RU2313861C1 - Неводная литиевая аккумуляторная батарея со способностью к цикличной работе и/или с повышенной надежностью при высокой температуре - Google Patents

Неводная литиевая аккумуляторная батарея со способностью к цикличной работе и/или с повышенной надежностью при высокой температуре Download PDF

Info

Publication number
RU2313861C1
RU2313861C1 RU2006107930/09A RU2006107930A RU2313861C1 RU 2313861 C1 RU2313861 C1 RU 2313861C1 RU 2006107930/09 A RU2006107930/09 A RU 2006107930/09A RU 2006107930 A RU2006107930 A RU 2006107930A RU 2313861 C1 RU2313861 C1 RU 2313861C1
Authority
RU
Russia
Prior art keywords
aqueous electrolyte
lithium
carbonate
battery
components
Prior art date
Application number
RU2006107930/09A
Other languages
English (en)
Inventor
Дук-Хиун РИУ (KR)
Дук-Хиун Риу
Дзае-Хиун ЛИ (KR)
Дзае-Хиун ЛИ
Дзун-Йонг ДЗЕОНГ (KR)
Дзун-Йонг ДЗЕОНГ
Дзин-Хи ЙЕОН (KR)
Дзин-Хи ЙЕОН
Мин-Чул ДЗАНГ (KR)
Мин-Чул ДЗАНГ
Чанг-Ван КОО (KR)
Чанг-Ван КОО
Сун-Сик ШИН (KR)
Сун-Сик ШИН
Ча-Хун КУ (KR)
Ча-Хун КУ
Хан-Хо ЛИ (KR)
Хан-Хо ЛИ
Original Assignee
Эл Джи Кем, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эл Джи Кем, Лтд. filed Critical Эл Джи Кем, Лтд.
Application granted granted Critical
Publication of RU2313861C1 publication Critical patent/RU2313861C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Настоящее изобретение относится к: (i) неводному электролиту с органическим растворителем для аккумуляторных батарей, который характеризуется тем, что содержит молекулярный галоген; (ii) неводному электролиту с органическим растворителем для аккумуляторных батарей, который характеризуется тем, что содержит пиррол или его производное и молекулярный галоген; и (iii) литиевой аккумуляторной батарее, которая характеризуется тем, что включает в себя неводный электролит (i) или (ii). Техническим результатом являются улучшенные зарядно-разрядные характеристики и длительность цикла в условиях окружающей среды и при высоких температурах и/или улучшенные характеристики сохранности и надежности при высокой температуре. 3 н. 8 з.п. ф-лы, 3 ил., 1 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к литиевой аккумуляторной батарее с улучшенными зарядно/разрядными характеристиками и длительностью цикла в условиях окружающей среды и при высоких температурах, и/или с улучшенными характеристиками сохранности и надежности при высокой температуре, а также к применяемому в ней неводному электролиту.
Уровень техники
В связи с последними достижениями электронной техники широко применяются портативные информационные устройства, такие как мобильные телефоны, КПК (карманные персональные компьютеры) и портативные компьютеры. Для таких портативных информационных устройств существует высокий спрос на легкий и долговечный источник питания небольшого размера и постоянного действия. В качестве источника питания приводного устройства в таких портативных информационных устройствах применяют аккумуляторные батареи. Вследствие этого интенсивно проводятся исследования, связанные с разработкой аккумуляторных батарей, особенно литиевых аккумуляторных батарей, в которых применяются неводные электролиты и которые, несмотря на небольшой вес, обеспечивают высокое напряжение, высокую производительность, высокую мощность, высокую удельную энергию и длительный срок службы.
Обычно в литиевых аккумуляторных батареях в качестве активного вещества положительного электрода используется литийсодержащий оксид переходного металла. Примеры активного вещества положительного электрода включают в себя LiCoO2, LiNiO2, LiMn2О4, LiMnO2, LiNi1-хCoxMyО2 (M = Al, Ti, Mg или Zr; 0 < X ≤ 1; 0 ≤ Y ≤ 0,2) LiNixCoyMn1-х-yО2 (0 < X ≤ 0,5; 0 < Y ≤ 0,5) и их смесь из двух или более компонентов. Кроме того, в литиевых аккумуляторных батареях в качестве активного вещества отрицательного электрода используется углерод, металлический литий или сплав. В качестве активного вещества отрицательного электрода также можно применять оксиды металлов, такие как TiO2 и SnO2, которые могут накапливать и высвобождать ионы лития и иметь потенциал лития меньше 2 В.
Когда такие литиевые аккумуляторные батареи хранятся при высокой температуре или подвергаются воздействию высокой температуры, внутри аккумуляторных батарей будет образовываться газ при побочной реакции электродов с оксидами электролита, что приводит к ухудшению характеристик в отношении предельного срока хранения и надежности при высокой температуре, а также к ухудшению эксплуатационных характеристик аккумулятора.
Между тем, что касается увеличения срока службы литиевых аккумуляторных батарей, в опубликованном японском патенте № 1996-138735 описано, что если в качестве электролита применяется LiPF6, добавление галогенидов металлов, вероятно, не оказывает влияния на увеличение срока службы.
Описание изобретения
Технической задачей настоящего изобретения является создание литиевой аккумуляторной батареи, которая имеет более высокие коэффициенты полезного действия при зарядке/разрядке и улучшенные характеристики по сроку службы, даже когда аккумулятор эксплуатируется в условиях окружающей среды или при высокой температуре.
Еще одной задачей настоящего изобретения является создание литиевой аккумуляторной батареи, надежной при высокой температуре, в которой образование газа при побочной реакции оксидов электролита с электродами ингибируется, даже когда аккумуляторная батарея хранится при высокой температуре или подвергается воздействию высокой температуры.
Авторы настоящего изобретения установили, что применение галогенида металла в неводном электролите незначительно влияет или не влияет на увеличение срока службы аккумуляторной батареи и приводит к сокращению срока службы аккумуляторной батареи, между тем как применение галогена, такого как йод, хлор или бром, в неводном электролите, в отличие от случая применения галогенида металла влияет на увеличение срока службы аккумуляторной батареи и приводит к улучшенным характеристикам в отношении сохранности и надежности при высокой температуре.
Кроме того, авторами настоящего изобретения установлено, что на увеличение срока службы аккумуляторной батареи синергически влияет добавление к неводному электролиту как пиррола или его производного, так и галогена.
Настоящее изобретение выполнено на основе полученных данных.
Настоящее изобретение относится к
(i) неводному электролиту для аккумуляторных батарей, который отличается тем, что содержит галоген;
(ii) неводному электролиту для аккумуляторных батарей, который отличается тем, что содержит пиррол или его производное и галоген;
и (iii) литиевой аккумуляторной батарее, которая отличается тем, что включает в себя неводный электролит (i) или (ii).
Добавление галогена, такого как йод, хлор или бром, в неводный электролит приводит к увеличению срока службы литиевой аккумуляторной батареи.
Между тем, несмотря на то, что на поверхности отрицательного электрода литиевой аккумуляторной батареи образуется изолирующая SEI-пленка (промежуточная фаза твердого электролита), не имеющая электронной проводимости, добавление пиррола или его производного к неводному электролиту приводит к образованию полипиррола, полимера с электронной проводимостью и, следовательно, к снижению сопротивления.
Кроме того, пиррол или его производное в неводном электролите путем синергического влияния совместно с галогеном обеспечивает улучшение характеристик зарядно/разрядного цикла и заметное увеличение срока службы аккумуляторной батареи.
Кроме того, если в качестве добавки к электролиту применяется галоген, как описано выше, обеспечивается надежность аккумуляторной батареи при высокой температуре. Причина этого заключается в следующем.
Если аккумуляторная батарея хранится при высокой температуре или подвергается воздействию высокой температуры, растворитель в неводном электролите будет частично окисляться из-за побочной реакции с положительным и отрицательным электродами аккумуляторной батареи, образуя при этом газ. Образование газа вызывает не только ухудшение эксплуатационных характеристик аккумулятора, но также разбухание аккумуляторной батареи, приводя к ухудшению надежности аккумуляторной батареи.
Галоген, такой как йод, хлор или бром, который применяется в качестве добавки к электролиту, представляет собой материал с большой адсорбционной способностью. Следовательно, галоген адсорбируется на электродах при первоначальной зарядке для того, чтобы, когда аккумуляторная батарея хранится при высокой температуре или подвергается воздействию высокой температуры, галоген ингибировал побочную реакцию между оксидом электролита и положительным и отрицательным электродами и таким образом ингибировал образование газа. Поэтому явление разбухания при высокой температуре становится менее серьезным. Таким образом, применение галогена может обеспечить получение аккумуляторной батареи с превосходными характеристиками в отношении сохранности и надежности при высокой температуре.
В частности, на ингибирование газообразования наиболее значительно влияет применение в качестве добавки к электролиту йода.
Галоген добавляют к неводному электролиту в количестве, находящемся в диапазоне от 0,005 мас.% до 1 мас.%. Если галоген применяется в количествах, находящихся вне указанного диапазона содержания, он будет иметь пониженное влияние на увеличение срока службы аккумуляторной батареи. Содержание галогена в неводном электролите предпочтительно находится в диапазоне 0,01-0,5 мас.%. При содержании менее 0,01 мас.% галоген будет оказывать незначительное влияние на ингибирование газообразования, а при содержании более 0,5 мас.% он будет вызывать ухудшение эксплуатационных характеристик аккумулятора.
Пиррол или его производное предпочтительно добавляют к неводному электролиту в количестве 0,01-0,5 мас.%. При количестве менее 0,01 мас.% толщина пленки, образующейся из пиррола или его производного, будет недостаточной, а при количестве более 0,5 мас.% зарядная характеристика аккумуляторной батареи будет ухудшаться.
Примеры галогена включают в себя, но не ограничиваются перечисленным йод, хлор и бром.
Примеры пиррольного производного включают в себя, но не ограничиваются перечисленным: 2,5-диметилпиррол, 2,4-диметилпиррол, 2-ацетил-N-метилпиррол, 2-ацетилпиррол и N-метилпиррол.
Литиевая аккумуляторная батарея согласно изобретению включает в себя неводный электролит. Примеры литиевых аккумуляторных батарей включают в себя литий-металлические аккумуляторные батареи, литий-ионные аккумуляторные батареи, литий-полимерные аккумуляторные батареи и литий-ион-полимерные аккумуляторные батареи.
Литиевая аккумуляторная батарея согласно изобретению включает в себя
a) положительный электрод, способный к накоплению и высвобождению ионов лития;
b) отрицательный электрод, способный к накоплению и высвобождению ионов лития;
c) пористую перегородку и
d) неводный электролит, содержащий:
i) соль лития и
ii) жидкую композицию электролита.
Неводный электролит согласно изобретению предпочтительно содержит циклический карбонат и/или линейный карбонат. Примеры циклического карбоната включают в себя, но не ограничиваются перечисленным этиленкарбонат (EC), пропиленкарбонат (PC) и гамма-бутиролактон (GBL). Примеры линейного карбоната включают в себя, но не ограничиваются перечисленным, диэтилкарбонат (DEC), диметилкарбонат (DMC), этилметилкарбонат (EMC) и метилпропилкарбонат (MPC).
Неводный электролит согласно изобретению содержит соли лития, которые предпочтительно выбраны из группы, состоящей из LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6 и LiN(CF3SO2)2.
В настоящем изобретении в качестве активного вещества положительного электрода применяется литийсодержащий оксид переходного металла. Примеры активного вещества положительного электрода включают в себя, но не ограничиваются перечисленным: LiCoO2, LiNiO2, LiMn2О4, LiMnO2, LiNi1-xCoxMyO2 (M = Al, Ti, Mg или Zr; 0<X≤1; 0≤Y≤0,2), LiNixCoyMnl-х-yО2 (0 < X ≤ 0,5; 0 < Y ≤ 0,5) и смесь двух или более из них. В качестве активного вещества положительного электрода также можно применять оксиды металлов, такие как MnO2 или смесь двух или более из них.
В качестве активного вещества отрицательного электрода можно применять углерод, металлический литий или сплав.
В литиевой аккумуляторной батарее согласно изобретению перегородка может представлять собой также пористую перегородку, такую как пористая перегородка из полиолефина.
Согласно общепринятому способу литиевую аккумуляторную батарею согласно изобретению можно изготавливать путем размещения пористой перегородки между положительным электродом и отрицательным электродом и введения неводного электролита, содержащего соль лития, такую как LiPF6 и добавки.
Литиевую аккумуляторную батарею согласно изобретению можно применять в форме пакета, цилиндрической или имеющей углы форме.
Полезный эффект
Согласно настоящему изобретению срок службы литиевой аккумуляторной батареи можно увеличивать при добавлении к неводному электролиту литиевой аккумуляторной батареи галогена, а при добавлении к неводному электролиту вместе с галогеном пиррола или его производного можно ожидать синергического влияния на увеличение срока службы аккумуляторной батареи. Такое влияние на увеличение срока службы аккумуляторной батареи предполагает улучшение характеристик зарядно/разрядного цикла аккумуляторной батареи.
Кроме того, согласно настоящему изобретению к неводному электролиту литиевой аккумуляторной батареи добавляют галоген, такой как йод, хлор или бром. Когда литиевая аккумуляторная батарея хранится при высокой температуре или подвергается воздействию высокой температуры, добавленный галоген адсорбируется на поверхности электрода с тем, чтобы ингибировать побочную реакцию между оксидами, образующимися при окислении электролита при высокой температуре, и положительным и отрицательным электродами, таким образом ингибируя образование газа. Следовательно, согласно настоящему изобретению можно получать аккумуляторную батарею с хорошими характеристиками в отношении сохранности и надежности при высокой температуре.
Краткое описание чертежей
На фиг.1 представлен график, показывающий сопоставление процента потери разрядной емкости в диапазоне от начального цикла до 400 циклов для аккумуляторных батарей, изготовленных согласно сравнительным примерам 1-3 и примеру 1.
На фиг.2 представлен график, показывающий сопоставление процента потери разрядной емкости в диапазоне от начального цикла до 400 циклов для аккумуляторных батарей, изготовленных согласно сравнительным примерам 4 и 5 и примерам 2 и 3.
На фиг.3 представлен график, показывающий изменение толщины литий-полимерных аккумуляторных батарей 383562-типа, изготовленных согласно примерам 4 и 5 и сравнительным примерам 6 и 7, в условиях хранения при высокой температуре.
Предпочтительный способ осуществления изобретения
Далее настоящее изобретение будет описано подробно на примерах. Однако следует понимать, что данные примеры приводятся только в целях иллюстрации и не имеют целью ограничение объема настоящего изобретения.
Сравнительный пример 1
В качестве активного вещества положительного электрода применяли LiCoO2, в качестве активного вещества отрицательного электрода - углеродный материал и в качестве электролита - 1M раствор LiPF6 с композицией EC:DEC=1:1. Для изготовления аккумуляторной батареи к электролиту добавляли 0,1 мас.% иодида алюминия и полученный электролит вводили в литий-ион-полимерную аккумуляторную батарею емкостью 700 мАч. Полученную литий-ион-полимерную аккумуляторную батарею подвергали испытанию на предельное количество циклов, при котором аккумуляторную батарею заряжали до 4,2 В при токе 700 мА в режиме постоянного тока/постоянного напряжения, прекращая испытание при уменьшении тока до 50 мА, разряжали при токе 700 мА в режиме постоянного тока и прекращали испытание при 3 В.
Сравнительный пример 2
Литий-ион-полимерную аккумуляторную батарею изготавливали таким же способом, как в сравнительном примере 1, за исключением того, что иодид алюминия добавляли к электролиту в количестве 0,5 мас.%. На полученной аккумуляторной батарее проводили испытание на предельное количество циклов таким же образом, как в сравнительном примере 1.
Сравнительный пример 3
Литий-ион-полимерную аккумуляторную батарею изготовляли таким же образом, как в сравнительном примере 1, за исключением того, что вместо иодида алюминия к электролиту добавляли иодид олова в количестве 0,1 мас.%. На полученной аккумуляторной батарее проводили испытание на предельное количество циклов таким же образом, как в сравнительном примере 1.
Пример 1
Литий-ион-полимерную аккумуляторную батарею изготавливали таким же образом, как в сравнительном примере 1, за исключением того, что вместо иодида алюминия к электролиту добавляли йод в количестве 0,05 мас.%. На полученной аккумуляторной батарее проводили испытание на предельное количество циклов таким же образом, как в сравнительном примере 1.
Результат испытания 1
На фиг.1 представлен график, показывающий сопоставление процента потери разрядной емкости в диапазоне от начального цикла до 400 циклов для аккумуляторных батарей, изготовленных по сравнительным примерам 1-3 и по примеру 1. Как показано на фиг.1, можно обнаружить, что увеличение количества добавки иодида алюминия приводило к сокращению срока службы аккумуляторной батареи (сравнительные примеры 1 и 2); добавление иодида олова также приводило к сокращению срока службы аккумуляторной батареи (сравнительный пример 3). Однако можно обнаружить, что для аккумуляторной батареи по примеру 1, где применялся йод в количестве, определяемом с учетом массового соотношения йода и иодида металла в сравнительных примерах 1, 3, происходило увеличение срока службы аккумуляторной батареи по сравнению со случаем применения галогенидов металлов.
Сравнительный пример 4
В качестве активного вещества положительного электрода применяли LiCoO2, в качестве активного вещества отрицательного электрода - углеродный материал и в качестве электролита - 1M раствор LiPF6 с композицией EC:DEC=1:1. Для изготовления аккумуляторной батареи в литий-ион-полимерную аккумуляторную батарею емкостью 800 мАч вводили электролит. Полученную литий-ион-полимерную аккумуляторную батарею подвергали испытанию на предельное количество циклов, при котором аккумуляторную батарею заряжали до 4,2 В при токе 800 мА в режиме постоянного тока/постоянного напряжения, прекращая испытание при уменьшении тока до 50 мА, разряжали при токе 800 мА в режиме постоянного тока и прекращали испытание при 3 В.
Сравнительный пример 5
Литий-ион-полимерную аккумуляторную батарею изготавливали таким же образом, как в сравнительном примере 4, за исключением того, что к электролиту добавляли 2,5-диметилпиррол в количестве 0,2 мас.%. На полученной аккумуляторной батарее проводили испытание на предельное количество циклов таким же образом, как в сравнительном примере 4.
Пример 2
Литий-ион-полимерную аккумуляторную батарею изготавливали таким же образом, как в сравнительном примере 4, за исключением того, что к электролиту добавляли йод в количестве 0,05 мас.%. На полученной аккумуляторной батарее проводили испытание на предельное количество циклов таким же образом, как в сравнительном примере 4.
Пример 3
Литий-ион-полимерную аккумуляторную батарею изготавливали таким же образом, как в сравнительном примере 4, за исключением того, что к электролиту добавляли 2,5-диметилпиррол и йод в количествах 0,2 мас.% и 0,05 мас.% соответственно. Проводили испытание на предельное количество циклов полученной аккумуляторной батареи таким же образом, как в сравнительном примере 4.
Результат испытаний 2
На фиг. 2 представлен график, показывающий сопоставление процента потери разрядной емкости в диапазоне от начального цикла до 400 циклов для аккумуляторных батарей, изготовленных по сравнительным примерам 4 и 5 и по примерам 2 и 3. Как видно на фиг.2, можно обнаружить, что хотя добавление 2,5-диметилпиррола или йода было однократным, можно наблюдать уменьшение процента потери разрядной емкости (сравнительный пример 4 и пример 2), добавление йода в сочетании с 2,5-диметилпирролом обеспечивало дополнительное уменьшение процента потери разрядной емкости (пример 3).
Пример 4
В качестве активного вещества положительного электрода применяли LiCoO2, в качестве активного вещества отрицательного электрода - углеродный материал и в качестве электролита - 1M раствор LiPF6 с композицией EC:DEC=1:1. Для изготовления аккумуляторной батареи к электролиту добавляли йод в количестве 0,05 мас.% и полученный электролит вносили в литий-ион-полимерную аккумуляторную батарею 383562-типа, емкостью 800 мАч.
Пример 5
Литий-ион-полимерную аккумуляторную батарею изготавливали таким же образом, как в примере 4, за исключением того, что в качестве добавки к электролиту добавляли йод в количестве 0,2 мас.%.
Сравнительный пример 6
Литий-ион-полимерную аккумуляторную батарею изготавливали таким же образом, как в примере 4, за исключением того, что йод не добавляли в качестве добавки к электролиту.
Сравнительный пример 7
Литий-ион-полимерную аккумуляторную батарею изготавливали таким же образом, как в примере 4, за исключением того, что вместо йода добавляли иодид алюминия в количестве 0,5 мас.%.
Испытание сохранности при высокой температуре
Литий-ион-полимерные аккумуляторные батареи емкостью 800 мАч 383562-типа, полученные в примерах 4 и 5 и сравнительных примерах 6 и 7, полностью заряжали до 4,2 В при токе 500 мА в режиме постоянного тока/постоянного напряжения и прекращали испытание, когда ток уменьшался до 50 мА.
Полученные литий-ион-полимерные аккумуляторные батареи помещали в печь и подвергали испытанию на сохранность при высокой температуре, которое состояло из трех следующих стадий: повышения температуры печи от температуры окружающей среды до 90°C в течение 1 часа, выдерживания аккумуляторных батарей при 90°C в течение 4 часов и снижения температуры печи до температуры окружающей среды в течение 1 часа. Во время испытания сохранности при высокой температуре следили за изменением толщины аккумуляторных батарей. Результаты представлены ниже в таблице 1 и на фиг.3.
Таблица 1
До испытания сохранности при высокой температуре После испытания сохранности при высокой температуре Степень восстановления
Сравнительный пример 6 805 мАч 684 мАч 85,0%
Пример 4 806 мАч 783 мАч 97,1%
Пример 5 808 мАч 791 мАч 97,9%
Сравнительный пример 7 806 мАч 787 мАч 97,6%
В таблице 1 приведены емкости аккумуляторных батарей при скорости 0,2 C до и после испытания сохранности при высокой температуре. Как ясно из таблицы 1, степени восстановления емкости до и после испытания сохранности при высокой температуре выше в примерах 4 и 5 и в сравнительном примере 7, чем степень восстановления в сравнительном примере 6.
Кроме того, на фиг. 3 показано изменение толщины литий-ион- полимерных аккумуляторных батарей во время испытания сохранности при высокой температуре. Как видно на фиг.3, увеличение толщины аккумуляторных батарей, изготовленных в примерах 4 и 5 и сравнительном примере 7, было ниже, чем увеличение в сравнительном примере 6, и увеличение толщины аккумуляторной батареи было ниже в примере 5 и сравнительном примере 7, чем в примере 4. Как описано выше, такое явление вызвано тем, что йод адсорбируется на положительном или отрицательном электроде, при этом ингибируется побочная реакция между оксидом, образующимся в электролите при высокой температуре, и положительным или отрицательным электродом, и тем самым ингибируется образование газа. Увеличение добавляемого количества йода также свидетельствовало об увеличении влияния йода. Считается, что в случае иодида алюминия существует улучшение при увеличении его добавляемого количества.

Claims (11)

1. Неводный электролит с органическим растворителем для аккумуляторных батарей, в котором неводный электролит дополнительно содержит молекулярный галоген.
2. Неводный электролит с органическим растворителем для аккумуляторных батарей, в котором неводный электролит дополнительно содержит пиррол или его производное и молекулярный галоген.
3. Неводный электролит по п.1 или 2, в котором содержание молекулярного галогена составляет 0,005-1 мас.%.
4. Неводный электролит по п.2, в котором содержание пиррола или его производного составляет 0,01-0,5 мас.%.
5. Неводный электролит по п.1 или 2, в котором галоген выбран из группы, состоящей из йода, хлора, брома и их смеси из двух или более компонентов.
6. Неводный электролит по п.2, в котором пиррольное производное выбрано из группы, состоящей из 2,5-диметилпиррола, 2,4-диметилпиррола, 2-ацетил-N-метилпиррола, 2-ацетилпиррола, N-метилпиррола и их смеси из двух или более компонентов.
7. Неводный электролит по п.1 или 2, который содержит соль лития, выбранную из группы, состоящей из LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6 и LiN(CF3SO2)2 и их смеси из двух или более компонентов.
8. Неводный электролит по п.1 или 2, в котором электролит содержит циклический карбонат, выбранный из группы, состоящей из этиленкарбоната (ЕС), пропиленкарбоната (PC), гамма-бутиролактона (GBL) и их смеси из двух или более компонентов; или линейный карбонат, выбранный из группы, состоящей из диэтилкарбоната (DEC), диметилкарбоната (DMC), этилметилкарбоната (ЕМС), метилпропилкарбоната (МРС) и их смеси из двух или более компонентов; или содержит как циклический карбонат, так и линейный карбонат.
9. Литиевая аккумуляторная батарея, содержащая
a) положительный электрод, выполненный с возможностью накапливания и высвобождения ионов лития;
b) отрицательный электрод, выполненный с возможностью накапливания и высвобождения ионов лития;
c) пористую перегородку;
d) неводный электролит, содержащий
i) соль лития и
ii) жидкую композицию электролита,
при этом электролит представляет собой неводный электролит по любому из пп.1-8.
10. Литиевая аккумуляторная батарея по п.9, в которой активное вещество положительного электрода а) представляет собой литированный оксид переходного металла, выбранный из группы, состоящей из LiCoO2, LiNiO2, LiMn2O4, LiNi1-xCoXO2 (0<X<1), и их смеси из двух или более компонентов.
11. Литиевая аккумуляторная батарея по п.9, в которой активное вещество отрицательного электрода b) представляет собой углерод, металлический литий или сплав.
RU2006107930/09A 2003-09-19 2004-09-20 Неводная литиевая аккумуляторная батарея со способностью к цикличной работе и/или с повышенной надежностью при высокой температуре RU2313861C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2003-0065169 2003-09-19
KR20030065169 2003-09-19

Publications (1)

Publication Number Publication Date
RU2313861C1 true RU2313861C1 (ru) 2007-12-27

Family

ID=36353795

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006107930/09A RU2313861C1 (ru) 2003-09-19 2004-09-20 Неводная литиевая аккумуляторная батарея со способностью к цикличной работе и/или с повышенной надежностью при высокой температуре

Country Status (10)

Country Link
US (1) US20050100786A1 (ru)
EP (1) EP1671393B1 (ru)
JP (1) JP2007504619A (ru)
KR (1) KR100884482B1 (ru)
CN (1) CN1849725A (ru)
BR (1) BRPI0413965B1 (ru)
CA (1) CA2538605C (ru)
RU (1) RU2313861C1 (ru)
TW (1) TWI251951B (ru)
WO (1) WO2005029632A1 (ru)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321220B2 (en) * 2003-11-20 2008-01-22 Lg Chem, Ltd. Method for calculating power capability of battery packs using advanced cell model predictive techniques
US7589532B2 (en) 2005-08-23 2009-09-15 Lg Chem, Ltd. System and method for estimating a state vector associated with a battery
US7446504B2 (en) * 2005-11-10 2008-11-04 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery state vector
US7723957B2 (en) 2005-11-30 2010-05-25 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery parameter vector
US7400115B2 (en) * 2006-02-09 2008-07-15 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated combined battery state-parameter vector
US7595133B2 (en) * 2006-07-01 2009-09-29 The Gillette Company Lithium cell
US20080057403A1 (en) * 2006-09-06 2008-03-06 Issaev Nikolai N Lithium cell
JP5394610B2 (ja) * 2007-02-20 2014-01-22 パナソニック株式会社 非水電解質二次電池
US7981550B2 (en) * 2007-03-19 2011-07-19 The Gillette Company Lithium cell
US8617743B2 (en) * 2007-12-05 2013-12-31 The Gillette Company Anode balanced lithium-iron disulfide primary cell
KR101013328B1 (ko) * 2008-01-18 2011-02-09 주식회사 엘지화학 공융혼합물을 포함하는 전해질 및 이를 구비한전기화학소자
US8628872B2 (en) * 2008-01-18 2014-01-14 Lg Chem, Ltd. Battery cell assembly and method for assembling the battery cell assembly
US7994755B2 (en) * 2008-01-30 2011-08-09 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery cell module state
US8067111B2 (en) * 2008-06-30 2011-11-29 Lg Chem, Ltd. Battery module having battery cell assembly with heat exchanger
US9759495B2 (en) * 2008-06-30 2017-09-12 Lg Chem, Ltd. Battery cell assembly having heat exchanger with serpentine flow path
US9140501B2 (en) * 2008-06-30 2015-09-22 Lg Chem, Ltd. Battery module having a rubber cooling manifold
US7883793B2 (en) * 2008-06-30 2011-02-08 Lg Chem, Ltd. Battery module having battery cell assemblies with alignment-coupling features
US8486552B2 (en) * 2008-06-30 2013-07-16 Lg Chem, Ltd. Battery module having cooling manifold with ported screws and method for cooling the battery module
US8426050B2 (en) * 2008-06-30 2013-04-23 Lg Chem, Ltd. Battery module having cooling manifold and method for cooling battery module
US8202645B2 (en) 2008-10-06 2012-06-19 Lg Chem, Ltd. Battery cell assembly and method for assembling the battery cell assembly
US9337456B2 (en) * 2009-04-20 2016-05-10 Lg Chem, Ltd. Frame member, frame assembly and battery cell assembly made therefrom and methods of making the same
US8403030B2 (en) * 2009-04-30 2013-03-26 Lg Chem, Ltd. Cooling manifold
US8663828B2 (en) * 2009-04-30 2014-03-04 Lg Chem, Ltd. Battery systems, battery module, and method for cooling the battery module
US8663829B2 (en) * 2009-04-30 2014-03-04 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
US20100275619A1 (en) * 2009-04-30 2010-11-04 Lg Chem, Ltd. Cooling system for a battery system and a method for cooling the battery system
US8852778B2 (en) * 2009-04-30 2014-10-07 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
KR101688477B1 (ko) 2009-05-08 2016-12-21 삼성에스디아이 주식회사 유기전해액 및 이를 채용한 리튬전지
KR101585147B1 (ko) 2009-05-21 2016-01-13 삼성에스디아이 주식회사 유기전해액 및 이를 채용한 리튬전지
US8399118B2 (en) * 2009-07-29 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
US8703318B2 (en) * 2009-07-29 2014-04-22 Lg Chem, Ltd. Battery module and method for cooling the battery module
JP5396185B2 (ja) * 2009-07-31 2014-01-22 日立ビークルエナジー株式会社 リチウムイオン二次電池
US8399119B2 (en) * 2009-08-28 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
JP5367836B2 (ja) * 2009-10-09 2013-12-11 三井化学株式会社 複素環含有アルコール誘導体を含有する非水電解液、リチウム二次電池の非水電解液用添加剤、及びリチウム二次電池
US20110086272A1 (en) * 2009-10-13 2011-04-14 Kepler Keith D Li-ion battery and its preparation method
US8341449B2 (en) 2010-04-16 2012-12-25 Lg Chem, Ltd. Battery management system and method for transferring data within the battery management system
US9147916B2 (en) 2010-04-17 2015-09-29 Lg Chem, Ltd. Battery cell assemblies
US9178249B2 (en) * 2010-05-27 2015-11-03 Uchicago Argonne, Llc Electrode stabilizing materials
US8353315B2 (en) 2010-08-23 2013-01-15 Lg Chem, Ltd. End cap
US8758922B2 (en) 2010-08-23 2014-06-24 Lg Chem, Ltd. Battery system and manifold assembly with two manifold members removably coupled together
US8920956B2 (en) 2010-08-23 2014-12-30 Lg Chem, Ltd. Battery system and manifold assembly having a manifold member and a connecting fitting
US8469404B2 (en) 2010-08-23 2013-06-25 Lg Chem, Ltd. Connecting assembly
US9005799B2 (en) 2010-08-25 2015-04-14 Lg Chem, Ltd. Battery module and methods for bonding cell terminals of battery cells together
US8662153B2 (en) 2010-10-04 2014-03-04 Lg Chem, Ltd. Battery cell assembly, heat exchanger, and method for manufacturing the heat exchanger
JP2013020701A (ja) * 2011-07-07 2013-01-31 Toyota Industries Corp 電解液及びリチウムイオン二次電池
JP5594241B2 (ja) * 2011-07-01 2014-09-24 株式会社豊田自動織機 電解液及びリチウムイオン二次電池
US9184466B2 (en) 2011-03-14 2015-11-10 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
US8288031B1 (en) 2011-03-28 2012-10-16 Lg Chem, Ltd. Battery disconnect unit and method of assembling the battery disconnect unit
US8449998B2 (en) 2011-04-25 2013-05-28 Lg Chem, Ltd. Battery system and method for increasing an operational life of a battery cell
US9178192B2 (en) 2011-05-13 2015-11-03 Lg Chem, Ltd. Battery module and method for manufacturing the battery module
US8974929B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8993136B2 (en) 2011-06-30 2015-03-31 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8859119B2 (en) 2011-06-30 2014-10-14 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974928B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US9496544B2 (en) 2011-07-28 2016-11-15 Lg Chem. Ltd. Battery modules having interconnect members with vibration dampening portions
US10361459B2 (en) 2013-05-14 2019-07-23 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US20170025707A1 (en) * 2014-04-04 2017-01-26 Basf Corporation Lithium-ion Batteries and Preparation Method Thereof
CN104332649B (zh) * 2014-09-09 2016-12-07 上海纳米技术及应用国家工程研究中心有限公司 一种电解液及其制备方法和应用
JP7003394B2 (ja) * 2016-09-06 2022-01-20 株式会社村田製作所 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL63515A (en) * 1980-09-12 1984-05-31 Duracell Int Rechargeable,non-aqueous electrochemical cell
JPS63168973A (ja) 1986-12-29 1988-07-12 Kuraray Co Ltd 電池
JPH0456079A (ja) * 1990-06-21 1992-02-24 Furukawa Battery Co Ltd:The リチウム二次電池用非水電解液並にリチウム二次電池
CA2122092C (en) * 1993-04-28 2006-06-06 Atsuo Omaru Secondary battery having non-aqueous electrolyte
JPH08138735A (ja) * 1994-11-16 1996-05-31 Fujitsu Ltd リチウム二次電池
JP3599859B2 (ja) * 1994-12-29 2004-12-08 石原産業株式会社 多孔性物質−高分子固体電解質複合体およびその製造方法ならびにそれを用いた光電変換素子
JP3416440B2 (ja) * 1997-01-10 2003-06-16 三洋電機株式会社 リチウム電池用負極及びリチウム電池
JP3854382B2 (ja) * 1997-08-18 2006-12-06 株式会社クレハ ゲル状固体電解質形成用高分子マトリクス、固体電解質および電池
JPH11191432A (ja) * 1997-12-26 1999-07-13 Fuji Elelctrochem Co Ltd リチウム二次電池
JP3369947B2 (ja) * 1998-01-30 2003-01-20 三洋電機株式会社 非水系電解液電池
JPH11329497A (ja) * 1998-03-18 1999-11-30 Hitachi Ltd リチウム2次電池とその電解液及びその電池を用いた電気機器
US6413678B1 (en) * 1999-03-03 2002-07-02 Ube Industries, Inc. Non-aqueous electrolyte and lithium secondary battery using the same
US6183082B1 (en) 1998-12-21 2001-02-06 Johnson & Johnson Vision Care, Inc. Contact lenses with constant peripheral geometry
JP2000260469A (ja) * 1999-03-09 2000-09-22 Ngk Insulators Ltd リチウム二次電池
JP3462115B2 (ja) * 1999-03-29 2003-11-05 三洋化成工業株式会社 色素増感型太陽電池用非水電解液およびそれを用いた太陽電池
KR100444410B1 (ko) * 2001-01-29 2004-08-16 마쯔시다덴기산교 가부시키가이샤 비수전해액이차전지
JP4420645B2 (ja) * 2003-10-08 2010-02-24 リンテック株式会社 低温型有機溶融塩、光電変換素子及び光電池
JP4577482B2 (ja) * 2004-02-06 2010-11-10 日本電気株式会社 リチウム二次電池用電解液およびそれを用いたリチウム二次電池

Also Published As

Publication number Publication date
BRPI0413965A (pt) 2006-10-31
CA2538605C (en) 2011-07-12
EP1671393A1 (en) 2006-06-21
CN1849725A (zh) 2006-10-18
TW200522410A (en) 2005-07-01
EP1671393B1 (en) 2013-04-03
WO2005029632A1 (en) 2005-03-31
CA2538605A1 (en) 2005-03-31
US20050100786A1 (en) 2005-05-12
BRPI0413965B1 (pt) 2018-01-16
JP2007504619A (ja) 2007-03-01
TWI251951B (en) 2006-03-21
KR100884482B1 (ko) 2009-02-17
KR20050028895A (ko) 2005-03-23
EP1671393A4 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
RU2313861C1 (ru) Неводная литиевая аккумуляторная батарея со способностью к цикличной работе и/или с повышенной надежностью при высокой температуре
KR101073221B1 (ko) 비수전해액 및 이를 이용한 이차 전지
KR100921870B1 (ko) 안전성이 향상된 비수전해액 및 전기화학소자
KR100882121B1 (ko) 안전성이 향상된 비수전해액 및 전기화학소자
US7998623B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
KR100603303B1 (ko) 효율적인 성능을 갖는 리튬 전지
KR20070077469A (ko) 비수전해액 및 이를 이용한 리튬 이차 전지
RU2330354C1 (ru) Неводный электролит, содержащий оксианион, и литиевая аккумуляторная батарея, в которой он применяется
KR20040088292A (ko) 과방전 방지제를 포함하는 양극 활물질 및 이를 이용한리튬 이차 전지
KR20070082551A (ko) 안전성이 향상된 비수전해액 및 전기화학소자
KR100573109B1 (ko) 유기 전해액 및 이를 채용한 리튬 전지
JPH11195429A (ja) 非水電解液二次電池
US7422827B2 (en) Nonaqueous electrolyte
US20050233207A1 (en) Electrolyte for lithium ion battery to control swelling
JP2005116424A (ja) 非水電解質二次電池
EP1657775A1 (en) Electrolyte for lithium battery and lithium battery comprising same
KR20080095352A (ko) 실라잔 계열 화합물을 포함하는 고용량 및 장수명 이차전지
US7482099B2 (en) Electrolyte for lithium battery and lithium battery comprising same
JP2008305771A (ja) 非水溶液電池
US7459240B2 (en) Nonaqueous electrolyte for battery
KR100558842B1 (ko) 유기전해액 및 이를 채용한 리튬 전지
KR20130073926A (ko) 실라잔 계열 화합물을 포함하는 고용량 및 장수명 이차 전지
JP2002246064A (ja) 非水電解液およびこれを用いた非水電解液二次電池

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090921