RU2305829C1 - Способ и устройство для распознавания материалов с помощью быстрых нейтронов и непрерывного спектрального рентгеновского излучения - Google Patents

Способ и устройство для распознавания материалов с помощью быстрых нейтронов и непрерывного спектрального рентгеновского излучения Download PDF

Info

Publication number
RU2305829C1
RU2305829C1 RU2006105794/28A RU2006105794A RU2305829C1 RU 2305829 C1 RU2305829 C1 RU 2305829C1 RU 2006105794/28 A RU2006105794/28 A RU 2006105794/28A RU 2006105794 A RU2006105794 A RU 2006105794A RU 2305829 C1 RU2305829 C1 RU 2305829C1
Authority
RU
Russia
Prior art keywords
ray
neutron
source
scanning device
neutrons
Prior art date
Application number
RU2006105794/28A
Other languages
English (en)
Inventor
Кеджун КАНГ (CN)
Кеджун КАНГ
Хайфенг ХУ (CN)
Хайфенг ХУ
Яли КСИ (CN)
Яли КСИ
Квитиан МИАО (CN)
Квитиан МИАО
Йиганг ЯНГ (CN)
Йиганг ЯНГ
Юанджинг ЛИ (CN)
Юанджинг ЛИ
Жикианг ЧЕН (CN)
Жикианг ЧЕН
Ксуеву ВАНГ (CN)
Ксуеву ВАНГ
Original Assignee
Университет Цингхуа
Нактех Компани Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Университет Цингхуа, Нактех Компани Лимитед filed Critical Университет Цингхуа
Application granted granted Critical
Publication of RU2305829C1 publication Critical patent/RU2305829C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/10Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being confined in a container, e.g. in a luggage X-ray scanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/087Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays using polyenergetic X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/09Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/223Mixed interrogation beams, e.g. using more than one type of radiation beam

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Particle Accelerators (AREA)

Abstract

Использование: для распознавания материалов с помощью быстрых нейтронов и непрерывного спектрального рентгеновского излучения. Сущность: заключается в том, что осуществляют облучение инспектируемого объекта пучком лучей быстрых нейтронов, произведенных источником быстрых нейтронов, и пучком лучей непрерывного спектрального рентгеновского излучения, произведенного источником непрерывного спектрального рентгеновского излучения, после чего производят прямое измерение интенсивности прошедшего рентгеновского излучения и интенсивности прошедших нейтронов рентгеновской детекторной матрицей и нейтронной детекторной матрицей соответственно и идентифицируют материалы/вещества инспектируемого объекта с помощью кривых Z-зависимостей, сформированных разностями коэффициента ослабления между нейтронным лучом и рентгеновским лучом, прошедшими через различные материалы инспектируемого объекта. Технический результат: повышение проникающей способности, а также повышение пространственного разрешения и качества изображения при инспекции контейнеров или объемных предметов. 3 н. и 22 з.п. ф-лы, 3 ил.

Description

Область применения изобретения
Изобретение относится к ренгенографическим методам инспекции контейнеров и других крупногабаритных объектов, в частности к устройствам и способам распознавания материалов путем прямого измерения посланных быстрых нейтронов и непрерывного спектрального рентгеновского излучения, а также распознавания материалов с использованием кривых Z-зависимости, формируемых разностями коэффициентов ослабления между нейтронами и рентгеновским излучением, прошедшими через различные материалы/вещества.
Предпосылки к созданию изобретения
Настоящее изобретение обусловлено общей угрозой терроризма. Поскольку требования к антитеррористическим мероприятиям становятся более жесткими, то возрастает потребность в системах ренгенографического контроля контейнеров, способных автоматически обнаруживать взрывчатые вещества, наркотики и другую контрабанду. Существующие методы распознавания материалов при инспекции контейнеров и других крупногабаритных объектов, такие как высокоэнергетический и двухэнергетический ренгенографический метод, PFNA™ метод (анализ импульсов быстрых нейтронов или коллиминирование потока моноэнергетичных быстрых нейтронов) и компьютерная томографическая (КТ) система контроля контейнеров, приобретают все большую значимость.
Высокоэнергетический и двухэнергетический ренгенографический метод использует разницу поглощения у разных материалов в мегавольтном диапазоне вследствие Эффекта Комптона (Compton Effect) и эффекта образования электронно-дырочной пары для определения эффективного атомного номера облученных предметов и соответственно распознавания различных материалов. Но существуют некоторые физические ограничения. Во-первых, разница поглощения между материалами не достаточно большая. Во-вторых, высокоэнергетический спектр частично перекрывается с низким энергетическим спектром, даже в случае, если только фильтрация спектра может разрешить проблему. В-третьих, результат обнаружения ухудшается из-за ошибок измерения. Все это приводит к неудовлетворительным результатам, а последовательная высокоэнергетическая и двухэнергетическая система в основном используется для идентификации «органических», «составных» и «неорганических» материалов в инспектируемом контейнере. Изотопный источник может обеспечить моноэнергетические гамма-лучи, которые могут решить проблему перекрытия спектра, но их проникающая способность слишком мала для того, чтобы использовать их в системе инспекции контейнеров и других крупногабаритных предметов для обнаружения материалов.
Некоторые из существующих в настоящее время PFNA систем имеют трехмерную возможность распознавания. Но их пространственное разрешение слишком мало, пропускная способность слишком медленна, а стоимость слишком высока. Таким образом, PFNA не может доминировать на рынке контейнерных инспекций в настоящее время и в ближайшем будущем. Другая контейнерная инспекционная система NAA (Neutron Activation Analysis - активизационный анализ нейтронов), использующая Cf-252 как источник нейтронов, не может использоваться для постоянного измерения в режиме реального времени, потому что NAA можно использовать для измерения подозрительной области только после обнаружения самой подозрительной области другим оборудованием.
Томографическая контейнерная инспекционная система КТ имеет огромные размеры, а коэффициент пропускной способности слишком низок, чтобы доминировать на рынке контейнерных инспекций.
В WO 2004/053472 описывается рентгенографическое оборудование, которое непосредственно измеряет посланные моноэнергетические быстрые нейтроны и моноэнергетические гамма-лучи. Это оборудование использует массовое отношение коэффициента затухания для того, чтобы распознать различные вещества, что может использоваться для обнаружения взрывчатых веществ, наркотиков и контрабанды. В сравнении с высокоэнергетическим и двухэнергетическим ренгенографическим методом исследования при помощи рентгеновских лучей метод прямой регистрации рентгеновского излучения в двух областях энергетического спектра имеет лучшую способность идентификации материалов. В сравнении с методикой PFNA, которая регистрирует вторичные излучения, типа нейтронно-наведенных гамма-лучей, метод прямой регистрации рентгеновского излучения в двух областях энергетического спектра более эффективен, т.к. обладает более высокой способностью проникновения, чем тепловые нейтроны. В сравнении с контейнерной инспекционной КТ системой система двойного луча более компактна, имеет низкую цену и выполняет измерения в режиме реального времени.
К сожалению, моноэнергетическая система двойного луча может использовать только изотопный источник типа Со-60, в качестве источника гамма-лучей. Однако для контроля контейнеров или других крупногабаритных предметов большим недостатком изотопного источника является низкая способность проникновения, низкое пространственное разрешение, низкое качество изображения, а также проблемы администрирования радиационной безопасности. Эта методика обеспечивает низкое пространственное разрешение изображения контейнера и ей трудно конкурировать с системами инспекции контейнеров на основе линейного ускорителя, которые обеспечивают высококачественное изображение. Так как моноэнергетические гамма-лучи имеют низкую способность проникновения, которая также ограничивает толщину идентификации материала, то они не могут использоваться в случае полностью загруженного контейнера или при контроле объемных предметов. Подобные недостатки ограничивают область ее использования.
Краткое изложение изобретения
Настоящее изобретение решает указанные выше проблемы и обеспечивает способ распознавания материалов путем прямого измерения посланных быстрых нейтронов и непрерывного спектрального рентгеновского излучения. Так как массовое отношение коэффициента затухания быстрых нейтронов и непрерывного спектрального рентгеновского излучения не может просто использоваться для определения Z (эффективного атомного номера в зоне прямой видимости осмотренных предметов), в настоящем изобретении для распознавания материалов используются Z-зависимости n-x кривых материалов. Использование высокой проникающей способности рентгеновских лучей линейного ускорителя и быстрых нейтронов может обеспечить распознавание веществ даже в случае полностью загруженного контейнера или при контроле объемных предметов. Это изобретение не только обладает всеми преимуществами моноэнергетической системы двойного луча, такими как высокая чувствительность распознавания веществ, компактная конфигурация, высокая пропускная способность, низкая цена, измерение в режиме реального времени, но также имеет и дополнительные преимущества: высокую проникающую способность, высокую эффективность обнаружения, высокое пространственное разрешение, высокое качество изображения, высокую точность идентификации веществ и достоверность.
Согласно одному аспекту изобретения, заявлен способ распознавания веществ, использующий быстрые нейтроны и непрерывное спектральное рентгеновское излучение, включающий следующие этапы: (а) облучение инспектируемого объекта пучком лучей быстрых нейтронов, произведенных источником быстрых нейтронов, и пучком лучей непрерывного спектрального рентгеновского излучения, произведенным источником непрерывного спектрального рентгеновского излучения; (b) прямое измерение интенсивности прошедшего рентгеновского излучения и интенсивности посланных нейтронов рентгеновской детекторной матрицей и нейтронной детекторной матрицей соответственно; и (с) идентификацию материалов/веществ инспектируемого объекта с помощью кривых Z-зависимостей, сформированных разностями коэффициента ослабления между нейтронным лучом и рентгеновским лучом, прошедшими через различные материалы инспектируемого объекта.
В предпочтительном варианте изобретения способ также включает этап (d) формирования прошедшего двухмерного рентгеновского изображения и прошедшего нейтронного изображения для той же развертки (скана).
В предпочтительном варианте изобретения источником быстрых нейтронов служит либо нейтронный генератор либо изотопный нейтронный источник, либо источник фотонейтронов; а источником непрерывного спектрального рентгеновского излучения служит либо линейный ускоритель электронов либо рентгеновская установка.
В предпочтительном варианте изобретения источником фотонейтронов служит ускоритель, генерирующий пучок рентгеновских лучей, часть которого сталкивается с преобразователем фотонейтронов и преобразуется в фотонейтроны.
В предпочтительном варианте изобретения распределительный коллиматор делит рентгеновский пучок лучей, произведенный ускорителем, на два пучка лучей. Один пучок коллимируется с помощью рентгеновского коллиматора ограничения пучка для формирования рентгеновского пучка лучей, другой пучок лучей сталкивается с преобразователем фотонейтронов и преобразуется в фотонейтроны для формирования пучка лучей фотонейтронов с помощью коллиматора ограничения пучка.
В предпочтительном варианте изобретения пучок лучей быстрых нейтронов и непрерывный спектральный рентгеновский пучок лучей измеряются рентгеновской детекторной матрицей, обладающей высокой эффективностью обнаружения рентгеновского излучения и нейтронной детекторной матрицей, обладающей высокой эффективностью обнаружения нейтронов соответственно.
В предпочтительном варианте изобретения вдоль сканирующего туннеля расположен корпус нейтронного сканирующего устройства, включающего источник быстрых нейтронов и нейтронную детекторную матрицу. Корпус нейтронного сканирующего устройства расположен параллельно корпусу рентгеновского сканирующего устройства, включающего рентгеновский источник и рентгеновскую детекторную матрицу, при этом корпус рентгеновского сканирующего устройства расположен первым вдоль линии направления сканирования, а корпус нейтронного сканирующего устройства - вторым, таким образом, что инспектируемый объект сначала просматривается в корпусе рентгеновского сканирующего устройства, а затем в корпусе нейтронного сканирующего устройства.
В предпочтительном варианте изобретения нейтронный источник и рентгеновский источник посылают импульсы одновременно, при этом время излучения источника нейтронного импульса осуществляется с задержкой, например, несколько миллисекунд, по сравнению со временем излучения импульса источника рентгеновского излучения.
В предпочтительном варианте изобретения идентификация веществ включает измерение интенсивности Tn нейтронов, прошедших через инспектируемый объект каждым нейтронным детектором в нейтронной детекторной матрице; измерение интенсивности Тx рентгеновских лучей, прошедших через инспектируемый объект каждым рентгеновским детектором в рентгеновской детекторной матрице; построение Z-зависимостей для пар (c1, c2), где c1=f1(Tx) используется как x-координата и c2=f2(Tn, Tx) используется как y-координата, при этом f1(Tx) обозначает функцию коэффициента ослабления рентгеновских лучей, a f2(Tn, Tx) обозначает функцию разности коэффициента ослабления нейтронов и рентгеновских лучей; идентификацию различных материалов инспектируемого объекта с использованием кривых Z-зависимостей; и отображение идентифицированных различных веществ разными цветами на изображении разграничения материалов.
В предпочтительном варианте изобретения одно значение пикселя изображения переданных нейтронов образует пару со средним значением одного или нескольких пикселей изображения переданного рентгеновского излучения для составления (c1, c2) пары на одной из кривых Z-зависимости.
В предпочтительном варианте изобретения существуют две модели сканирования для формирования изображения прошедшего рентгеновского излучения и изображения прошедших нейтронов. Одна модель предусматривает перемещение корпусов нейтронного сканирующего устройства и рентгеновского сканирующего устройства, в то время как инспектируемый объект остается неподвижным; в другой модели сканирования инспектируемый объект движется вдоль сканирующего туннеля, в то время как корпус нейтронного сканирующего устройства и корпус рентгеновского сканирующего устройства стационарны.
В другом аспекте изобретения оборудование для реализации метода распознавания материалов с помощью быстрых нейтронов и непрерывного спектрального рентгеновского излучения включает источник быстрых нейтронов для получения нейтронов, источник непрерывного спектрального рентгеновского излучения для получения рентгеновского излучения, нейтронную детекторную матрицу для обнаружения нейтронов и рентгеновскую детекторную матрицу для обнаружения рентгеновского излучения, при этом источник быстрых нейтронов и источник непрерывного спектрального рентгеновского излучения расположены на одной стороне сканирующего туннеля, а нейтронная детекторная матрица и рентгеновская детекторная матрица расположены на противоположной стороне сканирующего туннеля.
В предпочтительном варианте изобретения рентгеновское излучение, произведенное рентгеновским источником, коллимируется в рентгеновский пучок лучей, который направляется на рентгеновскую детекторную матрицу, рентгеновский пучок лучей проходит через инспектируемый объект и попадает на рентгеновскую детекторную матрицу, нейтроны, произведенные источником быстрых нейтронов, коллимируются в нейтронный пучок лучей, который направляется на нейтронную детекторную матрицу, нейтронный пучок лучей проходит через инспектируемый объект и попадает на нейтронную детекторную матрицу.
В предпочтительном варианте изобретения источником быстрых нейтронов может быть либо нейтронный генератор либо изотопный нейтронный источник, либо источник фотонейтронов, а источником непрерывного спектрального рентгеновского излучения - либо линейный ускоритель электронов либо рентгеновская установка.
В предпочтительном варианте изобретения вдоль сканирующего туннеля расположен корпус нейтронного сканирующего устройства, включающего источник быстрых нейтронов и нейтронную детекторную матрицу, параллельно корпусу рентгеновского сканирующего устройства, включающего рентгеновский источник и рентгеновскую детекторную матрицу.
В предпочтительном варианте изобретения корпус рентгеновского сканирующего устройства расположен первым вдоль линии направления сканирования, а корпус нейтронного сканирующего устройства - вторым таким образом, что инспектируемый объект сначала просматривается в корпусе рентгеновского сканирующего устройства, а затем в корпусе нейтронного сканирующего устройства.
В другом аспекте изобретения оборудование для реализации способа распознавания материалов включает ускоритель, производящий непрерывное спектральное рентгеновское излучение и фотонейтроны, нейтронную детекторную матрицу для обнаружения фотонейтронов и рентгеновскую детекторную матрицу для обнаружения рентгеновского излучения, при этом ускоритель расположен на одной стороне сканирующего туннеля, нейтронная и рентгеновская детекторные матрицы расположены на другой стороне сканирующего туннеля.
В предпочтительном варианте изобретения оборудование также включает рентгеновский распределительный коллиматор, который установлен в рентгеновском окне излучения пучка лучей ускорителя, разделяющий рентгеновский пучок лучей на два пучка, из которых один пучок лучей коллимируется с помощью рентгеновского коллиматора ограничения пучка для формирования рентгеновского пучка лучей, а другой пучок лучей коллимируется и направляется в камеру усиления фотонейтронов.
В предпочтительном варианте изобретения оборудование также включает преобразователь фотонейтронов, который установлен в камере усиления фотонейтронов и располагается на пути рентгеновского пучка лучей. Рентгеновский пучок лучей сталкивается с преобразователем фотонейтронов и преобразуется в фотонейтроны для формирования пучка лучей фотонейтронов с помощью камеры усиления фотонейтронов и канала ограничения пучка лучей, связанного с камерой усиления фотонейтронов.
В предпочтительном варианте изобретения рентгеновский пучок лучей посылается через инспектируемый объект и регистрируется рентгеновской детекторной матрицей, а пучок лучей фотонейтронов посылается через инспектируемый объект и регистрируется нейтронной детекторной матрицей.
В предпочтительном варианте изобретения вдоль направления сканирования вначале установлен корпус рентгеновского сканирующего устройства, включающего рентгеновский пучок лучей и рентгеновскую детекторную матрицу, а корпус нейтронного сканирующего устройства, включающий пучки лучей фотонейтронов и нейтронную детекторную матрицу, установлен позади, то есть инспектируемый объект сначала сканируется в корпусе рентгеновского сканирующего устройства, а затем в корпусе нейтронного сканирующего устройства.
В предпочтительном варианте изобретения преобразователь фотонейтронов содержит бериллий или другой материал и имеет форму сферического купола, цилиндра, конуса, Г-образной пластины или другую форму.
В предпочтительном варианте изобретения между окном излучения фотонейтронов камеры усиления фотонейтронов и каналом ограничения пучка лучей, на пути пучка лучей фотонейтронов устанавливается висмутовый фильтр.
В предпочтительном варианте изобретения камера усиления фотонейтронов включает свинцовые и графитовые слои или другой материал.
В результате использования в изобретении описанной выше технологии кривые n-x определяют только Z-зависимость и не связаны с толщиной инспектируемых объектов. Изобретение имеет следующие преимущества: компактность оборудования, высокая эффективность обнаружения. С помощью данного способа, когда контейнер сначала просматривается в корпусе рентгеновского сканирующего устройства, а затем в корпусе нейтронного сканирующего устройства, воздействие на рентгеновское изображение передачи гамма-лучей устраняется за счет нейтронной активации. Используя технологию с временным разделением, при которой осуществляется задержка нейтронного пучка лучей относительно времени излучения пучка рентгеновских лучей линейного ускорителя, интерференцию нейтронов с рентгеновским изображением передачи и рентгеновского излучения с нейтронным изображением передачи можно понизить, а качество изображений может быть улучшено. Поскольку веерообразный рентгеновский пучок лучей и веерообразный нейтронный пучок лучей остронаправлены, рассеивающуюся интерференцию можно уменьшить, это упрощает радиационную защиту и дает высокое пространственное разрешение. В случае полностью загруженного контейнера или контроля объемного предмета распознавание материалов может быть выполнено качественно. Таким образом, это можно использовать для обнаружения взрывчатых веществ, наркотиков, контрабанды, специальных ядерных материалов, радиационных и других материалов в контейнере, контейнерном грузовике, железнодорожном вагоне или в других крупногабаритных объектах.
Краткое описание чертежей
Фиг.1 - схематичная иллюстрация, показывающая одну конфигурацию оборудования в соответствии с вариантом настоящего изобретения;
Фиг.2 - схематичная иллюстрация, показывающая другую конфигурацию оборудования в соответствии с другим вариантом настоящего изобретения;
Фиг.3 - схематичная иллюстрация, показывающая структуру распределительного коллиматора рентгеновского излучения, фотонейтронного преобразователя и средства усиления.
Подробное описание предпочтительных вариантов изобретения
Ниже будут рассмотрены различные варианты изобретения совместно с прилагаемыми чертежами. Для удобства компоненты оборудования на фигурах 1-3 будут обозначены одинаковыми или похожими ссылочными номерами.
Конфигурация
Фиг.1 - схематичная иллюстрация, показывающая одну конфигурацию оборудования в соответствии с вариантом настоящего изобретения
На фиг.1 оборудование 10 согласно первому варианту изобретения включает рельс перемещения контейнера 32, по крайней мере один инспектируемый контейнер или другой объемный предмет 34, который устанавливается на рельсе перемещения контейнера 32, источник быстрых нейтронов 12 для получения нейтронов, источник непрерывного спектрального рентгеновского излучения 22 для получения рентгеновского излучения, нейтронную детекторную матрицу 18, обладающую высокой эффективностью обнаружения нейтронов, рентгеновскую детекторную матрицу 28, обладающую высокой эффективностью обнаружения рентгеновских лучей, веерообразный нейтронный пучок лучей 16 и веерообразный рентгеновский пучок лучей 26.
Источником быстрых нейтронов 12 является либо нейтронный генератор либо изотопный нейтронный источник. Источником непрерывного спектрального рентгеновского излучения 22 является либо линейный ускоритель электронов (линейный ускоритель) либо рентгеновская установка. Источник быстрых нейтронов 12 и непрерывный спектральный рентгеновский источник 22 расположены по одну сторону рельса перемещения контейнера 32. Нейтронная детекторная матрица 18 и рентгеновская детекторная матрица 28 расположены с противоположной стороны рельса перемещения контейнера 32.
Нейтроны, посланные источником быстрых нейтронов 12, коллимируются в веерообразный нейтронный пучок лучей 16, который проходит через контейнер 34, после чего поступает на нейтронную детекторную матрицу 18. Рентгеновское излучение, посланное источником непрерывного спектрального рентгеновского излучения 22, коллимируется в веерообразный рентгеновский пучок лучей 26, который проходит через контейнер 34, после чего поступает на рентгеновскую детекторную матрицу 28.
Корпус нейтронного сканирующего устройства, сформированный источником быстрых нейтронов 12 и нейтронной детекторной матрицей 18, расположен параллельно корпусу рентгеновского сканирующего устройства, сформированного источником непрерывного спектрального рентгеновского излучения 22 и рентгеновской детекторной матрицей 28, при этом оба устройства движутся вдоль рельса перемещения контейнера 32. Направление сканирования 36 противоположно направлению движения 38 инспектируемого контейнера 34. Корпус рентгеновского сканирующего устройства расположен первым, а корпус нейтронного сканирующего устройства расположен вторым вдоль направления сканирования. Таким образом, инспектируемый контейнер 34 сначала сканируется в корпусе рентгеновского сканирующего устройства, а затем в корпусе нейтронного сканирующего устройства.
На фиг.2 представлена схематичная иллюстрация, показывающая другую конфигурацию оборудования в соответствии с другим вариантом настоящего изобретения, а на фиг.3 - схематичная иллюстрация, показывающая структуру распределительного коллиматора рентгеновского излучения, фотонейтронного преобразователя и средства усиления.
На фиг.2 и 3 оборудование 11 согласно второму варианту изобретения включает рельс перемещения контейнера 32, по крайней мере один инспектируемый контейнер или другой объемный предмет 34, который устанавливается на рельсе перемещения контейнера 32, ускоритель 42, который генерирует непрерывный спектральный рентгеновский пучок лучей, часть которого преобразуется в фотонейтроны, нейтронную детекторную матрицу 18 и рентгеновскую детекторную матрицу 28.
Ускоритель 42 расположен с одной стороны рельса перемещения контейнера 32. Нейтронная детекторная матрица 18 и рентгеновская детекторная матрица 28 расположены с другой стороны рельса перемещения контейнера 32. Специально спроектированный рентгеновский распределительный коллиматор 52 установлен в рентгеновском окне излучения пучка лучей ускорителя 42. Рентгеновский распределительный коллиматор 52 делит рентгеновский пучок лучей, произведенный ускорителем, на два пучка лучей: один пучок лучей коллимируется с помощью рентгеновского коллиматора ограничения пучка 24 для формирования веерообразного рентгеновского пучка лучей 26, другой пучок лучей 58 коллимируется и направляется в камеру усиления фотонейтронов 50, которая изготовлена из свинца, графитовых слоев или других материалов.
Преобразователь фотонейтронов 56, включающий бериллий или другой материал и имеющий форму сферического купола, цилиндра, конуса, Г-образной пластины или другую форму, размещается в камере усиления фотонейтронов 50 и устанавливается на пути рентгеновского пучка лучей 58. Рентгеновский пучок лучей 58 сталкивается с преобразователем фотонейтронов 56 и преобразуется в фотонейтроны, образует веерообразный пучок лучей фотонейтронов 16 с помощью камеры усиления фотонейтронов 50 и канала ограничения пучка лучей 51, связанного с камерой усиления фотонейтронов 50. Между окном излучения фотонейтронов в камере усиления фотонейтронов 50 и каналом ограничения пучка лучей 51, на пути пучка лучей фотонейтронов устанавливают висмутовый цилиндрический фильтр 60.
Веерообразный пучок фотонейтронов 16 направляется на нейтронную детекторную матрицу 18, расположенную с другой стороны рельса перемещения контейнера 32, при этом пучок фотонейтронов 16 и нейтронная детекторная матрица 18 формируют корпус нейтронного сканирующего устройства. Веерообразный рентгеновский пучок лучей 26 направляется на рентгеновскую детекторную матрицу 28, расположенную с другой стороны рельса перемещения контейнера 32, при этом рентгеновский пучок лучей 26 и рентгеновская детекторная матрица 28 формируют корпус рентгеновского сканирующего устройства.
Корпус рентгеновского сканирующего устройства расположен первым, а корпус нейтронного сканирующего устройства - вторым вдоль направления сканирования 36. Таким образом, инспектируемый контейнер 34 сначала просматривается в корпусе рентгеновского сканирующего устройства, а затем в корпусе нейтронного сканирующего устройства.
Работа устройства
Корпус нейтронного сканирующего устройства, состоящий из нейтронного источника 12 и нейтронной детекторной матрицы 18, расположенный параллельно корпусу рентгеновского сканирующего устройства, состоящего из рентгеновского источника 22 и рентгеновской детекторной матрицы 28, перемещаются вдоль рельса. Инспектируемый контейнер 34 сначала проходит через корпус рентгеновского сканирующего устройства, а затем через корпус нейтронного сканирующего устройства. Веерообразный рентгеновский пучок лучей 26 посылается через инспектируемый контейнер 34. Прошедший пучок попадает на рентгеновскую детекторную матрицу 28, и затем формирует двухмерное рентгеновское изображение передачи. На той же самой развертке веерообразный нейтронный пучок лучей 16 посылается через инспектируемый контейнер 34. Прошедшие рентгеновские лучи поступают на нейтронную детекторную матрицу 18 и затем формируют двухмерное нейтронное изображение передачи. Если источник импульсов нейтронов используется как нейтронный источник 12, то нейтронный источник 12 и источник рентгеновских лучей 22 (линейный ускоритель) производят импульсы одновременно, при этом излучение источника нейтронного импульса осуществляется с задержкой по сравнению со временем излучения импульса источника рентгеновского излучения.
Способ распознавания материалов осуществляется с использованием Z-зависимости n-x кривых. Значение Tn для каждого нейтронного детектора определяет интенсивность нейтронного потока, прошедшего через контейнер 34. Значение Тx для каждого рентгеновского детектора определяет интенсивность рентгеновских лучей, прошедших через контейнер 34. Используя c1=f1(Tx) как x-координату, c2=f2(Tn, Tx) как y-координату, пары (c1, c2) составляют кривые Z-зависимости, которые используются для идентифицирования различных материалов. Здесь f1(Tx) обозначает функцию коэффициента ослабления рентгеновских лучей, a f2(Tn, Tx) обозначает функцию разности коэффициента ослабления нейтронов и рентгеновских лучей. Одно значение пикселя изображения прошедших нейтронов образует пару со средним значением одного или нескольких пикселей изображения прошедшего рентгеновского излучения для составления (с1, с2) пары на одной из кривых Z-зависимости, которые используются для распознавания материалов. Различные материалы отображаются разными цветами на изображении для распознавания материалов.
Ниже описываются физические принципы кривых Z-зависимости.
Коэффициент ослабления остронаправленных моноэнергетических нейтронов, посланных через облученный предмет с толщиной x (см), может быть вычислен с использованием уравнения (1):
Figure 00000002
где In и In0 обозначают измеренные интенсивности с коэффициентом ослабления и без такового соответственно; μn(Z,E) обозначает линейный коэффициент затухания (см-1) материала облученного предмета для нейтронов, который является функцией эффективного атомного номера Z контролируемого предмета и энергии бомбардирующих нейтронов E(MeV).
В случае остронаправленных непрерывных спектральных нейтронов коэффициент ослабления остронаправленных непрерывных спектральных нейтронов, посланных через облученный предмет с толщиной x (см), может быть вычислен с использованием уравнения (2):
Figure 00000003
где In обозначает измеренную напряженность посланных нейтронов; In0(E) обозначает измеренную интенсивность падающего излучения непрерывных спектральных нейтронов с пороговой энергией Enb(MeV); μn(Z,E) обозначает сумму линейных коэффициентов затухания (см-1) материала облученного предмета для нейтронов, который является функцией эффективного атомного числа Z контролируемого предмета и энергии бомбардирующих нейтронов E(MeV).
В случае остронаправленного непрерывного спектрального рентгеновского излучения коэффициент ослабления излучения, прошедшего через облученный предмет толщиной x (см), может быть вычислен с использованием уравнения (3):
Figure 00000004
где Ix обозначает измеренную напряженность посланных рентгеновских лучей; Ixo(Е) обозначает измеренную напряженность падающего непрерывного спектрального рентгеновского излучения с пороговой энергией Exb(MeV); μx(Z,E) обозначает сумму линейных коэффициентов затухания (см-1) материала облученного предмета для рентгеновского излучения, которая является функцией эффективного атомного номера Z инспектируемого предмета и энергии прошедшего рентгеновского излучения Е(MeV).
В случае если нейтронный пучок лучей и рентгеновский пучок лучей оба являются непрерывными спектральными распределениями, для распознавания материалов используется следующая нелинейная система интегральных уравнений (4):
Figure 00000005
где Tn(E,x,Z) обозначает проницаемость облученного предмета с эффективным атомным номером Z и толщиной x (см) для потока нейтронов с пороговой энергией Еnb(MeV); In0(E) обозначает напряженность бомбардирующих нейтронов с энергией E(MeV); μn(Z,E) обозначает сумму линейных коэффициентов затухания (см-1) материала облученного предмета для нейтронов, которая является функцией эффективного атомного числа Z контролируемого предмета и энергии бомбардирующих нейтронов E(MeV); Tx(E,x,Z) обозначает проницаемость облученного предмета с эффективным атомным номером Z и толщиной x (см) для потока рентгеновского излучения с пороговой энергией Exb(MeV); Ixo(E) обозначает измеренную напряженность падающего непрерывного спектрального рентгеновского излучения с энергией E(MeV); μx(Z,E) обозначает сумму линейных коэффициентов затухания (см-1) материала облученного предмета для рентгеновского излучения, которая является функцией эффективного атомного номера Z инспектируемого предмета и энергии прошедшего рентгеновского излучения E(MeV).
В случае если нейтронный пучок лучей 16 является моноэнергетичным, а рентгеновский пучок лучей 26 - непрерывным спектральным распределением, для распознавания материалов используется следующая нелинейная система интегральных уравнений (5):
Figure 00000006
где Tn(E,x,Z) обозначает проницаемость облученного предмета с эффективным атомным номером Z и толщиной x (см) для потока нейтронов с пороговой энергией Еnb(MeV); In0(E) обозначает напряженность бомбардирующих нейтронов с энергией E(MeV); μn(Z,E) обозначает линейный коэффициент затухания (см-1) материала облученного предмета для нейтронов, который является функцией эффективного атомного числа Z контролируемого предмета и энергии бомбардирующих нейтронов E(MeV); Tx(E,x,Z) обозначает проницаемость облученного предмета с эффективным атомным номером Z и толщиной x (см) для потока рентгеновского излучения с пороговой энергией Exb(MeV); Ixo(E) обозначает измеренную напряженность падающего непрерывного спектрального рентгеновского излучения с энергией E(MeV); μx(Z,E) обозначает сумму линейных коэффициентов затухания (см-1) материала облученного предмета для рентгеновского излучения, которая является функцией эффективного атомного номера Z инспектируемого предмета и энергии прошедшего рентгеновского излучения Е(MeV).
Решения системы уравнений (4) или (5) не связаны с толщиной облученного предмета, а определяются только Z-зависимостью. Таким образом, это может использоваться для распознавания материалов.
В настоящем изобретении есть две модели сканирования. В первой модели корпуса нейтронного сканирующего устройства и рентгеновского сканирующего устройства движутся, в то время как инспектируемый объект 34 находится в неподвижном положении. В другой модели инспектируемый объект 34 движется вдоль рельса 32, в то время как нейтронное сканирующее устройство и рентгеновское сканирующее устройство находятся в стационарном положении.
Следует понимать, что настоящее изобретение может быть осуществлено и другим способом, нежели способами, описанными выше в качестве вариантов, а так же возможны изменения и вариации в рамках настоящего изобретения.

Claims (25)

1. Способ распознавания веществ с помощью быстрых нейтронов и непрерывного спектрального рентгеновского излучения, включающий
(a) облучение инспектируемого объекта пучком лучей быстрых нейтронов, произведенных источником быстрых нейтронов, и пучком лучей непрерывного спектрального рентгеновского излучения, произведенного источником непрерывного спектрального рентгеновского излучения;
(b) прямое измерение интенсивности прошедшего рентгеновского излучения и интенсивности прошедших нейтронов рентгеновской детекторной матрицей и нейтронной детекторной матрицей соответственно; и
(с) идентификацию материалов/веществ инспектируемого объекта с помощью кривых Z-зависимостей, сформированных разностями коэффициента ослабления между нейтронным лучом и рентгеновским лучом, прошедшими через различные материалы инспектируемого объекта.
2. Способ по п. 1, дополнительно включающий
(d) формирование прошедшего 2-мерного рентгеновского изображения и прошедшего нейтронного изображения для той же развертки (скана).
3. Способ по п. 1, в котором источником быстрых нейтронов служит нейтронный генератор, либо изотопный нейтронный источник, либо источник фотонейтронов, а источником непрерывного спектрального рентгеновского излучения служит линейный ускоритель электронов либо рентгеновская установка.
4. Способ по п. 3, в котором источником фотонейтронов служит ускоритель, генерирующий пучок рентгеновских лучей, часть которого сталкивается с преобразователем фотонейтронов и преобразуется в фотонейтроны.
5. Способ по п. 4, в котором распределительный коллиматор делит рентгеновский пучок лучей, произведенный акселератором, на два пучка лучей, при этом один пучок коллимируется с помощью рентгеновского коллиматора ограничения пучка для формирования рентгеновского пучка лучей, а другой пучок лучей сталкивается с преобразователем фотонейтронов и преобразуется в фотонейтроны для формирования пучка лучей фотонейтронов с помощью коллиматора ограничения пучка.
6. Способ по любому из пп. 1-3, в котором пучок лучей быстрых нейтронов и непрерывный спектральный рентгеновский пучок лучей измеряются рентгеновской детекторной матрицей, обладающей высокой эффективностью обнаружения рентгеновского излучения, и нейтронной детекторной матрицей, обладающей высокой эффективностью обнаружения нейтронов.
7. Способ по п. 6, в котором вдоль сканирующего туннеля расположен корпус нейтронного сканирующего устройства, включающего источник быстрых нейтронов и нейтронную детекторную матрицу, при этом корпус нейтронного сканирующего устройства расположен параллельно корпусу рентгеновского сканирующего устройства, включающего рентгеновский источник и рентгеновскую детекторную матрицу.
8. Способ по п. 7, в котором корпус рентгеновского сканирующего устройства расположен первым вдоль линии направления сканирования, а корпус нейтронного сканирующего устройства - вторым, таким образом, что инспектируемый объект сначала просматривается в корпусе рентгеновского сканирующего устройства, а затем в корпусе нейтронного сканирующего устройства.
9. Способ по п. 8, в котором нейтронный источник и рентгеновский источник посылают импульсы одновременно, при этом время излучения источника нейтронного импульса осуществляется с задержкой по сравнению со временем излучения импульса источника рентгеновского излучения.
10. Способ по п. 1 или 2, в котором идентификация материалов включает
измерение интенсивности Тn нейтронов, прошедших через инспектируемый объект, каждым нейтронным детектором в нейтронной детекторной матрице;
измерение интенсивности Tx рентгеновских лучей, прошедших через инспектируемый объект, каждым рентгеновским детектором в рентгеновской детекторной матрице;
построение Z-зависимостей для пар (c1, c2), где c1=f1(Tx) используется как x-координата и c2=f2(Tn, Tx) используется как y-координата, при этом c1=f1(Tx) обозначает функцию коэффициента ослабления ретгеновских лучей, a c2=f2(Tn, Tx) обозначает функцию разности коэффициента ослабления нейтронов и рентгеновских лучей;
идентификацию различных материалов инспектируемого объекта с использованием кривых Z-зависимостей; и
отображение идентифицированных различных веществ разными цветами на изображении распознавания материалов.
11. Способ по п. 10, в котором одно значение пикселя изображения переданных нейтронов образует пару со средним значением одного или нескольких пикселей изображения переданного рентгеновского излучения для составления (c1, c2) пары на одной из кривых Z-зависимости.
12. Способ по п. 11, в котором используются две модели сканирования для формирования изображения прошедшего рентгеновского излучения и изображения прошедших нейтронов, при этом первая модель предусматривает перемещение корпусов нейтронного сканирующего устройства и рентгеновского сканирующего устройства, в то время как инспектируемый объект остается неподвижным; а во второй модели сканирования инспектируемый объект движется вдоль сканирующего туннеля, в то время как корпус нейтронного сканирующего устройства и корпус рентгеновского сканирующего устройства стационарны.
13. Устройство для осуществления способа распознавания материалов с помощью быстрых нейтронов и непрерывного спектрального рентгеновского излучения по п.1, включающее
источник быстрых нейтронов для получения нейтронов;
источник непрерывного спектрального рентгеновского излучения для получения рентгеновского излучения;
нейтронную детекторную матрицу для обнаружения нейтронов; и
рентгеновскую детекторную матрицу для обнаружения рентгеновского излучения,
при этом источник быстрых нейтронов и источник непрерывного спектрального рентгеновского излучения расположены на одной стороне сканирующего туннеля, а нейтронная детекторная матрица и рентгеновская детекторная матрица расположены на противоположной стороне сканирующего туннеля.
14. Устройство по п. 13, в котором
рентгеновское излучение, произведенное рентгеновским источником, коллимируется в рентгеновский пучок лучей, который направляется на рентгеновскую детекторную матрицу, рентгеновский пучок лучей проходит через инспектируемый объект и попадает на рентгеновскую детекторную матрицу;
нейтроны, произведенные источником быстрых нейтронов, коллимируются в нейтронный пучок лучей, который направляется на нейтронную детекторную матрицу, нейтронный пучок лучей проходит через инспектируемый объект и попадает на нейтронную детекторную матрицу.
15. Устройство по п. 13, в котором
источником быстрых нейтронов является нейтронный генератор, либо изотопный нейтронный источник, либо источник фотонейтронов; а
источником непрерывного спектрального рентгеновского излучения является линейный ускоритель электронов либо рентгеновская установка.
16. Устройство по п. 13, в котором вдоль сканирующего туннеля расположен корпус нейтронного сканирующего устройства, включающего источник быстрых нейтронов и нейтронную детекторную матрицу, параллельно корпусу рентгеновского сканирующего устройства, включающего рентгеновский источник и рентгеновскую детекторную матрицу.
17. Устройство по п. 16, в котором корпус рентгеновского сканирующего устройства расположен первым вдоль линии направления сканирования, а корпус нейтронного сканирующего устройства вторым, таким образом, что инспектируемый объект сначала просматривается в корпусе рентгеновского сканирующего устройства, а затем в корпусе нейтронного сканирующего устройства.
18. Устройство для осуществления способа распознавания материалов с помощью быстрых нейтронов и непрерывного спектрального рентгеновского излучения по п. 1, включающее
ускоритель, производящий непрерывное спектральное рентгеновское излучение и фотонейтроны;
нейтронную детекторную матрицу для обнаружения фотонейтронов; и
рентгеновскую детекторную матрицу для обнаружения рентгеновского излучения, при этом ускоритель расположен на одной стороне сканирующего туннеля, а нейтронная и рентгеновская детекторные матрицы расположены на другой стороне сканирующего туннеля.
19. Устройство по п. 18, включающее рентгеновский распределительный коллиматор, который установлен в рентгеновском окне излучения пучка лучей ускорителя, разделяющий рентгеновский пучок лучей на два пучка, из которых один пучок лучей коллимируется с помощью рентгеновского коллиматора ограничения пучка для формирования рентгеновского пучка лучей, а другой пучок лучей коллимируется и направляется в камеру усиления фотонейтронов.
20. Устройство по п. 19, включающее преобразователь фотонейтронов, который установлен в камере усиления фотонейтронов и расположен на пути рентгеновского пучка лучей, при этом рентгеновский пучок лучей сталкивается с преобразователем фотонейтронов и преобразуется в фотонейтроны для формирования пучка лучей фотонейтронов с помощью камеры усиления фотонейтронов и канала ограничения пучка лучей, связанного с камерой усиления фотонейтронов.
21. Устройство по п. 20, в котором рентгеновский пучок лучей посылается через инспектируемый объект и регистрируется рентгеновской детекторной матрицей, а пучок лучей фотонейтронов посылается через инспектируемый объект и регистрируется нейтронной детекторной матрицей.
22. Устройство по п. 21, в котором вдоль направления сканирования вначале установлен корпус рентгеновского сканирующего устройства, включающего рентгеновский пучок лучей и рентгеновскую детекторную матрицу, а корпус нейтронного сканирующего устройства, включающий пучки лучей фотонейтронов и нейтронную детекторную матрицу, установлен позади, то есть инспектируемый объект сначала просматривается в корпусе рентгеновского сканирующего устройства, а затем в корпусе нейтронного сканирующего устройства.
23. Устройство по п. 20, в котором преобразователь фотонейтронов содержит бериллий или другой материал и имеет форму сферического купола, цилиндра, конуса, Г-образной пластины или другую форму.
24. Устройство по п. 20, в котором между окном излучения фотонейтронов камеры усиления фотонейтронов и канала ограничения пучка лучей на пути пучка лучей фотонейтронов устанавливается висмутовый фильтр.
25. Устройство по п. 20, в котором камера усиления фотонейтронов включает свинцовые и графитовые слои или другой материал.
RU2006105794/28A 2005-11-03 2006-02-27 Способ и устройство для распознавания материалов с помощью быстрых нейтронов и непрерывного спектрального рентгеновского излучения RU2305829C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510086764A CN100582758C (zh) 2005-11-03 2005-11-03 用快中子和连续能谱x射线进行材料识别的方法及其装置
CN200510086764.8 2005-11-03

Publications (1)

Publication Number Publication Date
RU2305829C1 true RU2305829C1 (ru) 2007-09-10

Family

ID=37055959

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006105794/28A RU2305829C1 (ru) 2005-11-03 2006-02-27 Способ и устройство для распознавания материалов с помощью быстрых нейтронов и непрерывного спектрального рентгеновского излучения

Country Status (11)

Country Link
US (1) US7399976B2 (ru)
JP (1) JP2007127617A (ru)
KR (1) KR100835270B1 (ru)
CN (1) CN100582758C (ru)
AU (1) AU2006200561B2 (ru)
BE (1) BE1017033A3 (ru)
DE (1) DE102006023309B4 (ru)
FR (1) FR2892816B1 (ru)
GB (1) GB2432094B (ru)
RU (1) RU2305829C1 (ru)
WO (1) WO2007051418A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2510521C2 (ru) * 2008-07-04 2014-03-27 Смитс Хейманн Сас Способ и устройство для обнаружения наличия в грузе подозрительных предметов, содержащих по меньшей мере один материал с заданным атомным весом

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
GB0903198D0 (en) * 2009-02-25 2009-04-08 Cxr Ltd X-Ray scanners
US8223919B2 (en) 2003-04-25 2012-07-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US7551714B2 (en) * 2006-05-05 2009-06-23 American Science And Engineering, Inc. Combined X-ray CT/neutron material identification system
US7539283B2 (en) 2007-01-17 2009-05-26 Ge Homeland Protection, Inc. Combined computed tomography and nuclear resonance fluorescence cargo inspection system and method
US20090055344A1 (en) * 2007-05-29 2009-02-26 Peter Dugan System and method for arbitrating outputs from a plurality of threat analysis systems
CN101340771B (zh) 2007-06-21 2011-03-30 清华大学 一种光中子转换靶
CN101435783B (zh) 2007-11-15 2011-01-26 同方威视技术股份有限公司 物质识别方法和设备
WO2009137985A1 (zh) 2008-05-12 2009-11-19 清华大学 一种检测特殊核材料的方法和系统
US20110170661A1 (en) * 2008-08-26 2011-07-14 General Electric Company Inspection system and method
CN102109473B (zh) * 2009-12-29 2012-11-28 同方威视技术股份有限公司 利用光中子透射对物体成像的方法及探测器阵列
CN102109607B (zh) * 2009-12-29 2013-03-27 同方威视技术股份有限公司 快中子探测方法、物质识别方法及中子探测器
US20120155592A1 (en) * 2010-02-25 2012-06-21 Tsahi Gozani Systems and methods for detecting nuclear material
KR101304104B1 (ko) * 2011-06-10 2013-09-05 한국원자력연구원 X-ray와 중성자를 동시에 사용하는 화물검색장치
US9970890B2 (en) * 2011-10-20 2018-05-15 Varex Imaging Corporation Method and apparatus pertaining to non-invasive identification of materials
EP2748594B1 (en) * 2011-10-26 2016-06-08 Koninklijke Philips N.V. Radiographic apparatus for detecting photons with offset correction
CN103135119A (zh) * 2011-12-01 2013-06-05 中国辐射防护研究院 可携式多量程参考辐射装置
US8541756B1 (en) 2012-05-08 2013-09-24 Accuray Incorporated Systems and methods for generating X-rays and neutrons using a single linear accelerator
CN104754852B (zh) * 2013-12-27 2019-11-29 清华大学 核素识别方法、核素识别系统及光中子发射器
FR3016969B1 (fr) * 2014-01-24 2017-05-05 Commissariat Energie Atomique Dispositif de mesure de quantite de beryllium dans un objet radioactif
CN104237270A (zh) * 2014-09-26 2014-12-24 同方威视技术股份有限公司 利用光中子透射对物体成像的方法以及装置
JP6746691B2 (ja) * 2015-09-10 2020-08-26 アメリカン サイエンス アンド エンジニアリング, インコーポレイテッドAmerican Science and Engineering, Inc. 行間適応電磁x線走査を用いた後方散乱特性評価
CN105651793B (zh) * 2016-01-05 2019-04-02 合肥泰禾光电科技股份有限公司 一种克服物体厚度影响的x光检测方法
CN106226339A (zh) * 2016-09-20 2016-12-14 清华大学 中子产生设备,中子成像设备以及成像方法
US10705243B2 (en) * 2018-01-29 2020-07-07 Korea Atomic Energy Research Institute Nondestructive inspection system
US11131783B2 (en) * 2018-04-11 2021-09-28 Phoenix Neutron Imaging Llc Neutron imaging systems and methods
SK8449Y1 (sk) * 2018-05-11 2019-05-06 Fulop Marko Zariadenie na odhaľovanie nelegálnych úkrytov v náklade železnej rudy
KR102025662B1 (ko) * 2018-06-08 2019-09-27 한국원자력연구원 중성자선 및 엑스선 검출 가능한 방사선 검출 장치 및 방법
JP7140656B2 (ja) * 2018-11-30 2022-09-21 株式会社日立製作所 X線・中性子ハイブリッド撮像装置
CN109596646A (zh) * 2018-12-30 2019-04-09 东莞材料基因高等理工研究院 一种用于中子衍射谱仪的原位x射线ct成像装置
GB2582644A (en) * 2019-03-29 2020-09-30 Symetrica Ltd Nuclear radiation monitoring apparatus and method
CN110567814B (zh) * 2019-08-26 2024-02-20 中国科学院地质与地球物理研究所 一种天然气水合物沉积物三轴力学试验中子成像方法
CN111596179A (zh) * 2020-05-25 2020-08-28 国网湖南省电力有限公司 基于数字成像技术的电缆缓冲层缺陷带电检测方法、系统、介质及设备
CN113075241A (zh) * 2021-04-01 2021-07-06 中国原子能科学研究院 中子成像和x射线成像系统、方法以及装置
CN113281354B (zh) * 2021-04-13 2022-09-27 中科超睿(青岛)技术有限公司 基于中子与x射线的危险品检测装置及方法
CN115616010B (zh) * 2022-12-19 2023-03-21 合肥金星智控科技股份有限公司 基于跨皮带中子活化分析的物料成分检测方法及检测装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3237009A (en) * 1963-03-29 1966-02-22 Gen Dynamics Corp Method and device for radiography with neutrons of thermal energies
JPS6479648A (en) * 1987-09-22 1989-03-24 Japan Atomic Energy Res Inst Airport security system
JPH01154000A (ja) * 1987-12-10 1989-06-16 Yoshinori Hayakawa 中性子発生装置
CN2039422U (zh) * 1988-11-21 1989-06-14 湖南省交通科学研究所 核子土基密度含水量联合测定仪
US5098640A (en) * 1990-01-10 1992-03-24 Science Applications International Corporation Apparatus and method for detecting contraband using fast neutron activation
US5200626A (en) * 1990-03-28 1993-04-06 Martin Marietta Energy Systems, Inc. Hidden explosives detector employing pulsed neutron and x-ray interrogation
FI94678C (fi) * 1990-10-02 1995-10-10 Fabretti Holdings Ltd Kuvausmenetelmä kappaleiden rakenteen määrittämiseksi
RU1783395C (ru) * 1990-12-17 1992-12-23 Особое проектно-конструкторское бюро Научно-производственного объединения "Черметавтоматика" Способ измерени влажности сыпучих материалов
NZ237767A (en) * 1992-04-09 1994-09-27 Inst Geolog Nuclear Sciences Luggage scanning by fast neutrons and gamma radiation
JPH0674920A (ja) * 1992-08-27 1994-03-18 Mitsubishi Atom Power Ind Inc X線・中性子線併用非破壊検査装置の画像表示方法
US5838759A (en) * 1996-07-03 1998-11-17 Advanced Research And Applications Corporation Single beam photoneutron probe and X-ray imaging system for contraband detection and identification
JPH10104175A (ja) * 1996-10-01 1998-04-24 Shimadzu Corp 材質特定x線検査装置
JPH10123070A (ja) * 1996-10-16 1998-05-15 Toshiba Corp 水素含有量分析装置
JPH1164248A (ja) 1997-08-27 1999-03-05 Hitachi Eng & Services Co Ltd 内容物識別装置および内容物識別方法
JP2002503816A (ja) * 1998-02-11 2002-02-05 アナロジック コーポレーション 対象を分類するコンピュータ断層撮影装置および方法
JPH11230918A (ja) * 1998-02-12 1999-08-27 Hitachi Medical Corp X線検査装置
FR2788599B1 (fr) * 1999-01-20 2001-12-21 Heimann Systems Systeme de discrimination de matieres organiques et inorganiques
JP2001099790A (ja) * 1999-09-30 2001-04-13 Ishikawajima Harima Heavy Ind Co Ltd X線検査装置
DE10062214B4 (de) * 2000-12-13 2013-01-24 Smiths Heimann Gmbh Vorrichtungen zur Durchleuchtung von Objekten
JP2003215065A (ja) * 2002-01-24 2003-07-30 Shimadzu Corp 放射線撮像装置
US7356115B2 (en) * 2002-12-04 2008-04-08 Varian Medical Systems Technology, Inc. Radiation scanning units including a movable platform
US7313221B2 (en) * 2002-12-10 2007-12-25 Commonwealth Scientific And Industrial Research Organization Radiographic equipment
DE10257749B4 (de) * 2002-12-10 2006-05-04 Krones Ag Vorrichtung zum Inspizieren von gefüllten und verschlossenen Gefäßen
CN1588020A (zh) * 2004-10-15 2005-03-02 南京大陆中电科技股份有限公司 基于谱库最小二乘法的煤炭元素分析方法及在线检测设备
CN1632544A (zh) * 2004-12-30 2005-06-29 吉林省科仑辐射技术开发有限公司 中子水泥多元素分析仪

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2510521C2 (ru) * 2008-07-04 2014-03-27 Смитс Хейманн Сас Способ и устройство для обнаружения наличия в грузе подозрительных предметов, содержащих по меньшей мере один материал с заданным атомным весом

Also Published As

Publication number Publication date
KR100835270B1 (ko) 2008-06-05
FR2892816A1 (fr) 2007-05-04
AU2006200561B2 (en) 2009-12-03
WO2007051418A1 (en) 2007-05-10
DE102006023309A1 (de) 2007-05-24
US7399976B2 (en) 2008-07-15
FR2892816B1 (fr) 2015-08-14
GB0602432D0 (en) 2006-03-22
BE1017033A3 (nl) 2007-12-04
JP2007127617A (ja) 2007-05-24
CN100582758C (zh) 2010-01-20
US20070096036A1 (en) 2007-05-03
DE102006023309B4 (de) 2014-06-05
KR20070048107A (ko) 2007-05-08
GB2432094B (en) 2010-04-14
CN1959387A (zh) 2007-05-09
AU2006200561A1 (en) 2007-05-17
GB2432094A (en) 2007-05-09

Similar Documents

Publication Publication Date Title
RU2305829C1 (ru) Способ и устройство для распознавания материалов с помощью быстрых нейтронов и непрерывного спектрального рентгеновского излучения
US20200025955A1 (en) Integrated Primary and Special Nuclear Material Alarm Resolution
US7634058B2 (en) Methods and systems for determining the average atomic number and mass of materials
RU2444723C2 (ru) Устройство и способ досмотра объектов
JP5037328B2 (ja) 物体の2エネルギー放射線走査
RU2415404C1 (ru) Способ и установка для обнаружения контрабанды с использованием рентгеновского излучения и фотонейтронов
US7724869B2 (en) Detector array and device using the same
Martz et al. Poly-versus mono-energetic dual-spectrum non-intrusive inspection of cargo containers
KR20200092179A (ko) 방사선을 이용하여 위험물의 검출 및 위치 탐지가 가능한 보안 검색 장치
Udod et al. State-of-the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: a review
KR102284602B1 (ko) 중성자선과 엑스선을 이용하는 보안 검색 장치
Geddes et al. Impact of monoenergetic photon sources on nonproliferation applications final report
JP7340476B2 (ja) 放射線計測装置および放射線計測方法
US20070030955A1 (en) Scatter imaging system
Udod et al. State of the art and development trends of the digital radiography systems for cargo inspection
WO2015020710A2 (en) Integrated primary and special nuclear material alarm resolution
WO2008050327A2 (en) Method & system for detecting nitrogenous materials via gamma-resonance absorption (gra)