Недостатком всех вышеприведенных способов следует признать невозможность точного дозирования исходных компонентов, так как старый асфальтобетон поступает в виде гранул различного состава. Поэтому, а также по технологическим причинам, количество добавляемого старого материала ограничивают (до 20-30%). Следовательно, значительное количество старого асфальтобетона остается невостребованным.
Техническая задача, решаемая посредством разработанного способа, состоит в оптимизации процесса регенерации старого асфальтобетона.
Технический результат, получаемый при реализации разработанного способа, состоит в уменьшении себестоимости изготавливаемого асфальтобетона за счет использования его компонентов, выделенных при переработке старого асфальтобетона. Для достижения указанного технического результата предложено использовать способ регенерации асфальтобетона, включающий измельчение дробленого асфальтобетона и смешение с минеральным компонентом, причем измельчение асфальтобетона проводят в электромагнитном измельчителе, а качестве минерального компонента используют минеральный порошок в количестве от 30 до 100% от массы асфальтобетона, причем полученную смесь продуктов разделяют на фракции, которые смешивают с добавлением битума. При этом измельчение проводят в переменном магнитном поле напряженностью от 35 до 65 кА/м с частотой от 35 до 100 Гц, а в качестве измельчителей предпочтительно используют постоянные магниты (рабочие тела) диаметром от 5 до 20 мм. Обычно соотношение общей массы дробленного асфальтобетона и минерального компонента к массе измельчителей составляет от 1:3 до 1:15 соответственно.
При реализации способа используют куски асфальтобетона размером до 20 мм и мелкодисперсный известняк, соответствующий ГОСТ Р 52129-2003.
По предлагаемому способу переработка дробленного асфальтобетона производится в электромагнитном измельчителе, который создает переменное магнитное поле напряженностью от 35 до 65 кА/м с частотой от 35 до 100 Гц.
Предпочтительно используемый при реализации способа электромагнитный измельчитель содержит корпус (индуктор), выполненный из медной или алюминиевой шины, и рабочую камеру, помещенную в индуктор. Рабочая камера может быть выполнена как из ферромагнитных материалов (из листовой стали), так и из диамагнитных материалов (резины, стекла, полимерного материала, стеклоткани и т.д.). В загрузочной камере выполнен люк для поступления измельчаемого материала, а также люк для удаления измельченных составляющих асфальтобетона. Для удержания магнитных измельчителей в объеме камеры используют магнитное поле индуктора и сетку на выходе.
Переменное электромагнитное поле создает электрический ток, проходящий через витки индуктора.
Постоянные магниты имеют южный и северный полюс. Переменное электромагнитное поле индуктора является синусоидальным, пульсирующим и, поскольку используют переменный электрический ток с частотой от 35 до 100 Гц, то и направление электрического тока меняется от 35 до 100 раз в секунду, соответственно частоте тока. Одновременно изменяется и создаваемое переменным электрическим полем переменное магнитное поле. Постоянные магниты стараются столько же раз в минуту повернуться вокруг своей оси, но т.к. их в рабочей камере от 50 до 90% по объему, то они, соударяясь друг о друга, приобретают хаотическое, броуновское движение кипения, т.е. образуют магнитокипящий слой. Каждый постоянный магнитик имеет свой вектор намагничивания и магнитный крутящий момент.
Разделение полученной смеси происходит как за счет намагничивания отдельных ее составляющих, так и за счет использования грохотов с ситами на выходе загрузочной камеры.
Измельчающими (истирающими) телами являются постоянные магниты диаметром от 5 до 20 мм. В процессе электромагнитной обработки смеси за счет хаотичного перемещения постоянных магнитов в переменном электромагнитном поле происходит стирание пленок битума с поверхности асфальтовых гранул и их разрушение и адсорбирование битума на поверхности минерального порошка. В результате перераспределения битума, измельчения гранул и последующего рассева материалов образуются исходные составляющие асфальтобетона: щебень, песок и активированный битумом минеральный порошок. Полученные материалы могут быть использованы, как новые, при приготовлении асфальтобетонных смесей.
Эти материалы (щебень и песок) можно нагревать до требуемой температуры, дозировать в отдельности по стандартной технологии и обеспечить требуемый состав асфальтобетонной смеси. Активированный минеральный порошок также дозируется по стандартной технологии, при этом количество нового битума, добавляемого в смесь, уменьшается с учетом количества битума из старого асфальтобетона, содержащегося в минеральном порошке.
Способ реализуют следующим образом.
В электромагнитный измельчитель помещают дробленый старый асфальтобетон с размером кусков не более 20 мм и минеральный порошок (до 1,25 мм) в количестве от 30% массы от массы асфальтобетона. Создают переменное электромагнитное поле с напряженностью в диапазоне от 30 до 65 кА/м с частотой от 35 до 100 Гц. Эффективный диаметр постоянных магнитов (рабочих тел) составляет от 5 до 20 мм при массовом соотношении дробленного асфальтобетона и минерального компонента к массе постоянных магнитов (рабочих тел) от 1:3 до 1:15 соответственно. В процессе измельчения происходит саморазогрев массы до температуры примерно 60°С. Время переработки старого дробленого асфальтобетона составляет примерно от 1 до 5 минут. Разделяют полученную смесь, рассеивая на фракции 0-1,25; 1,25-5; 5-20. Полученные компоненты повторно смешивают с добавлением соответствующего количества битума.
В дальнейшем сущность предлагаемого способа будет раскрыта с использованием примеров реализации.
1. В электромагнитный измельчитель помещают дробленый старый асфальтобетон с размером кусков до 20 мм и минеральный компонент - минеральный порошок в количестве 30% мас. от массы асфальтобетона. Создают переменное электромагнитное поле напряженностью 35 кА/м и частотой 40 Гц. Эффективный диаметр постоянных магнитов (рабочих тел) составляет от 10 до 55 мм при массовом соотношении дробленного асфальтобетона и минерального компонента к массе измельчителей 1:2. Процесс очистки от битума асфальтобетона составил 5 минут. Разделяют полученную смесь, рассеивая на фракции 0-1,25; 1,25-5; 5-20. Полученные компоненты повторно смешивают с добавлением соответствующего количества битума. Себестоимость полученных компонентов асфальтобетона относительно первично использованных составляет 33%.
2. Процесс проводили аналогично примеру 1, но содержание минерального компонента составило 50%, напряженность электромагнитного поля - 40 кА/м при частоте 50 Гц, при массовом соотношении дробленного асфальтобетона и минерального компонента к массе измельчителей 1:3. Процесс очистки от битума асфальтобетона составил 4 минуты. Себестоимость полученных компонентов асфальтобетона относительно первично использованных составляет 31%.
3. Процесс проводили аналогично примеру 1, но содержание минерального компонента составило 70%, напряженность электромагнитного поля - 60 кА/м при частоте 60 Гц, при массовом соотношении дробленного асфальтобетона и минерального компонента к массе постоянных магнитов (рабочих тел) 1:7. Процесс очистки от битума асфальтобетона составил 3 минуты. Себестоимость полученных компонентов асфальтобетона относительно первично использованных составляет 34%.
4. Процесс проводили аналогично примеру 1, но содержание минерального компонента составило 100%, напряженность электромагнитного поля - 65 кА/м при частоте 100 Гц, при массовом соотношении дробленного асфальтобетона и минерального компонента к массе постоянных магнитов (рабочих тел) 1:15. Процесс очистки от битума асфальтобетона составил 1 минуту. Себестоимость полученных компонентов асфальтобетона относительно первично использованных составляет 35%.
5. Процесс проводили аналогично примеру 1, но содержание минерального компонента составило 25%, напряженность электромагнитного поля - 40 кА/м при частоте 60 Гц, при массовом соотношении дробленного асфальтобетона и минерального компонента к массе измельчителей 1:10. Очистка асфальтобетона от битума не произошла. Технический результат - снижение себестоимости полученных компонентов асфальтобетона - не достигнут, поскольку не были получены сами компоненты.
6. Процесс проводили аналогично примеру 1, но содержание минерального компонента составило 25%, напряженность электромагнитного поля - 30 кА/м при частоте 60 Гц, при массовом соотношении дробленного асфальтобетона и минерального компонента к массе измельчителей 1:10. Очистка асфальтобетона от битума не произошла. Технический результат - снижение себестоимости полученных компонентов асфальтобетона - не достигнут, поскольку не были получены сами компоненты.
7. Процесс проводили аналогично примеру 1, но содержание минерального компонента составило 25%, напряженность электромагнитного поля - 70 кА/м при частоте 60 Гц, при массовом соотношении дробленного асфальтобетона и минерального компонента к массе измельчителей 1:15. Очистка асфальтобетона от битума не произошла. Технический результат - снижение себестоимости полученных компонентов асфальтобетона - не достигнут, поскольку не были получены сами компоненты.
8. Процесс проводили аналогично примеру 1, но содержание минерального компонента составило 25%, напряженность электромагнитного поля - 40 кА/м при частоте 30 Гц, при массовом соотношении дробленного асфальтобетона и минерального компонента к массе измельчителей 1:5. Очистка асфальтобетона от битума не произошла. Технический результат - снижение себестоимости полученных компонентов асфальтобетона - не достигнут, поскольку не были получены сами компоненты.
9. Процесс проводили аналогично примеру 1, но содержание минерального компонента составило 25%, напряженность электромагнитного поля - 40 кА/м при частоте 110 Гц, при массовом соотношении дробленного асфальтобетона и минерального компонента к массе измельчителей 1:3. Очистка асфальтобетона от битума не произошла. Технический результат - снижение себестоимости полученных компонентов асфальтобетона - не достигнут, поскольку не были получены сами компоненты.
10. Процесс проводили аналогично примеру 1, но содержание минерального компонента составило 25%, напряженность электромагнитного поля - 40 кА/м при частоте 60 Гц, при массовом соотношении дробленного асфальтобетона и минерального компонента к массе измельчителей 1:20. Очистка асфальтобетона от битума не произошла. Технический результат - снижение себестоимости полученных компонентов асфальтобетона - не достигнут, поскольку не были получены сами компоненты.
11. Процесс проводили аналогично примеру 1, но содержание минерального компонента составило 100%, напряженность электромагнитного поля - 65 кА/м при частоте 100 Гц, при массовом соотношении дробленного асфальтобетона и минерального компонента к массе постоянных магнитов (рабочих тел) 1:2. Процесс очистки от битума асфальтобетона составил 24 минуты. Себестоимость полученных компонентов асфальтобетона относительно первично использованных составляет 98%.
При всех вариантах реализации предлагаемого способа с использованием указанных в первом пункте формулы изобретения параметров себестоимость полученных компонентов асфальтобетона относительно первично использованных составляет не свыше 37%.

Claims (3)

1. Способ регенерации асфальтобетона, включающий измельчение дробленого асфальтобетона и смешение с минеральным компонентом, отличающийся тем, что в качестве минерального компонента используют минеральный порошок в количестве от 30 до 100% от массы асфальтобетона, а измельчение асфальтобетона проводят в электромагнитном измельчителе с использованием рабочих тел в переменном магнитном поле напряженностью от 35 до 65 кА/м и частотой от 35 до 100 Гц, полученную смесь продуктов разделяют на фракции, которые смешивают с добавлением битума.
2. Способ по п.1, отличающийся тем, что в качестве рабочих тел используют постоянные магниты диаметром от 5 до 20 мм.
3. Способ по п.1, отличающийся тем, что соотношение общей массы дробленого асфальтобетона и минерального компонента к массе рабочих тел составляет от 1:3 до 1:15 соответственно.
RU2006116378/03A 2006-05-15 2006-05-15 Способ регенерации асфальтобетона RU2317273C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006116378/03A RU2317273C1 (ru) 2006-05-15 2006-05-15 Способ регенерации асфальтобетона

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006116378/03A RU2317273C1 (ru) 2006-05-15 2006-05-15 Способ регенерации асфальтобетона

Publications (1)

Publication Number Publication Date
RU2317273C1 true RU2317273C1 (ru) 2008-02-20

Family

ID=39267189

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006116378/03A RU2317273C1 (ru) 2006-05-15 2006-05-15 Способ регенерации асфальтобетона

Country Status (1)

Country Link
RU (1) RU2317273C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2467039C1 (ru) * 2011-04-18 2012-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" Способ получения асфальтобетонной смеси с использованием продуктов переработки старого асфальтобетона
WO2020211199A1 (zh) * 2019-04-15 2020-10-22 英达热再生有限公司 路面线形变化路段优化沥青混合料配比热再生修补方法
GB2590743A (en) * 2019-04-15 2021-07-07 Freetech Thermal Power Co Ltd Hot regeneration repairing method for road having changing road surface line shape by optimizing asphalt mixture ratio

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2467039C1 (ru) * 2011-04-18 2012-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" Способ получения асфальтобетонной смеси с использованием продуктов переработки старого асфальтобетона
WO2020211199A1 (zh) * 2019-04-15 2020-10-22 英达热再生有限公司 路面线形变化路段优化沥青混合料配比热再生修补方法
GB2590743A (en) * 2019-04-15 2021-07-07 Freetech Thermal Power Co Ltd Hot regeneration repairing method for road having changing road surface line shape by optimizing asphalt mixture ratio
GB2590743B (en) * 2019-04-15 2023-09-13 Freetech Thermal Power Co Ltd Method of hot regeneration repairing by optimizing ratio of asphalt mixture on road section with varying road-surface alignment.

Similar Documents

Publication Publication Date Title
JP2012025631A (ja) 廃コンクリートからの再生材料を主材とした再生コンクリート及びその製造方法、該再生材料を得るための廃コンクリートの処理方法
JP5561326B2 (ja) 焼却灰の洗浄方法
JP2009061365A (ja) 焼却灰の洗浄方法
FI3634641T3 (fi) Menetelmä kiviainesten valmistamiseksi palautetusta betonista
RU2317273C1 (ru) Способ регенерации асфальтобетона
RU2329349C1 (ru) Способ регенерации асфальтобетона
JP2006334946A (ja) コンクリート二次製品の製造方法
CA2679500A1 (en) Method for manufacturing mineral building materials via binding agent suspensions
RU2346103C1 (ru) Способ и установка изготовления наполнителя для асфальтобетона
RU2131854C1 (ru) Способ получения минерального порошка для асфальтобетонных смесей
Bhatt et al. Experimental study of crumb rubber in concrete
JP2002020155A (ja) コンクリート廃材・ガラス入り生コン及び瓦・陶磁器入り生コン
Xi et al. Process improvement on the gradation uniformity of steel slag asphalt concrete aggregate
RU2354623C1 (ru) Асфальтобетонная смесь
RU2607834C1 (ru) Способ утилизации отработанного асфальтобетона
JP4420582B2 (ja) 砂状粒状化物及びその製造方法
JPH08183639A (ja) 人工軽量骨材およびその製造方法
RU2323908C2 (ru) Асфальтобетонная смесь
JP2547510B2 (ja) 廃棄アスファルト混合物の処理方法およびその製品
KR20190099179A (ko) 폐흡착재를 이용한 기층 지반 대체재의 제조방법
KR100917929B1 (ko) 폐전주 잔골재의 제조 방법
JP2004067399A (ja) 建設汚泥からの再生砂の製造方法
RU134178U1 (ru) Устройство для приготовления резинобитумных композиционных вяжущих материалов
Nichat et al. Use Of Waste Tyre Crumbs In Concrete
KR101201961B1 (ko) 석분 슬러지를 이용한 블록의 습식성형 제조방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100516