RU2310802C1 - Установка для каталитического газового азотирования сталей и сплавов - Google Patents

Установка для каталитического газового азотирования сталей и сплавов Download PDF

Info

Publication number
RU2310802C1
RU2310802C1 RU2006141494/02A RU2006141494A RU2310802C1 RU 2310802 C1 RU2310802 C1 RU 2310802C1 RU 2006141494/02 A RU2006141494/02 A RU 2006141494/02A RU 2006141494 A RU2006141494 A RU 2006141494A RU 2310802 C1 RU2310802 C1 RU 2310802C1
Authority
RU
Russia
Prior art keywords
nitrogen
furnace
installation according
oxygen sensor
iron
Prior art date
Application number
RU2006141494/02A
Other languages
English (en)
Inventor
тов Владимир Яковлевич Сыроп (RU)
Владимир Яковлевич Сыропятов
Original Assignee
Ооо "Солнечногорский Зто "Накал"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ооо "Солнечногорский Зто "Накал" filed Critical Ооо "Солнечногорский Зто "Накал"
Priority to RU2006141494/02A priority Critical patent/RU2310802C1/ru
Priority to PL385785A priority patent/PL211787B1/pl
Priority to CA2681885A priority patent/CA2681885C/en
Priority to DE112007000016T priority patent/DE112007000016B4/de
Priority to PCT/RU2007/000079 priority patent/WO2008063095A1/ru
Application granted granted Critical
Publication of RU2310802C1 publication Critical patent/RU2310802C1/ru
Priority to US12/535,354 priority patent/US7931854B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/18Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0012Monitoring the composition of the atmosphere or of one of their components

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Furnace Details (AREA)

Abstract

Изобретение относится к устройствам для химико-термической обработки сталей и сплавов в газовых средах с использованием автоматического управления. Для повышения надежности и стабильности технологических процессов, обеспечения комплексной автоматизации процессов установка содержит нагревательную печь с муфелем или без муфеля, расположенный в печи на линии подачи технологических газов узел каталитического воздействия, средства подачи, смешения, порционирования и отвода технологических газов и устройство косвенного контроля и управления азотного потенциала печной атмосферы, выполненное в виде кислородного сенсора, вторичного преобразователя с индикацией азотного потенциала в весовых единицах содержания азота в железе и исполнительного органа. Кислородный сенсор выполнен в виде твердоэлектролитного датчика напряжения или в виде полупроводникового датчика сопротивления и имеет автономную систему термостабилизации. Узел каталитического воздействия выполнен в виде емкости с катализатором, который выполнен из вспененной керамики в виде таблеток. Нагревательная печь оборудована электронагревателями или газовыми горелками. Вторичный преобразователь выполнен с возможностью обеспечения стандартного выходного сигнала, пропорционального прогнозируемой концентрации азота в железе. Вторичный преобразователь имеет интерпретатор выходного сигнала кислородного сенсора в виде фазового состава в соответствии с бинарной диаграммой «железо-азот». Вторичный преобразователь выполнен с возможностью компьютерного отображения диффузионных процессов с графическим изображением фазового состава, концентрации азота и распределения микротвердости диффузионного слоя в реальном времени. 9 з.п. ф-лы, 1 ил., 1 табл.

Description

Изобретение относится к устройствам для химико-термической обработки сталей и сплавов в газовых средах с использованием автоматического управления.
Известна установка для азотирования сталей и сплавов в каталитически обработанном аммиаке, содержащая электропечь с муфелем либо без муфеля, емкость с аммиаком, магистрали подвода и отвода газов, устройства смешения и порционирования газов, а на магистрали подвода газов к электропечи установлена емкость с катализатором. Однако она не содержит средств косвенного контроля процесса насыщения железа азотом из газовой фазы (Патент РФ №2109080, МПК С23С 8/24, опубл. 20.04.1998 г.).
Известны средства косвенного контроля газовой фазы, применяемые в газовом азотировании, карбонитрировании и каталитическом газовом азотировании. Однако, в них за азотный потенциал принято соотношение парциальных давлений аммиака и водорода в печной атмосфере, что, как показала практика, не дает информации о реальной картине процесса газового азотирования (Лахтин Ю.М. и др. Теория и технология азотирования. М.: Металлургия, 1991, с.39-55).
Основным их недостатком является применение устаревших принципов оценки газовой фазы в процессе диффузионного насыщения железа азотом и, как следствие, невозможность реального управления этим процессом.
Известна установка для газовой низкотемпературной химико-термической обработки стали и сплавов, содержащая электропечь с муфелем, емкость с аммиаком, магистрали подвода и отвода газов, емкость с катализатором, установленную внутри печного пространства, и твердоэлектролитный кислородный датчик погружного типа. Установлена взаимосвязь между сигналом твердоэлектролитного датчика и содержанием азота в железе. Для удобства управления процессом азотный потенциал предложено считать равным концентрации азота в железе после достижения последним равновесия с газовой фазой (Зинченко В.М. и др. Азотный потенциал: современное состояние и концепция развития. М.: Машиностроение, 2003, с.40-50).
Данное техническое решение является ближайшим аналогом и принято за прототип для предлагаемой установки.
Основным недостатком прототипа является отсутствие аппаратуры, позволяющей автоматически в реальном времени определять величину азотного потенциала по сигналам датчика. Оператор в данном случае должен измерить сигналы датчика по кислороду и температуре, с помощью номограмм определить величину азотного потенциала и только после этого принять решение о корректировке процесса.
Задача, на решение которой направлено данное изобретение, состоит в создании установки для управляемого каталитического газового азотирования металлов и сплавов, имеющей в своем составе завершенные средства косвенного контроля диффузионных процессов через состав газовой фазы по кислороду.
Технический результат, достигаемый при реализации данного изобретения, состоит в значительном повышении надежности и стабильности технологических процессов, а также в сокращении времени азотирования за счет обеспечения комплексной автоматизации процессов.
Указанный технический результат достигается тем, что установка для каталитического газового азотирования сталей и сплавов содержит нагревательную печь с муфелем или без муфеля, расположенный в печи узел каталитического воздействия на технологические газы, средства подачи, смешения, порционирования и отвода технологических газов и устройство косвенного контроля и управления азотного потенциала печной атмосферы, согласно изобретению устройство косвенного контроля и управления азотного потенциала печной атмосферы выполнено в виде кислородного сенсора, вторичного преобразователя с индикацией азотного потенциала в весовых единицах содержания азота в железе и исполнительного органа, а узел каталитического воздействия на технологические газы расположен в печи на линии подачи технологических газов.
Кислородный сенсор выполнен в виде твердоэлектролитного датчика напряжения или в виде полупроводникового датчика сопротивления и имеет автономную систему термостабилизации.
Узел каталитического воздействия выполнен в виде емкости с катализатором, который выполнен из вспененной керамики в виде таблеток.
Нагревательная печь оборудована электронагревателями или газовыми горелками.
Вторичный преобразователь выполнен с возможностью обеспечения стандартного выходного сигнала, пропорционального прогнозируемой концентрации азота в железе.
Вторичный преобразователь имеет интерпретатор выходного сигнала кислородного сенсора в виде фазового состава в соответствии с бинарной диаграммой «железо-азот».
Вторичный преобразователь выполнен с возможностью компьютерного отображения диффузионных процессов с графическим изображением фазового состава, концентрации азота и распределения микротвердости диффузионного слоя в реальном времени.
Установка (см. чертеж) содержит нагревательную печь 1 с муфелем либо без муфеля (позиция не показана), устройства подачи, смешения, порционирования 2 и отвода 3 технологических газов, подающихся из сетей низкого давления, узел 4 каталитического воздействия на печную атмосферу, расположенный в печном пространстве. Установка оснащена устройством косвенного контроля и управления азотного потенциала печной атмосферы, выполненным в виде кислородного сенсора 5, вторичного преобразователя 6 с индикацией азотного потенциала в весовом содержании азота в железе и исполнительного органа 7, получающего воздействия от оператора или компьютера.
Печь азотирования, оснащенная каталитическим устройством обработки аммиака, обеспечивает проведение процесса насыщения железа (стали) азотом в условиях, приближенных к равновесным. Однако в работу реальной печи вмешивается значительное количество сторонних факторов, не могущих быть постоянными: герметичность печи и натекание кислорода, качество аммиака и содержание в нем воды и масла, чистота поверхности деталей и количество окислов на ней и т.д. Для учета влияния этих переменных факторов предназначена система косвенного контроля азотного потенциала печной атмосферы. В минимальном варианте, имея только вторичный преобразователь кислородного сенсора, с индикацией азотного потенциала оператор легко определяет, в каком состоянии находится в текущее время процесс диффузионного насыщения и какие меры надо принять для его корректировки с целью достижения положительного результата. Известна бинарная диаграмма железо-азот. Зная прогнозируемое содержание азота на поверхности обрабатываемых деталей, оператор легко оценивает, много это, мало или достаточно. В варианте с применением компьютерного мониторинга автоматика сама определяет и принимает необходимые меры - изменяет расход технологических газов, температуру процесса и др. Применение аппаратуры, автоматически определяющей прогнозируемую концентрацию азота на поверхности обрабатываемого металла, позволяет достаточно просто моделировать на компьютере ход диффузионного процесса в реальном времени и рассчитывать прогноз полученного результата по распределению концентрации азота от поверхности в глубину металла, фазовый состав приповерхностной зоны и распределение микротвердости по диффузионному слою. Это позволяет достаточно достоверно, с учетом всех переменных факторов оценить текущий результат и принять своевременное решение о возможности окончания процесса при достижении требуемых параметров.
Пример. Установка работает следующим образом.
В промышленной муфельной печи модели США-6.9/7 с электронагревом проводили азотирование цилиндров термопластавтоматов, изготовленных из стали 38Х2МЮА с предварительной термообработкой на твердость 30...34 HRC. Технические требования к деталям после азотирования: поверхностная твердость ≥850 HV, толщина диффузионного слоя 0,5...0,8 мм. Детали представляли собой трубы наружным диаметром 120 мм с толщиной стенки 10 мм и высотой 450 мм. Было загружено 8 деталей. Одновременно были загружены образцы-свидетели, из той же стали с той же предварительной термообработкой. Сечение образца 10×10 мм, длина 50 мм.
Подача аммиака осуществлялась в рабочее пространство печи через входной патрубок в крышке муфеля из цеховых сетей низкого давления, равного 3...5 кПа.
Крышка муфеля печи имела на вводе аммиака в печное пространство патрубок диаметром 22 мм и длиной 120 мм. В него был загружен катализатор, имеющий носитель из вспененной керамики окиси алюминия степенью пористости 70%, легированный палладием на концентрацию 1,0...1,2%. Катализатор имел форму таблеток диаметром 18 мм и высотой 20 мм. Объем загруженного катализатора составлял 10 см3.
Для текущего контроля газовой фазы печь была оборудована двумя сенсорами кислорода: твердоэлектролитным с чувствительным элементом из двуокиси циркония и полупроводниковым, с чувствительным элементом из двуокиси титана. Сенсоры монтировались через крышку муфеля с обеспечением расположения чувствительных элементов в рабочем пространстве муфеля. Установка двух сенсоров была проведена для их параллельных испытаний.
Для измерения температуры печь была оснащена термопарой ТХА, смонтированной также в крышке муфеля с выходом горячего спая в рабочее пространство печи.
В качестве вторичного преобразователя и программного регулятора температуры использовали микропроцессорный регулятор температуры «Термодат-14».
В качестве вторичного преобразователя сигналов сенсоров кислорода использовали программируемый микрокомпьютер модели DO05DD «Коуо», производивший вычисление азотного потенциала по сигналам кислородных сенсоров по специальной формуле и имевший программу регулирования расхода аммиака посредством аналогового выходного сигнала на исполнительный орган - регулятор расхода аммиака модели 1559АХ «MKS». Индикация величины азотного потенциала, вычисленного микрокомпьютером, осуществлялась на панели оператора модели OP006DD «Коуо». Визуальный контроль за наличием расхода аммиака осуществлялся по ротаметру модели PC-0,63.
Микрокомпьютер имел подпрограммы: интерпретации вычисленной величины азотного потенциала в фазовый состав поверхностного слоя обрабатываемой стали и вычисления роста диффузионного слоя в реальном времени процесса азотирования. Визуализация результатов работы подпрограмм осуществлялась на той же панели оператора. Подпрограммы компьютерного моделирования диффузионных процессов использовались оператором для оценки хода процесса и принятия решения об окончании процесса азотирования.
С панели оператором были заданы температура, величина азотного потенциала, расход аммиака минимальный, расход аммиака максимальный. Параметры процесса составляли: температура = 540°С, минимальный расход аммиака = 200 л/час, максимальный расход аммиака = 600 л/час, азотный потенциал = 5%. После загрузки деталей, закрытия крышки муфеля и запуска вентиляционных систем с панели оператора была дана команда «Старт».
В процессе работы установки регулятором поддерживалась заданная температура, вторичный преобразователь оценивал сигналы кислородных сенсоров, вычислял значение азотного потенциала, сравнивал его с заданной величиной и давал команду на исполнительный орган о поддержании требуемого расхода аммиака. До выхода величины азотного потенциала на заданное значение расход аммиака поддерживался максимальным. По достижении заданного значения азотного потенциала расход был автоматически снижен до минимального. Оператор отслеживал работу автоматики и оценивал прогнозируемые результаты азотирования по данным индикатора фазового состава поверхностной зоны и графику расчетного распределения микротвердости. Через 24 часа процесса подпрограммы вторичного преобразователя, ведшие моделирование диффузионных процессов, индицировали достижение заданных параметров по твердости поверхности и толщине диффузионного слоя. Исходя из этого, а также из отсутствия сбоев и отказов в работе оборудования оператором было принято решение об окончании процесса.
По команде «Стоп» с панели оператора были автоматически отключены подача аммиака и нагрев. В ручном режиме в муфель был подан азот газообразный для освобождения муфеля от аммиака. По достижении температуры муфеля 120°С подача азота была прекращена, муфель открыт и детали выгружены.
Оценка результатов азотирования проводилась на образцах-свидетелях. Результаты испытаний и основные параметры процесса в сравнении с традиционными процессами, рекомендуемыми, например, в источнике Лахтин Ю.М. и др. Теория и технология азотирования. М.: Металлургия, 1991, с.39-55, приведены в таблице.
Таблица.
Параметр. Проведенный процесс. Рекомендуемый традиционный процесс.
Температура, °С. 540 520...540
Время выдержки при установленной температуре, час. 24 62
Твердость поверхности, HV. 950 800...1000
Толщина диффузионного слоя, мм. 0,6 0,5...0,8
Как видно из данных таблицы, применение предлагаемой установки с устройством контроля азотного потенциала позволило своевременно и обоснованно принять решение об окончании процесса с достижением заданных параметров диффузионного слоя, что свидетельствует о технологической надежности и стабильности предлагаемой установки. Этим же, совместно с обработкой аммиака на предлагаемом катализаторе, обеспечено придание печной атмосфере новых свойств, что позволило сократить время процесса азотирования с 62 до 24 часов.

Claims (10)

1. Установка для каталитического газового азотирования сталей и сплавов, содержащая нагревательную печь с муфелем или без муфеля, расположенный в печи узел каталитического воздействия на технологические газы, средства подачи, смешения, порционирования и отвода технологических газов и устройство косвенного контроля и управления азотного потенциала печной атмосферы, отличающаяся тем, что устройство косвенного контроля и управления азотного потенциала печной атмосферы состоит из кислородного сенсора, вторичного преобразователя с индикацией азотного потенциала в весовых единицах содержания азота в железе и исполнительного органа, а узел каталитического воздействия на технологические газы расположен в печи на линии подачи технологических газов.
2. Установка по п.1, отличающаяся тем, что кислородный сенсор выполнен в виде твердоэлектролитного датчика напряжения.
3. Установка по п.1, отличающаяся тем, что кислородный сенсор выполнен в виде полупроводникового датчика сопротивления.
4. Установка по любому из пп.1-3, отличающаяся тем, что кислородный сенсор имеет автономную систему термостабилизации.
5. Установка по п.1, отличающаяся тем, что узел каталитического воздействия выполнен в виде емкости с катализатором.
6. Установка по п.5, отличающаяся тем, что катализатор выполнен из вспененной керамики в виде таблеток.
7. Установка по п.1, отличающаяся тем, что нагревательная печь оборудована электронагревателями или газовыми горелками.
8. Установка по п.1, отличающаяся тем, что вторичный преобразователь выполнен с возможностью обеспечения стандартного выходного сигнала, пропорционального прогнозируемой концентрации азота в железе.
9. Установка по п.1, отличающаяся тем, что вторичный преобразователь имеет интерпретатор выходного сигнала кислородного сенсора в виде фазового состава в соответствии с бинарной диаграммой «железо-азот».
10. Установка по п.1, отличающаяся тем, что вторичный преобразователь выполнен с возможностью компьютерного отображения диффузионных процессов с графическим изображением фазового состава, концентрации азота и распределения микротвердости диффузионного слоя в реальном времени.
RU2006141494/02A 2006-11-24 2006-11-24 Установка для каталитического газового азотирования сталей и сплавов RU2310802C1 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2006141494/02A RU2310802C1 (ru) 2006-11-24 2006-11-24 Установка для каталитического газового азотирования сталей и сплавов
PL385785A PL211787B1 (pl) 2006-11-24 2007-02-19 Urządzenie do katalitycznego gazowego azotowania stali i stopów
CA2681885A CA2681885C (en) 2006-11-24 2007-02-19 Catalytic gas nitriding unit for steels and alloys
DE112007000016T DE112007000016B4 (de) 2006-11-24 2007-02-19 Anlage zur katalytischen Gasnitrierung von Stählen und Legierungen
PCT/RU2007/000079 WO2008063095A1 (fr) 2006-11-24 2007-02-19 Installation de nitruration gazeuse catalytique d'acier et d'alliages
US12/535,354 US7931854B2 (en) 2006-11-24 2009-08-04 Unit for catalytic gas nitrogenation of steels and alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006141494/02A RU2310802C1 (ru) 2006-11-24 2006-11-24 Установка для каталитического газового азотирования сталей и сплавов

Publications (1)

Publication Number Publication Date
RU2310802C1 true RU2310802C1 (ru) 2007-11-20

Family

ID=38959471

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006141494/02A RU2310802C1 (ru) 2006-11-24 2006-11-24 Установка для каталитического газового азотирования сталей и сплавов

Country Status (6)

Country Link
US (1) US7931854B2 (ru)
CA (1) CA2681885C (ru)
DE (1) DE112007000016B4 (ru)
PL (1) PL211787B1 (ru)
RU (1) RU2310802C1 (ru)
WO (1) WO2008063095A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465348C1 (ru) * 2008-09-10 2012-10-27 Ниппон Стил Корпорейшн Способ производства листа из электротехнической стали с ориентированным зерном
RU2503728C1 (ru) * 2010-05-25 2014-01-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Способ изготовления листа электротехнической стали с ориентированной зеренной структурой

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9974577B1 (en) 2015-05-21 2018-05-22 Nuvasive, Inc. Methods and instruments for performing leveraged reduction during single position spine surgery
CN108106754B (zh) * 2018-02-01 2021-01-15 中冶长天国际工程有限责任公司 一种工业设备险情的动态监测装置及监测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2541857A (en) * 1945-05-30 1951-02-13 Leeds & Northrup Co Control of constituent potentials
JP2693382B2 (ja) * 1994-07-26 1997-12-24 リヒト精光株式会社 複合拡散窒化方法及び装置並びに窒化物の生産方法
RU2061088C1 (ru) * 1994-08-05 1996-05-27 Борис Михайлович Гусев Способ химико-термической обработки деталей из нелегированных электротехнических сталей и печь для его осуществления
RU2109080C1 (ru) * 1997-05-14 1998-04-20 Владимир Яковлевич Сыропятов Установка для газовой низкотемпературной химико-термической обработки стали и сплавов
RU2230824C2 (ru) * 2002-04-09 2004-06-20 Общество с ограниченной ответственностью "Борец" Способ химико-термической обработки материала на основе сплава железа, материал на основе сплава железа и деталь ступени погружного центробежного насоса
RU35422U1 (ru) * 2003-08-13 2004-01-10 Закрытое акционерное общество "МИУС" Электропечь для химико-термической обработки изделий

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465348C1 (ru) * 2008-09-10 2012-10-27 Ниппон Стил Корпорейшн Способ производства листа из электротехнической стали с ориентированным зерном
RU2503728C1 (ru) * 2010-05-25 2014-01-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Способ изготовления листа электротехнической стали с ориентированной зеренной структурой

Also Published As

Publication number Publication date
CA2681885C (en) 2010-11-02
DE112007000016B4 (de) 2010-04-01
PL385785A1 (pl) 2009-01-19
CA2681885A1 (en) 2008-05-29
DE112007000016T8 (de) 2009-11-05
DE112007000016T5 (de) 2009-07-02
US20090289398A1 (en) 2009-11-26
PL211787B1 (pl) 2012-06-29
WO2008063095A1 (fr) 2008-05-29
US7931854B2 (en) 2011-04-26

Similar Documents

Publication Publication Date Title
JP5534629B2 (ja) 熱処理方法および熱処理装置、並びに熱処理システム
RU2310802C1 (ru) Установка для каталитического газового азотирования сталей и сплавов
US5385337A (en) Control system for a soft vacuum furnace
CN102978112B (zh) 高压细胞培养箱、其温度控制方法及压强控制方法
CN104990830A (zh) 测量加热炉炉内气氛对钢坯表面氧化影响的方法和装置
US8465603B2 (en) Method and device for controlling process gases for heat treatments of metallic materials/workpieces in industrial furnaces
US8839746B2 (en) Oxygen measuring apparatuses
TW200637647A (en) Combinational control strategy for fuel processor reactor shift temperature control
RU64632U1 (ru) Установка для каталитического газового азотирования сталей и сплавов
CN110412216A (zh) 一种VOCs浓度的在线测量方法
US3011873A (en) Measurement and control of constituent potentials
JP6543208B2 (ja) ガス浸炭方法およびガス浸炭装置
KR100522050B1 (ko) 열처리로의분위기제어방법및장치
CN208027193U (zh) 一种液体在线加热装置
CN202936419U (zh) 微生物培养的压力、温度控制系统
US7534313B2 (en) Systems and methods for controlling heat treating atmospheres and processes based upon measurement of ammonia concentration
US9816154B2 (en) Process gas preparation apparatus for an industrial furnace system and an industrial furnace system for gas carburizing and hardening of metal workpieces utilizing same
CN205653502U (zh) 一种自动控制炉内气氛的真空渗碳炉
JP6182764B1 (ja) ガス腐食試験機
JP2007111617A (ja) 廃酸液処理方法
PL189905B1 (pl) Sposób regulacji atmosfery w piecu do obróbki cieplnej
RU44980U1 (ru) Устройство для управления газонапуском для азотирования
US20170292170A1 (en) Controlling and optimising furnace atmospheres for stainless steel heat treatment
JP4092215B2 (ja) 熱処理炉の雰囲気制御装置
JP2020105541A (ja) 浸炭設備および浸炭設備のバーンアウト終了判定方法

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20110315

MM4A The patent is invalid due to non-payment of fees

Effective date: 20171125

NF4A Reinstatement of patent

Effective date: 20190201