RU2309934C1 - Способ получения хлороформа - Google Patents

Способ получения хлороформа Download PDF

Info

Publication number
RU2309934C1
RU2309934C1 RU2006116087/04A RU2006116087A RU2309934C1 RU 2309934 C1 RU2309934 C1 RU 2309934C1 RU 2006116087/04 A RU2006116087/04 A RU 2006116087/04A RU 2006116087 A RU2006116087 A RU 2006116087A RU 2309934 C1 RU2309934 C1 RU 2309934C1
Authority
RU
Russia
Prior art keywords
chloroform
catalyst
hexachloroacetone
synthesis
reaction mixture
Prior art date
Application number
RU2006116087/04A
Other languages
English (en)
Inventor
Елена Петровна Гордон (RU)
Елена Петровна Гордон
Валентина Григорьевна Енакаева (RU)
Валентина Григорьевна Енакаева
Любовь Николаевна Елесина (RU)
Любовь Николаевна Елесина
Анатолий Михайлович Митрохин (RU)
Анатолий Михайлович Митрохин
Игорь Сергеевич Поддубный (RU)
Игорь Сергеевич Поддубный
Original Assignee
Открытое Акционерное Общество "Каустик"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Каустик" filed Critical Открытое Акционерное Общество "Каустик"
Priority to RU2006116087/04A priority Critical patent/RU2309934C1/ru
Application granted granted Critical
Publication of RU2309934C1 publication Critical patent/RU2309934C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения хлороформа путем гидролиза гексахлорацетона водой при повышенной температуре в присутствии катализатора, в качестве которого используют неорганическое соединение кремния природного или синтетического происхождения или смеси таких соединений кремния с выделением хлороформа из реакционной массы известными способами. В качестве указанных соединений кремния преимущественно используют тальк, волластонит, ксонотлит, диатомит, силикагель, аэросил, белую сажу, силикаты и/или гидросиликаты металлов, таких как натрий, калий, магний, кальций, алюминий, медь, титан, свинец, марганец, железо, никель. Катализатор используют преимущественно в количестве 1-25% от массы реакционной смеси. Технический результат - существенное упрощение технологии получения хлороформа за счет исключения стадии регенерации катализатора, а также расширение сырьевой базы каталитического процесса. 2 з.п. ф-лы.

Description

Изобретение относится к области химической технологии, а именно к способу получения хлороформа, который широко используется в качестве растворителя и сырья в производстве фторхлоруглеводородов и других химических продуктов.
Поскольку хлороформ представляет известную ценность, существует целый ряд способов его получения путем газофазного или жидкофазного хлорирования углеводородов (Ф.Ф.Муганлинский, Ю.А.Трегер, М.М.Люшин. Химия и технология галогенорганических соединений. - М.: Химия, 1991, с.68-71).
Хлорирование углеводородов имеет ряд существенных недостатков:
- возможность образования взрывоопасных смесей (Н.Н.Лебедев. Химия и технология основного органического и нефтехимического синтеза. - М.: Химия, 1975, с.120-121);
- образуется большое количество экологически опасного четыреххлористого углерода, производство и применение которого запрещено по Монреальскому протоколу.
Известен способ получения хлороформа из смеси, содержащей хлораль, путем ее обработки известковым молоком при температуре 50-80°С с отпаркой образующегося хлороформа (SU 125425, кл. С07С 19/04, 1960):
2CCl3СНО+2Са(ОН)2→2CHCl3+Са(НСОО)2.
Недостатком способа является образование формиата кальция, который требует сложной очистки и переработки в муравьиную кислоту или ее производные. Продукты не конкурентоспособны из-за более высокой цены, чем те же продукты, получаемые целевым синтезом.
Хлороформ можно получить из ацетона, этанола или метилацетата обработкой хлорной известью (Ф.Ф.Муганлинский, Ю.А.Трегер, М.М.Люшин. Химия и технология галогенорганических соединений. - М.: Химия, 1991, с.68) по следующей реакции:
2СН3СОСН3+6СаОСl2→2CHCl3+Са(СН3СОО)2+2Са(ОН)2+3CaCl2.
Метод долгое время использовался в промышленном масштабе, но из-за низких технико-экономических показателей в настоящее время потерял значимость по сравнению с более экономичными и эффективными современными методами получения хлороформа.
Известен способ получения хлороформа взаимодействием гексахлорацетона с раствором щелочи при значениях рН не более 10 и температуре не более 50°С (патент Японии №19927, 1968):
CCl3COCCl3+NaOH→CHCl3+CCl3COONa.
В данном способе наряду с целевым продуктом - хлороформом - получается трихлорацетат натрия, на образование которого расходуется щелочь. Ранее это соединение применяли как гербицид. В настоящее время используются гербициды нового поколения, более экологичные и эффективные.
Наиболее близким по технической сущности к предлагаемому способу является способ получения хлороформа (патент РФ №2206558, 2003), по которому гексахлорацетон гидролизуют водой в присутствии катализатора - этаноламинов - при температуре 95-150°С с одновременной отгонкой образующегося хлороформа.
CCl3COCCl32О
Figure 00000001
2CHCl3+CO2.
Основным недостатком этого способа является то, что в процессе синтеза катализатор постепенно дезактивируется за счет протекания побочных реакций образования трихлорацетата амина, формиата амина, гидрохлорида амина. Регенерация катализатора из отработанного водного раствора довольно длительный и энергоемкий процесс. Сначала раствор отработанного катализатора кипятят при температуре выше 100°С в течение 3-5 часов для разложения трихлорацетата амина. Далее раствор охлаждают до 20-30°С и в него подают 40-45%-ную щелочь до рН 8-9 для разложения гидрохлорида амина и формиата амина. Выпавшие кристаллы хлористого натрия отфильтровывают.
Задачей предлагаемого способа является упрощение технологии получения хлороформа путем гидролиза гексахлорацетона водой.
Это достигается тем, что получение хлороформа каталитическим взаимодействием гексахлорацетона с водой при повышенной температуре осуществляют с использованием в качестве катализатора неорганического соединения кремния природного или синтетического происхождения или смеси таких соединений кремния с последующим выделением хлороформа из реакционной смеси известными способами.
По предлагаемому способу в качестве неорганического соединения кремния природного или синтетического происхождения или смеси таких соединений кремния преимущественно используют соединение, выбранное из группы включающей тальк, волластонит, ксонотлит, диатомит, силикагель, аэросил, белую сажу, силикаты и/или гидросиликаты металлов, преимущественно натрия, калия, магния, кальция, алюминия, меди, титана, свинца, марганца, железа, никеля, или их смеси в различных массовых соотношениях.
По предлагаемому способу катализатор используют предпочтительно в количестве 1-25% от массы реакционной смеси. В общем случае количество катализатора должно быть необходимым и достаточным для ускорения процесса гидролиза гексахлорацетона и может быть менее 1% или более 25% от массы смеси. Однако увеличение количества катализатора более 25% от массы смеси технически нецелесообразно, поскольку обусловливает снижение производительности технологического оборудования и количества получаемого продукта на единицу массы катализатора.
Предлагаемый процесс может быть реализован периодическим и непрерывным способом при атмосферном или избыточным давлении в пределах 0,05-6,0 ати.
Проведение процесса при атмосферном давлении позволяет использовать обычное технологическое оборудование, а проведение процесса при небольшом избыточном давлении позволяет снизить потери хлороформа и повысить его качество при выделении его из газовой смеси.
Процесс по предлагаемому способу осуществляют в любом обычном реакторе, который снабжен устройствами для перемешивания и для подачи гексахлорацетона и воды. Например, в реактор загружают необходимое количество воды и катализатора. Затем при перемешивании дозируют гексахлорацетон и воду в мольном соотношении 1:1,01-1,2 при температуре 90-160°С. Образующийся при гидролизе гексахлорацетона хлороформ выделяют из реакционной массы отгонкой или разделением водного и органического слоев. Существенным преимуществом предлагаемого способа является то, что не требуется дополнительного расхода реагентов, энергоресурсов, трудозатрат на регенерацию отработанного катализатора. Последний может быть использован без дополнительной обработки как добавка в строительные материалы (бетонные растворы, штукатурные массы и т.п.). К преимуществам относятся также доступность катализатора и легкость его выделения из реакционной массы, более высокая эффективность катализатора, его пожаро- и взрывобезопасность, а также экологическая безопасность по сравнению с этаноламинами.
Кроме того, ресурс работы предлагаемого катализатора существенно превышает ресурс работы этаноламинов.
Ниже приведены некоторые примеры, демонстрирующие сущность предлагаемого способа получения хлороформа, которые не ограничивают объем притязаний, определенный формулой и описанием данного способа.
Пример 1.
В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, оборудованным ловушкой Дина-Старка и соединенным с системой поглощения абгазов, заливают 40 г воды, добавляют 4,4 г гидросиликата натрия, нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 30 г/ч, одновременно дозируют воду, которая берется в мольном отношении 1,01-1,2 к молю гексахлорацетона. Температуру реакционной массы поддерживают в тех же пределах. Выделяющиеся при этом пары хлороформа, воды и углекислый газ охлаждают в холодильнике, который снабжен ловушкой-разделителем. Из ловушки вода возвращается в реактор, а хлороформ собирается в сборник.
За 16 часов работы получено 426 г хлороформа, выход его составил 98,4%.
Пример 2.
В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, соединенным с системой поглощения абгазов, заливают 40 г воды, добавляют 5 г белой сажи марки БС-100, нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 25 г/ч. Далее так же, как описано в примере 1.
За 24 часа работы получено 537 г хлороформа, выход его составил 99,0%.
Пример 3.
В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, соединенным с системой поглощения абгазов, заливают 40 г воды, добавляют 7 г силиката кальция. Водную суспензию катализатора нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 20 г/ч. Далее осуществляют синтез так же, как описано в примере 1.
За 45 часов работы получено 800 г хлороформа, выход его составил 98,6%.
Пример 4.
В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, соединенным с системой поглощения абгазов, заливают 40 г воды, добавляют 10 г волластонита. Водную суспензию катализатора нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 20 г/ч. Далее так же, как описано в примере 1.
За 15 часов работы получено 268 г хлороформа, выход его составил 99,1%.
Пример 5.
В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, соединенным с системой поглощения абгазов, заливают 50 г воды, добавляют 2 г гидросиликата алюминия и 3 г аэросила. Водную суспензию катализатора нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 35 г/ч. Далее синтез проводят так же, как описано в примере 1.
За 72 часа работы получено 2250 г хлороформа, выход его составил 99,0%.
Пример 6.
В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, соединенным с системой поглощения абгазов, заливают 40 г воды, добавляют 8 г силиката кальция. Водную суспензию катализатора нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 35 г/ч. Далее осуществляют процесс так же, как описано в примере 1.
За 240 часов (10 суток) работы получено 7477 г хлороформа, при этом его выход составил 98,7% от теоретического.
Из приведенных примеров следует, что предлагаемый способ получения хлороформа позволяет существенно упростить технологию его получения методом каталитического гидролиза гексахлорацетона и исключить необходимость регенерации используемого катализатора.
Кроме того, использование в предлагаемом процессе указанных катализаторов значительно расширяет сырьевую базу технологии и определяет снижение себестоимости целевого продукта и снижение экологической нагрузки на окружающую среду за счет применения более доступных, экономичных, негорючих и нетоксичных неорганических соединений кремния вместо этаноламинов, относящихся ко второму и третьему классам опасности.

Claims (3)

1. Способ получения хлороформа путем взаимодействия гексахлорацетона с водой при повышенной температуре в присутствии катализатора, отличающийся тем, что в качестве катализатора используют неорганическое соединение кремния природного или синтетического происхождения или смесь таких соединений кремния с последующим выделением хлороформа из реакционной смеси известными способами.
2. Способ по п.1, отличающийся тем, что в качестве неорганического соединения кремния природного или синтетического происхождения или смеси таких соединений кремния используют соединение, выбранное из группы, включающей тальк, волластонит, ксонотлит, диатомит, силикагель, аэросил, белую сажу, силикаты и/или гидросиликаты металлов, преимущественно натрия, калия, магния, кальция, алюминия, меди, титана, свинца, марганца, железа, никеля, или их смеси в различных массовых соотношениях.
3. Способ по п.1, отличающейся тем, что катализатор используют преимущественно в количестве 1-25% от массы реакционной смеси.
RU2006116087/04A 2006-05-10 2006-05-10 Способ получения хлороформа RU2309934C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006116087/04A RU2309934C1 (ru) 2006-05-10 2006-05-10 Способ получения хлороформа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006116087/04A RU2309934C1 (ru) 2006-05-10 2006-05-10 Способ получения хлороформа

Publications (1)

Publication Number Publication Date
RU2309934C1 true RU2309934C1 (ru) 2007-11-10

Family

ID=38958248

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006116087/04A RU2309934C1 (ru) 2006-05-10 2006-05-10 Способ получения хлороформа

Country Status (1)

Country Link
RU (1) RU2309934C1 (ru)

Similar Documents

Publication Publication Date Title
KR101148471B1 (ko) 알파-히드록시카르복실산 및 이의 에스테르 제조방법
JP5066447B2 (ja) 2−ヒドロキシエステル化合物の製造方法
JP2014525410A (ja) Hmb及びその塩を製造する方法
CN115286514B (zh) 一种4’-氯-2-氨基联苯硫酸盐的制备方法
US3996291A (en) Process for the production of 4-hydroxy-3,5-dibromobenzaldehyde
CN101981007A (zh) 纯化吡啶的方法和制造氯化吡啶的方法
RU2309934C1 (ru) Способ получения хлороформа
CN108530301B (zh) 一种2,4,6-三氟苄胺的合成方法
JP3680203B2 (ja) 4−アセチルアミノベンゼンスルホニルアジドの製造方法
RU2309935C1 (ru) Способ совместного получения хлороформа и алкиленкарбонатов
RU2326862C2 (ru) Способ получения о-замещенных гидроксиламиновых соединений
JP2001316358A (ja) ジターシャルブチルペルオキシドの製造法
WO1999031050A1 (fr) Procede de production de derives d'ester butyrique
JPH039898B2 (ru)
JP3175334B2 (ja) N−(α−アルコキシエチル)−カルボン酸アミドの製造法
JPS5826733B2 (ja) エンソカアルデヒドノ セイゾウホウホウ
JPS5819665B2 (ja) サクシニルコハクサンジエステルノ セイゾウホウ
JP4500983B2 (ja) 6−アルコキシ−2−ナフタレンチオールおよびその製造方法
KR20170136165A (ko) 4'-히드록시-4-비페닐카르복실산의 신규 제조 방법
RU2263661C1 (ru) Способ получения 1-м-феноксифенил-2-нитроалкенов
JPS649306B2 (ru)
US6500978B2 (en) Process for producing cyclopropanecarbonitrile
SU1625866A1 (ru) Способ получени 5-хлорпентановой кислоты
JPH0242043A (ja) 4―ニトロ―3―トリフルオロメチルアニリンの製造方法
JP3998076B2 (ja) ポドフィロトキシンの脱メチル化

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190511