RU2297574C2 - Неводные суспензии, используемые в качестве агентов, снижающих сопротивление течению, и способы производства таких суспензий - Google Patents

Неводные суспензии, используемые в качестве агентов, снижающих сопротивление течению, и способы производства таких суспензий Download PDF

Info

Publication number
RU2297574C2
RU2297574C2 RU2003133281A RU2003133281A RU2297574C2 RU 2297574 C2 RU2297574 C2 RU 2297574C2 RU 2003133281 A RU2003133281 A RU 2003133281A RU 2003133281 A RU2003133281 A RU 2003133281A RU 2297574 C2 RU2297574 C2 RU 2297574C2
Authority
RU
Russia
Prior art keywords
water
polyalphaolefin
flow
hydraulic resistance
alcohol
Prior art date
Application number
RU2003133281A
Other languages
English (en)
Other versions
RU2003133281A (ru
Inventor
Геральд Б. ИАТОН (US)
Геральд Б. Иатон
Алан К. ИБЕРТ (US)
Алан К. ИБЕРТ
Original Assignee
Энерджи Энд Энвиронментал Интернэшнл, Л.К.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25369783&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2297574(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Энерджи Энд Энвиронментал Интернэшнл, Л.К. filed Critical Энерджи Энд Энвиронментал Интернэшнл, Л.К.
Publication of RU2003133281A publication Critical patent/RU2003133281A/ru
Application granted granted Critical
Publication of RU2297574C2 publication Critical patent/RU2297574C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/16Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity
    • F17D1/17Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity by mixing with another liquid, i.e. diluting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Catalysts (AREA)
  • Saccharide Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)
  • Colloid Chemistry (AREA)

Abstract

Изобретение относится к химии полимеров, а именно к составам, включающим в себя предварительно размолотый при низкой температуре полиальфаолефин и, по крайней мере, один алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней, и действующий в качестве неводной суспензии, уменьшающей гидравлическое сопротивление течению. Описан также способ производства таких неводных суспензий, уменьшающих гидравлическое сопротивление течению, включающий контакт альфаолефиновых мономеров с катализатором в реакционной смеси с образованием полиальфаолефина, где в качестве катализатора используется катализатор Циглера-Натта, а именно трихлорид титана. Сокатализатор выбирают из группы, состоящей из алкилалюминооксанов, галогенуглеводородов, хлорида диэтилалюминия и хлорида дибутилалюминия. В результате реализации способа получают ультравысокомолекулярный полиальфаолефин, имеющий характеристическую вязкость, значение которой составляет, по крайней мере, около 10 децилитров на грамм, и являющийся аморфным веществом, практически не содержащим кристаллических частиц. Полученный ультравысокомолекулярный полиальфаолефин размалывают при низкой температуре и соединяют, по крайней мере, с одним алифатическим спиртом с неразветвленной цепью, практически нерастворимым в воде и несмешивающимся с ней с образованием неводной суспензии, уменьшающей гидравлическое сопротивление течению. Описан также способ уменьшения гидравлического сопротивления в канале течения с помощью неводной суспензии. 7 н. и 15 з.п. ф-лы, 7 табл.

Description

Данная заявка притязает на преимущество обычной заявки на патент США, серийный номер: 09/977,341, поданной 8 июня 2001 г.
Данное изобретение относится к суспензиям, уменьшающим гидравлическое сопротивление течению, и, в частности, к неводным суспензиям, уменьшающим гидравлическое сопротивление течению и содержащим алифатические спирты с неразветвленной цепью, практически нерастворимые в воде и несмешивающиеся с ней, которые используют для ускорения течения углеводородных соединений через каналы течения и, в частности, через трубопроводы. Кроме того, данное изобретение относится к способам производства неводных суспензий, уменьшающих гидравлическое сопротивление течению.
Как известно, при течении жидкости в канале, таком как, например, трубопровод, происходят потери энергии, связанные с трением. В результате этих потерь энергии давление жидкости в трубопроводе по ходу ее течения снижается. При постоянном диаметре трубы величина данного падения давления возрастает с увеличением скорости течения. При турбулентном потоке (когда число Рейнольдса составляет более 2100) с целью уменьшения потерь энергии, связанных с трением, и изменения соотношения между падением давления и скоростью течения в жидкость, протекающую по трубопроводу, добавляют определенные высокомолекулярные полимерные соединения. Эти соединения иногда называют веществами, снижающими гидравлическое сопротивление (ВСГС). Такие вещества влияют на турбулентные процессы и уменьшают связанные с трением потери давления таким образом, что в результате уменьшается перепад давления при данной скорости течения или увеличивается скорость течения при данной величине перепада давления. Вследствие уменьшения этими веществами потерь энергии, связанных с трением, с помощью них можно увеличить пропускную способность трубопроводов, шлангов и других каналов течения. Кроме того, применение ВСГС позволяет уменьшить расходы, связанные с перекачиванием жидкостей, расходы на оборудование, используемое для этого перекачивания, и позволяет для данной производительности насоса использовать трубы меньшего диаметра.
В настоящее время один такого рода реагент уже используется для приготовления суспензии, уменьшающей гидравлическое сопротивление течению. Суспензии, уменьшающие гидравлическое сопротивление течению, - это суспензии, образуемые мономерами, преимущественно альфа-олефиновыми мономерами, которые после полимеризации размельчаются до частиц небольшого размера и суспендируются в жидком носителе (суспендирующем агенте). Суспензии, уменьшающие гидравлическое сопротивление течению, обеспечивают быструю дисперсию агента, уменьшающего гидравлическое сопротивление, в углеводородном веществе, транспортируемом по каналу течения. Хотя в патентной литературе и были описаны различные методы полимеризации, реагенты, разделяющие агенты и суспензии, однако во многих из этих методов для получения суспензий, уменьшающих гидравлическое сопротивление, использовались компоненты, увеличивающие стоимость производства таких суспензий. Кроме того, некоторые компоненты суспензий, уменьшающих гидравлическое сопротивление течению, после введения в поток углеводородного вещества уже не могут быть извлечены из него. Во многих, если не во всех случаях, эти компоненты суспензий, остающиеся в углеводородном веществе, вызывают его загрязнение, в результате чего уменьшаются возможности и/или эффективность использования этого вещества.
Обычно в качестве суспендирующих материалов используются водорастворимые спирты, вода, гликоли, глицерин и смеси вода/водорастворимый спирт (которые здесь будут называться "водоспиртовыми смесями"). Все прежние способы имели недостатки. Например, добавление воды вызывает появление серьезных проблем, связанных с загрязнением вещества водой, таких как, например, помутнение моторного топлива (бензина, керосина и дизельного топлива) в трубопроводах. Другими серьезными проблемами, связанными с добавлением воды в суспензии, уменьшающие гидравлическое сопротивление течению, являются: образование дополнительного количества сточных вод, требующих утилизации, увеличение коррозии систем и усиление биологической активности в участках трубопровода и терминальных резервуарах для хранения, в которых происходит отложение осадка в условиях наличия "избыточной" воды.
Наиболее близким к заявленному техническому решению является патент США №5376697, опубликованный 27.11.1994, в котором описан способ получения суспензии, снижающей сопротивление течению, включающий получение полиальфаолефина с органическим полярным растворителем, содержащим пять или менее атомов углерода, включающим альдегиды, кетоны, спирты и карбоновые кислоты.
Использование прежних типов суспензий, уменьшающих гидравлическое сопротивление, содержащих небольшое количество полярных и/или других водорастворимых спиртов, было связано с возникновением серьезных проблем биологического характера, приводящих к необходимости их технического решения. К проблемам такого рода относятся, в частности: изменение баланса питательных веществ для микроорганизмов, нежелательное улучшение условий для их жизнедеятельности, возрастание биологического и химического потребления кислорода, а также увеличение биомассы при различных процессах использования активного ила на нефтеперегонных заводах. Работа нефтеперегонных заводов тесно связана с процессом использования активного ила, как наиболее практичным и эффективным способом обработки сточных вод, образующихся при перегонке нефти, для их повторного использования или удаления. На некоторых нефтеперегонных заводах установлены жесткие нормативы использования уменьшающих гидравлическое сопротивление суспензий, содержащих водорастворимые спирты, гликоли и глицерин, в трубопроводах для сырой нефти.
Кроме того, добавление воды, гликолей, глицерина и водоспиртовых смесей в качестве компонентов или самих суспендирующих агентов обычно требует включения и других компонентов, что увеличивает стоимость получения веществ, уменьшающих гидравлическое сопротивление, увеличивает потенциальную опасность для нефтеперегонных заводов и стоимость очистки углеводородов вследствие необходимости удаления и утилизации этих добавок. Например, в состав прежних суспензий, уменьшающих гидравлическое сопротивление течению, входили антибиотики, поверхностно-активные вещества, такие как нонилфенолэтиоксилат и стеараты щелочноземельных металлов (например, стеарат магния и стеарат кальция), использующиеся в качестве разделяющих агентов для предотвращения реагломерации тонко размолотых твердых полимеров, приводящей к дестабилизации суспензии, уменьшающей гидравлическое сопротивление течению. На некоторых нефтеперегонных заводах запрещается использование в трубопроводах для сырой нефти суспензий, уменьшающих гидравлическое сопротивление течению и содержащих поверхностно-активные вещества и стеараты щелочноземельных металлов, так как предполагается, что эти вещества ухудшают процесс перегонки и, в частности, жизненно-важный для работы нефтеперегонных заводов процесс обессоливания.
В состав прежних суспензий, уменьшающих гидравлическое сопротивление течению, кроме того, обычно входили содержащие силоксан пеногасители, служащие для уменьшения или устранения ценообразования в системе трубопроводов конечного пользователя после добавления суспензий, уменьшающих гидравлическое сопротивление. Пеногасители, содержащие силоксан, являются нежелательными компонентами, так как предполагается, что эти вещества ухудшают различные процессы перегонки и вызывают ускорение засорения в ходе процесса перегонки нефти.
Все эти дополнительные компоненты являются нерастворимыми примесями, загрязняющими нефтепродукты, протекающие по трубам. Такие примеси являются нежелательными, поэтому до сих пор продолжаются поиски суспензии, уменьшающей гидравлическое сопротивление течению и не содержащей таких компонентов.
Другим недостатком прежних суспензий, уменьшающих гидравлическое сопротивление течению, является очень короткий срок хранения этих продуктов, причем в строго ограниченном температурном диапазоне. Например, для обеспечения пригодности использования и стабильности одной из прежних суспензий, уменьшающих гидравлическое сопротивление течению, и содержащих воду и водно-спиртовые смеси, требовалось ее хранить в дорогостоящих помещениях или контейнерах с регулируемой температурой (в диапазоне 35-85°F). Без надлежащего контроля температуры эта суспензия, уменьшающая гидравлическое сопротивление течению, замерзает при температуре, близкой к точке замерзания воды, или за очень короткое время подвергается биологическому разрушению, когда температура окружающей среды превышает 90°F. Как известно, большая часть сырой нефти добывается в очень жарких регионах мира, таких как, например, Саудовская Аравия, Венесуэла, Техас, Мексика и Мексиканский залив, а также в регионах с очень холодным климатом, таких как Аляска, Сибирь и Канада. Следовательно, прежние суспензии, уменьшающие гидравлическое сопротивление течению, не пригодны для использования в таких климатических условиях без применения дополнительных средств хранения.
Еще одним недостатком прежних суспензий, уменьшающих гидравлическое сопротивление, является то, что количество вводимого полимера в расчете на галлон (то есть количество активного полимера, суспендируемого в одном галлоне суспендирующего агента без реагломерации частиц полимера) ограничено. Добавление полимера в количестве, превышающем 2 фунта на галлон, приводит к сильному повышению вязкости и нестабильности суспензии, уменьшающей гидравлическое сопротивление течению. Возможность увеличения процентного содержания полимера в расчете на общий вес суспензии позволяет улучшить характеристики, получить материальные преимущества, а также снизить материально-технические и финансовые затраты.
Недостатком прежних суспензий, уменьшающих гидравлическое сопротивление течению, является и то, что при "отделении" полимера от суспендирующего материала повторное суспендирование невозможно. По мере хранения прежних суспензий, уменьшающих гидравлическое сопротивление течению, полимер отделяется в результате его осаждения на дно или всплывания на поверхность в баке или ином контейнере, в котором хранится суспензия. В результате далее происходит реагломерация частиц полимера, который невозможно суспендировать повторно. Такую суспензию уже нельзя использовать и необходимо получить новую или "свежую" суспензию, уменьшающую гидравлическое сопротивление течению.
Ни одна из прежних попыток не давала таких поразительно высоких результатов, которые были получены при использовании неполных суспендирующих материалов по данному изобретению. Например, суспендирующие материалы данного изобретения обеспечили увеличение срока хранения суспензии, уменьшение воздействия на трубопроводы и на процессы, связанные с перегонкой нефти, а также позволили получить суспензии, уменьшающие гидравлическое сопротивление течению, содержащие в одном галлоне больше активного полимера, чем все прежние суспензии такого рода.
До разработки данного изобретения не существовало суспензии, уменьшающей гидравлическое сопротивление, процесса получения такой суспензии или метода уменьшения гидравлического сопротивления в канале течения, который бы не оказывал отрицательного влияния на работу устройств для очистки сточных вод, позволял увеличить срок хранения продукта без его биологического разложения и температурной дестабилизации, не ухудшал качество моторного топлива и других продуктов нефтеочистки, уменьшал реагломерацию и обеспечил большую стабильность при изготовлении, транспортировке, хранении и использовании суспензии, уменьшающей гидравлическое сопротивление. Поэтому продолжалась разработка суспензии, уменьшающей гидравлическое сопротивление течению, процесса получения такой суспензии и метода уменьшения гидравлического сопротивления в канале течения, который бы не оказывал отрицательного влияния на работу устройств для очистки сточных вол, позволял увеличить срок хранения продукта без его биологического разложения и температурной дестабилизации, не ухудшал качество моторного топлива и других продуктов нефтеочистки, уменьшал реаггломерацию и обеспечил большую стабильность при изготовлении, транспортировке, хранении и использовании суспензии, уменьшающей гидравлическое сопротивление течению.
Хотя для получения суспензий, уменьшающих гидравлическое сопротивление течению, использовались различные агенты, уменьшающие гидравлическое сопротивление, однако авторам данного изобретения неизвестны какие-либо патенты или публикации, связанные с использованием алифатических спиртов с неразветвленной цепью, практически нерастворимых в воде и несмешивающихся с ней в качестве компонентов суспензий, уменьшающих гидравлическое сопротивление течению. Например, в патентах США №№6,172,151; 5,244,937; 5,449,732; 5,504,131; 5,504,132 и 5,539,044 описаны компоненты суспензий, уменьшающих гидравлическое сопротивление течению, однако там не указываются и не предлагаются для использования в качестве компонентов суспензий, уменьшающих гидравлическое сопротивление течению, алифатические спирты с неразветвленной цепью, практически нерастворимые в воде и несмешивающиеся с ней.
Краткое описание изобретения
В соответствии с данным изобретением указанные выше преимущества были получены благодаря настоящему процессу получения суспензии, уменьшающей гидравлическое сопротивление течению, включая получение агента, уменьшающего гидравлическое сопротивление течению, и смешивание этого агента, по крайней мере, с одним алифатическим спиртом с неразветвленной цепью, практически нерастворимым в воде и несмешивающимся с ней.
Еще одной особенностью данного процесса получения суспензии, уменьшающей гидравлическое сопротивление течению, является то, что алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней, можно выбрать из группы, в состав которой входят 1-пентанол, 1-гексанол, 1-гептанол, n-октиловый спирт, n-нониловый спирт и 1-деканол.
В соответствии с данным изобретением указанные выше преимущества были получены также благодаря настоящему процессу получения суспензии, уменьшающей гидравлическое сопротивление течению, включая контакт альфаолефинового мономера с катализатором в реакционной смеси; полимеризацию альфаолефиновых мономеров, в ходе которой, по крайней мере, часть альфаолефиновых мономеров полимеризуется в реакционной смеси с образованием полиальфаолефина, размол полученного полиальфаолефина при низкой температуре и смешивание размолотого полиальфаолефина, по крайней мере, с одним алифатическим спиртом с неразветвленной цепью, практически нерастворимым в воде и несмешивающимся с ней.
Еще одной особенностью данного процесса получения суспензии, уменьшающей гидравлическое сопротивление течению, является то, что в качестве катализатора может использоваться переходный металл. Кроме того, особенностью данного процесса получения суспензии, уменьшающей гидравлическое сопротивление течению, является то, что в качестве катализатора на основе переходного металла может использоваться катализатор Циглера-Натта. Дополнительной особенностью данного процесса получения суспензии, уменьшающей гидравлическое сопротивление течению, является то, что в качестве катализатора Циглера-Натта может использоваться трихлорид титана. Еще одной особенностью данного процесса получения суспензии, уменьшающей гидравлическое сопротивление, является то, что в состав реакционной смеси может входить, по крайней мере, один сокатализатор. Кроме того, особенностью данного процесса получения суспензии, уменьшающей гидравлическое сопротивление, является то, что из группы, в состав которой входят алкилалюминоксаны, галогенуглеводороды, хлорид диэтилалюминия и хлорид дибутилалюминия, можно выбрать, по крайней мере, один сокатализатор. Другой особенностью данного процесса получения суспензии, уменьшающей гидравлическое сопротивление течению, является то, что альфаолефиновые мономеры могут включать в себя гомополимеры, сополимеры или тройные сополимеры. Дополнительной особенностью данного процесса получения суспензии, уменьшающей гидравлическое сопротивление течению, является то, что альфаолефиновые мономеры могут включать в себя сополимеры альфаолефинов 1-гексена и 1-додецена или сополимеры альфаолефинов 1-октена и 1-тетрадодецена. Еще одной особенностью данного процесса получения суспензии, уменьшающей гидравлическое сопротивление течению, является то, что в качестве полиальфаолефина можно использовать сверхвысокомолекулярный полиальфаолефин с характеристической вязкостью, составляющей, по крайней мере, 10 децилитров на грамм, а также аморфный полиальфаолефин, практически не содержащий кристаллических частиц. Дополнительной особенностью данного процесса получения суспензии, уменьшающей гидравлическое сопротивление, является то, что алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней, можно выбрать из группы, в состав которой входят 1-пентанол, 1-гексанол, 1-гептанол, n-октиловый спирт, n-нониловый спирт и 1-деканол.
В соответствии с данным изобретением указанные выше преимущества были получены благодаря настоящей неводной суспензии, уменьшающей гидравлическое сопротивление течению, в состав которой входит предварительно размолотый при низкой температуре полиальфаолефин и, по крайней мере, один алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней.
Еще одной особенностью суспензии, уменьшающей гидравлическое сопротивление течению, является то, что алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней, можно выбрать из группы, в состав которой входят 1-пентанол, 1-гексанол, 1-гептанол, n-октиловый спирт, n-нониловый спирт и 1-деканол.
В соответствии с данным изобретением указанные выше преимущества были получены благодаря настоящей неводной суспензии, уменьшающей гидравлическое сопротивление течению, в состав которой входит предварительно размолотый при низкой температуре полиальфаолефин и, по крайней мере, один алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней, образующийся при смешивании указанного полиальфаолефина с, по крайней мере, одним указанным алифатическим спиртом.
Еще одной особенностью неводной суспензии, уменьшающей гидравлическое сопротивление течению, является то, что указанный алифатический спирт можно выбрать из группы, в состав которой входят 1-пентанол, 1-гексанол, 1-гептанол, n-октиловый спирт, n-нониловый спирт и 1-деканол.
В соответствии с данным изобретением указанные выше преимущества были получены благодаря настоящей неводной суспензии, уменьшающей гидравлическое сопротивление течению, в состав которой входит полиальфаолефин, образующийся при контакте альфаолефинового мономера с катализатором в реакционной смеси, полимеризации альфаолефиновых мономеров, в ходе которой, по крайней мере, часть альфаолефиновых мономеров полимеризуется в смеси реагентов с образованием полиальфаолефина и размола полученного полиальфаолефина при низкой температуре с последующим смешиванием размолотого полиальфаолефина, по крайней мере, с одним алифатическим спиртом с неразветвленной цепью, практически нерастворимым в воде и несмешивающимся с ней.
Еще одной особенностью указанной неводной суспензии, уменьшающей гидравлическое сопротивление течению, является то, что указанный алифатический спирт можно выбрать из группы, в состав которой входят 1-пентанол, 1-гексанол, 1-гептанол, n-октиловый спирт, n-нониловый спирт и 1-деканол.
В соответствии с данным изобретением указанные выше преимущества были получены благодаря настоящему методу уменьшения гидравлического сопротивления в канале течения на основе получения неводной суспензии, уменьшающей гидравлическое сопротивление течению, в состав которой входит предварительно размолотый при низкой температуре полиальфаолефин и, по крайней мере, один алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней, и введение указанной неводной суспензии, уменьшающей гидравлическое сопротивление, в канал течения.
Еще одной особенностью метода уменьшения гидравлического сопротивления в канале течения является то, что указанный алифатический спирт можно выбрать из группы, в состав которой входят 1-пентанол, 1-гексанол, 1-гептанол, n-октиловый спирт, n-нониловый спирт и 1-деканол.
В соответствии с данным изобретением указанные выше преимущества были получены благодаря настоящему методу уменьшения гидравлического сопротивления в канале течения на основе получения агента, уменьшающего гидравлическое сопротивление течению, в состав которого входит полиальфаолефин, причем агент, уменьшающий гидравлическое сопротивление, образуется в результате контакта альфаолефинового мономера с катализатором в реакционной смеси; полимеризации альфаолефиновых мономеров, в ходе которой, по крайней мере, часть альфаолефиновых мономеров полимеризуется в реакционной смеси с образованием полиальфаолефина; смешивании полиальфаолефина, по крайней мере, с одним алифатическим спиртом с образованием суспензии, уменьшающей гидравлическое сопротивление течению; и введения суспензии, уменьшающей гидравлическое сопротивление, в канал течения.
Еще одной особенностью метода уменьшения гидравлического сопротивления в канале течения является то, что алифатический спирт можно выбрать из группы, в состав которой входят 1-пентанол, 1-гексанол, 1-гептанол, n-октиловый спирт, n-нониловый спирт и 1-деканол.
Суспензия, уменьшающая гидравлическое сопротивление, процесс получения такой суспензии и метод уменьшения гидравлического сопротивления в канале течения имеет следующие преимущества: отсутствие отрицательного влияния на работу устройств для очистки сточных вод; увеличенный срок хранения продукта без его биологического разложения и температурной дестабилизации; отсутствие ухудшения качества моторного топлива и других продуктов нефтеочистки; уменьшение реагломерации и обеспечение большей стабильности при изготовлении, транспортировке, хранении и использовании суспензии, уменьшающей гидравлическое сопротивление течению.
Нижеследующее подробное описание содержит некоторые детали и специфические аспекты изобретения, включая конкретные способы осуществления и примеры использования данного изобретения. Кроме того, для лучшего понимания сути изобретения приводятся определения и объяснения значения некоторых терминов. Следует учитывать, что данное изобретение не исчерпывается описанными ниже конкретными примерами и способами осуществления, которые приводятся только для того, чтобы помочь специалисту в данной области техники использовать это изобретение на практике. Напротив, данное изобретение рассчитано на возможность его использования во всевозможных модификациях, а также альтернативных и эквивалентных вариантах, допустимых в рамках сущности и сферы применения этого изобретения согласно прилагаемой формуле изобретения.
Используемый в документе термин "агент, уменьшающий гидравлическое сопротивление течению" (АУГСТ), обозначает состав, включающий, по крайней мере, полученный полиальфаолефиновый полимер. Термин "полиальфаолефин" (ПАО) обозначает полимерный материал, полученный в результате полимеризации альфаолефиновых мономеров, и имеет широкое значение, включающее не только сам полимер в его конечной форме, но и любые образовавшиеся промежуточные полимеры, иногда называемые "олигомерами". Предпочтительно, чтобы полиальфаолефин был аморфным, то есть не содержащим кристаллических структур или форм, существовал в одной фазе, практически, без твердых частиц, обладал очень высоким молекулярным весом и имел значение характеристической вязкости 10 дл/г или более.
Под "очень высоким молекулярным весом" подразумевается молекулярный вес, соответствующий характеристической вязкости не менее 10 дл/г. Из за очень высокого молекулярного веса АУГСТ полимера его действительный молекулярный вес точно определить довольно трудно, однако значение характеристической вязкости позволяет примерно оценить величину этого молекулярного веса. "Характеристическая вязкость" измеряется с помощью четырехколбного сдвигового дилюционного вискозиметра Cannon-Ubbelohde (0,05 г полимера на 100 мл гексана при температуре 25°С). Значение характеристической вязкости вычисляется для каждой из трех последних колб. Значения вязкости затем представляются в виде графика зависимости от величины сдвига. Впоследствии этот график используется для определения характеристической вязкости при сдвиге, равном 300 с-1. Предполагается, что характеристическая вязкость 10 дл/г примерно соответствует молекулярному весу 10-15 млн. Предпочтительно, чтобы ультравысокомолекулярные полиальфаолефины имели еще больший молекулярный вес, например более 25 млн. Желательно, чтобы молекулярный вес образовавшихся полиальфаолефинов лежал в узком диапазоне распределения. Так как согласно различным предположениям относительно свойств полиальфаолефинов можно получить различные значения молекулярного веса, то авторы изобретения предпочли для оценки молекулярного веса своих агентов, уменьшающих гидравлическое сопротивление, использовать характеристическую вязкость.
Полиальфаолефины можно получить с помощью любого известного специалистам в данной области техники метода (например, используя методы, описанные в патентах США №№3,692,676; 4,289,679; 4,358,572; 4,433,123; 4,493,904; 5,244,937; 5,449,732; 5,504,131; 5,504,132 и 5,539,044, перечисленных в приводимой ссылке), однако предпочтительней для получения полиальфаолефинов использовать метод, описанный в патентах США №№5,869,570 и 6,015,779, указанных в приводимой ссылке. Обычно полиальфаолефин образуется при контакте альфаолефиновых мономеров (например, альфаолефиновых мономеров, в состав которых входит от 2 до 20 атомов углерода) с катализатором в реакционной смеси. Можно использовать гомополимеры, сополимеры и тройные сополимеры. Предпочтительнее использовать такие альфаолефины, как этилен, пропилен, 1-бутен, 4-метил-1-пентен, 1-гексен, 1-октен, 1-десен, 1-додецен и 1-тетрадецен; диены с сопряженными или несопряженными двойными связями, такие как бутадиен и 1,4-гексадиен; ароматические винилы, такие как стирол; и циклические олефины, такие как циклобутен. Наиболее предпочтительным является использование таких альфаолефиновых мономеров, как сополимеры 1-гексена и 1-додецена в молярном соотношении 1:1 или сополимеры 1-октена и 1-тетрадецена в молярном соотношении 1:1.
В предпочтительном способе осуществления, описанном в патенте США №6,015,779, альфаолефиновые мономеры контактируют с системой катализатора и сокатализатора, содержащей, по крайней мере, один сокатализатор. Хотя предполагается, что можно использовать любой известный специалистам в данной области техники катализатор (например, металлоцен или катализатор Циглер-Натта), однако предпочтительнее применять катализаторы на основе переходных металлов, например, содержащие трихлорид титана, тетрахлорид титана или металлоцен либо их комбинацию. Предпочтительнее использовать катализаторы на основе переходных металлов, не содержащие металлоцена. Трихлорид титана, являющийся наиболее предпочтительным, в течение ряда лет использовался при производстве агентов, уменьшающих гидравлическое сопротивление течению, и продолжает использоваться в настоящее время в количестве от 100 до 1500 частей на миллион (млн.-1) с учетом веса всех компонентов, то есть альфаолефинов, сокатализаторов и катализаторов, помещенных в реактор.
Сокатализаторы также в течение ряда лет использовались при производстве агентов, уменьшающих гидравлическое сопротивление течению. Предполагается, что вместе с катализатором можно использовать любой известный специалистам в данной области техники сокатализатор, однако предпочтительнее применять один или несколько сокатализаторов из группы, в которую входят алкилалюминоксаны, галогеноуглеводороды, хлорид диэтилалюминия и хлорид дибутилалюминия. Как указано выше, в процессе получения агента, уменьшающего гидравлическое сопротивление течению, может использоваться один сокатализатор, несколько сокатализаторов или может не использоваться ни одного сокатализатора.
Альфаолефиновые мономеры могут полимеризоваться при начальной температуре, составляющей 25°С или менее, предпочтительно при температуре, составляющей 10°С или менее, при которой, по крайней мере, часть альфаолефиновых мономеров полимеризуется в реакционной смеси с образованием полиальфаолефина. Предпочтительней проводить полимеризацию альфаолефиновых мономеров при начальной температуре, составляющей -5°С.
Полиальфаолефин размалывается при низкой температуре, как это описано в патентах США №№5,504,131; 5,504,132 и 5,539,044. Кроме того, к полиальфаолефину могут (предпочтительно) примешиваться разделяющие агенты. Разделяющие агенты - это составы, предотвращающие объединение частиц полиальфаолефина в крупные комки и таким образом облегчающие дисперсию полиальфаолефина в углеводороде, находящемся в канале течения. Разделяющие агенты можно добавлять в ходе процесса полимеризации и/или процесса размола полиальфаолефина на мелкие частицы полимера. Разделяющие агенты хорошо известны специалистам, работающим в данной области техники, и могут включаться в состав реакционной смеси или смешиваться с полиальфаолефином по окончании процесса полимеризации. Предпочтительней использовать разделяющие агенты, содержащие от 30 до, по крайней мере, 65 атомов углерода. В особо рекомендуемом способе осуществления разделяющие агенты, то есть альфаолефиновые мономеры, содержащие от 30 до 65 атомов углерода, смешиваются с полимером перед добавлением суспендирующего материала к частицам полимера/разделяющего агента.
Суспензии, уменьшающие гидравлическое сопротивление течению, образуются при смешивании агента, уменьшающего гидравлическое сопротивление течению, по крайней мере, с одним компонентом суспензии или суспендирующим материалом. Специалистам, работающим в данной области техники, известны различные суспендирующие компоненты. Примеры подходящих суспендирующих компонентов описаны в патентах США №№5,244,937; 5,449,732; 5,504,131; 5,504,132 и 5,539,044, включенных в приводимую ссылку. Дополнительным суснендирующим компонентом или материалом является, по крайней мере, один алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней.
В рекомендуемом способе осуществления после образования полиальфаолефина это вещество для получения суспензии, уменьшающей гидравлическое сопротивление течению, соединяется или смешивается (предпочтительно при перемешивании), по крайней мере, с одним алифатическим спиртом с неразветвленной цепью, практически нерастворимым в воде и несмешивающимся с ней.
В данном документе практически нерастворимыми в воде или не смешивающимися с ней считаются вещества, растворимость которых в воде составляет менее 0,2% (по весу). Кроме того, предпочтительно, чтобы указанный алифатический спирт был практически чистым, то есть содержал менее 0,25% какой-либо примеси в виде жидкости, газа или твердого вещества. Предпочтительными указанными алифатическими спиртами в настоящем изобретении считаются 1-пентанол, 1-гексанол, 1-гептанол, n-октиловый спирт, n-нониловый спирт и 1-деканол, имеющиеся в свободной продаже. В рекомендуемом способе осуществления в состав суспензии, уменьшающей гидравлическое сопротивление течению, включен 1-гексанол.
Указанный алифатический спирт в неводной суспензии, уменьшающей гидравлическое сопротивление течению, может содержаться в количестве, составляющем примерно от 40,0% до 85% (по весу). Предпочтительнее для получения суспензии, уменьшающей гидравлическое сопротивление, к полиальфаолефину следует добавлять, по крайней мере, один алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней с таким расчетом, чтобы его концентрация в конечном продукте составляла от 45 до 55% (по весу).
Было замечено, что включение 1-гексанола в качестве суспендирующего материала дает дополнительное преимущество, состоящее в том, что в случае разделения неводной суспензии, уменьшающей гидравлическое сопротивление течению, то есть когда полиальфаолефин перестает быть равномерно диспергированным в суспендирующем материале в результате длительного оседания полиальфаолефина в отсутствие приложения энергии с целью перемешивания, этот полиальфаолефин можно вернуть в первоначальное суспендированное состояние путем приложения такой энергии, то есть путем перемешивания.
Другим поразительным и положительным результатом включения 1-гексанола в качестве суспендирующего материала является то, что 1-гексанол (и, возможно, другие указанные алифатические спирты), как оказалось, обладает отличными характеристиками, связанными с процессом смачивания частиц полимер/разделяющий агент. Это преимущественно жирорастворимое смачивание поверхности дискретных частиц полимер/разделяющий агент способствует предотвращению реагломерации данных частиц, приводящей к невозможности использования суспензии, уменьшающей гидравлическое сопротивление течению. Кроме того, неожиданно оказалось, что смоченные частицы полимер/разделяющий агент лучше растворяются в нефтепродуктах и после добавления в поток углеводородов проявляют свое действие, выражающееся в уменьшении гидравлического сопротивления течению, намного быстрее.
Еще одним поразительным и положительным результатом включения 1-гексанола в качестве суспендирующего материала является то, что 1-гексанол (и, возможно, другие указанные алифатические спирты), как оказалось, позволяют увеличить процентное содержание полимера в расчете на галлон суспендирующего материала. Как было замечено ранее, до сих пор максимальное количество полимера в суспендирующем материале составляло 2,0 фунта в расчете на галлон суспендирующего агента. При использовании полимера, полученного в соответствии с процессом, описанным в патенте США №6,015,779, соединенного с С30+ альфаолефиновым мономерным разделяющим агентом (приобретенным в компании Chevron-Phillips), частицы полимер/разделяющий агент получались путем размола при низкой температуре и соединялись с 1-гексанолом (45 г смеси полимер/разделяющий агент на 65 г 1-гексанола). Была получена стабильная суспензия, уменьшающая гидравлическое сопротивление течению, с соотношением полимера и разделяющего агента, равным 2,5 фунта на галлон, а в одном случае - 2,8 фунта на галлон. Это на 25 и в одном случае на 28% больше, чем в прежних суспензиях, что означает соответствующее увеличение способности снижать гидравлическое сопротивление течению или возможность уменьшать объем используемой суспензии, уменьшающей гидравлическое сопротивление течению.
Кроме того, суспензии, уменьшающие гидравлическое сопротивление течению, в соответствии с настоящим изобретением обладают большим сроком хранения, по сравнению с предыдущими суспензиями, уменьшающими гидравлическое сопротивление течению. Было получено несколько образцов суспензий, уменьшающих гидравлическое сопротивление течению, при использовании полимера, образованного с применением процесса, описанного в патенте США №6,015,779. После образования полимера он соединялся с С30+ альфаолефиновым мономерным разделяющим агентом и размалывался при низкой температуре. Размолотые при низкой температуре частицы полимер/разделяющий агент затем соединялись с суспендирующими агентами, указанными в Таблице 1, в соотношении 45 г смеси полимер/разделяющий агент на 65 г суспендирующего материала. Таким образом, образцы отличались только тем, какой использовался суспендирующий материал.
Каждый образец суспензии, уменьшающей гидравлическое сопротивление течению, затем выдерживался в течение 30 дней при температуре 75°С без перемешивания. По истечении 30 дней проводился анализ каждого образца с целью определения наличия в нем реаггломерации и, следовательно, возможности его использования. Результаты представлены в Таблице 1.
Как видно из Таблицы 1, через 30 дней реагломерация отсутствовала только в неводной суспензии, уменьшающей гидравлическое сопротивление течению, содержащей 1-гексанол (чистый). Хотя в этом образце наблюдалось слабое разделение, однако в силу отсутствия реагломерации этот образец позволял провести повторное суспендирование и, таким образом, его можно было использовать через 30 дней. Во всех других суспензиях, уменьшающих гидравлическое сопротивление (все они использовались и ранее), наблюдалось разделение, и происходила реагломерация; в результате ни один из этих образцов через 30 дней хранения при температуре 75°С не мог использоваться в качестве суспензии, уменьшающей гидравлическое сопротивление течению.
Неводные суспензии, уменьшающие гидравлическое сопротивление течению, содержащие агент, уменьшающий гидравлическое сопротивление, и, по крайней мере, один алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней, могут использоваться для уменьшения гидравлического сопротивления в канале течения путем добавления указанной неводной суспензии, уменьшающей гидравлическое сопротивление, в канал течения, содержащий углеводород. Кроме того, неводная суспензия, уменьшающая гидравлическое сопротивление, содержащая, по крайней мере, один алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней, может далее обрабатываться любым известным в данной области техники методом с целью использования для уменьшения гидравлического сопротивления в канале течения.
В таблицах 2-7 приведены примеры неводных суспензий, согласно заявленному изобретению, подтверждающие способность заявленных неводных суспензий снижать гидравлическое сопротивление углеводородов в канале течения.
Как видно из представленных таблиц 2-7, все агенты, уменьшающие гидравлическое сопротивление течению, в которых в качестве суспендирующего вещества используют алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней, такой как 1-пентанол, 1-гексанол, 1-гептанол, n-октиловый спирт, n-нониловый спирт, 1-дециловый спирт или 1-додециловый спирт, эффективно снижают гидравлическое сопротивление в канале течения.
Следует учитывать, что данное изобретение не ограничивается показанными и описанными деталями конструкции, действиями и перечисленными материалами или способами осуществления, так как специалисты, работающие в данной области техники, могут легко найти модификации и эквивалентные решения. Соответственно, данное изобретение ограничено только областью, охватываемой прилагаемой формулой изобретения.
Таблица 1
Суспендирующий материал Состояние суспензии через 30 дней хранения при температуре 75°С (без перемешивания)
Этиловый спирт Разделение/сильная реагломерация
Смесь этиловый спирт-вода (50/50 об./об.) Разделение/сильная реагломерация
Бутиловый спирт (чистый) Разделение/сильная реагломерация
Смесь бутиловый спирт-вода (50/50 об./об.) Разделение/сильная реаггломерация
Метиловый спирт (чистый) Разделение/сильная реагломерация
Смесь метиловый спирт-вода (50/50 об./об.) Разделение/сильная реагломерация
Изопропиловый спирт (чистый) Разделение/реагломерация
Смесь изопропиловый спирт-вода (50/50 об./об.) Разделение/сильная реагломерация
1-гексанол (чистый) Слабое разделение/реагломерация
Отсутствует
Таблица 2
Неводная суспензия, снижающая сопротивление течению, содержащая размолотый при низкой температуре полиальфаолефин и алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней, в виде 1-пентанола в концентрации 65% 1-пентанола по весу суспензии
Альфаолефиновые мономеры % снижения сопротивления течению (при 1.0 части/млн ПАО в гексане) % увеличения потока (при 1.0 части/млн ПАО в гексане)
С612 33 23.5
С814 25 16.3
С10 37 27.5
С812 30 20.7
Таблица 3
Неводная суспензия, снижающая сопротивление течению, содержащая размолотый при низкой температуре полиальфаолефин и алифатический спирт с неразветвленной цепью, практически нерастворимый в воде и несмешивающийся с ней, в виде 1-гексанола в концентрации 65% 1-гексанола по весу суспензии
Альфаолефиновые мономеры % снижения сопротивления течению (при 1.0 части/млн ПАО в гексане) % увеличения потока (при 1.0 части/млн ПАО в гексане)
С612 39 29.7
С814 26 17.2
С10 43 34.4
С812 32 22.5
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004

Claims (22)

1. Способ производства неводной суспензии, уменьшающей гидравлическое сопротивление течению, включающий получение полиальфаолефина, размол полученного полиальфаолефина при низкой температуре и смешивание размолотого полиальфаолефина, по крайней мере, с одним алифатическим спиртом с неразветвленной цепью, практически не растворимым в воде или не смешивающимся с водой.
2. Способ по п.1, при котором алифатический спирт с неразветвленной цепью, практически не растворимый в воде или не смешивающийся с водой, выбирают из группы, состоящей из 1-пентанола, 1-гексанола, 1-гептанола, n-октилового спирта, n-нонилового спирта и 1-деканола.
3. Способ производства неводной суспензии, уменьшающей гидравлическое сопротивление течению, включающий контакт альфаолефинового мономера с катализатором в реакционной смеси, полимеризацию альфаолефиновых мономеров, при которой, по крайней мере, часть альфаолефиновых мономеров полимеризуется в реакционной смеси с образованием полиальфаолефина, размол полиальфаолефина при низкой температуре и смешивание размолотого полиальфаолефина, по крайней мере, с одним алифатическим спиртом с неразветвленной цепью, практически не растворимым в воде или не смешивающимся с водой.
4. Способ по п.3, при котором в качестве катализатора используется катализатор на основе переходного металла.
5. Способ по п.3, при котором в качестве катализатора на основе переходного металла используется катализатор Циглера-Натта.
6. Способ по п.3, при котором в качестве катализатора Циглера-Натта используется трихлорид титана.
7. Способ по п.3, при котором в состав реакционной смеси входит, по крайней мере, один сокатализатор.
8. Способ по п.7, при котором сокатализатор выбирают из группы, состоящей из алкилалюминоксанов, галогенуглеводородов, хлорида диэтилалюминия и хлорида дибутилалюминия.
9. Способ по п.3, при котором в качестве альфаолефинового мономера используется, по крайней мере, одно из следующих соединений: 1-гексен, 1-октен, 1-децен, 1-додецен, либо их смеси.
10. Способ по п.3, при котором в качестве альфаолефинового мономера используют комбинацию 1-гексена и 1-додецена либо комбинацию 1-октена и 1-тетрадододецена.
11. Способ по п.3, при котором в качестве полиальфаолефина используется ультравысокомолекулярный полиальфаолефин, имеющий характеристическую вязкость, значение которой составляет, по крайней мере, около 10 дл/г, и являющийся аморфным веществом, практически не содержащим кристаллических частиц.
12. Способ по п.3, при котором алифатический спирт с неразветвленной цепью, практически не растворимый в воде или не смешивающийся с водой, выбирают из группы, состоящей из 1-пентанола, 1-гексанола, 1-гептанола, n-октилового спирта, n-нонилового спирта и 1-деканола.
13. Неводная суспензия, уменьшающая гидравлическое сопротивление течению, в состав которой входят размолотый при низкой температуре полиальфаолефин и, по крайней мере, один алифатический спирт с неразветвленной цепью, практически не растворимый в воде или не смешивающийся с водой.
14. Неводная суспензия по п.13, в которой алифатический спирт с неразветвленной цепью, практически не растворимый в воде или не смешивающийся с водой, выбирают из группы, состоящей из 1-пентанола, 1-гексанола, 1-гептанола, n-октилового спирта, n-нонилового спирта и 1-деканола.
15. Неводная суспензия, уменьшающая гидравлическое сопротивление течению, образованная путем смешивания размолотого при низкой температуре полиальфаолефина, по крайней мере, с одним алифатическим спиртом с неразветвленной цепью, практически не растворимым в воде или не смешивающимся с водой.
16. Неводная суспензия по п.15, в которой алифатический спирт с неразветвленной цепью, практически не растворимый в воде или не смешивающийся с водой, выбирают из группы, состоящей из 1-пентанола, 1-гексанола, 1-гептанола, n-октилового спирта, n-нонилового спирта и 1-деканола.
17. Неводная суспензия, уменьшающая гидравлическое сопротивление течению, полученная путем контакта альфаолефиновых мономеров с катализатором в реакционной смеси, полимеризации альфаолефиновых мономеров, при которой, по крайней мере, часть альфаолефиновых мономеров полимеризуется в реакционной смеси с образованием полиальфаолефина, размола полученного полиальфаолефина при низкой температуре и смешивания размолотого полиальфаолефина, по крайней мере, с одним алифатическим спиртом с неразветвленной цепью, практически не растворимым в воде или не смешивающимся с водой.
18. Неводная суспензия по п.17, в которой алифатический спирт с неразветвленной цепью, практически не растворимый в воде или не смешивающийся с водой, выбирают из группы, состоящей из 1-пентанола, 1-гексанола, 1-гептанола, n-октилового спирта, n-нонилового спирта и 1-деканола.
19. Способ уменьшения гидравлического сопротивления в канале течения, включающий введение неводной суспензии, снижающей гидравлическое сопротивление течению, в канал течения, в состав которой входят размолотый при низкой температуре полиальфаолефин и, по крайней мере, один алифатический спирт с неразветвленной цепью, практически не растворимый в воде или не смешивающийся с водой.
20. Способ по п.19, в котором алифатический спирт с неразветвленной цепью, практически не растворимый в воде или не смешивающийся с водой, выбирают из группы, состоящей из 1-пентанола, 1-гексанола, 1-гептанола, n-октилового спирта, n-нонилового спирта и 1-деканола.
21. Способ уменьшения гидравлического сопротивления в канале течения, включающий в себя введение неводной суспензии, уменьшающей гидравлическое сопротивление, в канал течения, полученной в результате контакта альфаолефиновых мономеров с катализатором в реакционной смеси и полимеризации альфаолефиновых мономеров, при которой, по крайней мере, часть альфаолефиновых мономеров полимеризуется в реакционной смеси с образованием полиальфаолефина, размола полученного полиальфаолефина и смешивание размолотого полиальфаолефина, по крайней мере, с одним алифатическим спиртом с неразветвленной цепью, практически не растворимым в воде или не смешивающимся с водой.
22. Способ по п.21, в котором алифатический спирт с неразветвленной цепью, практически не растворимый в воде или не смешивающийся с водой, выбирают из группы, состоящей из 1-пентанола, 1-гексанола, 1-гептанола, n-октилового спирта, n-нонилового спирта и 1-деканола.
RU2003133281A 2001-06-08 2002-06-07 Неводные суспензии, используемые в качестве агентов, снижающих сопротивление течению, и способы производства таких суспензий RU2297574C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/877,341 US7012046B2 (en) 2001-06-08 2001-06-08 Drag reducing agent slurries having alfol alcohols and processes for forming drag reducing agent slurries having alfol alcohols
US09/877,341 2001-06-08

Publications (2)

Publication Number Publication Date
RU2003133281A RU2003133281A (ru) 2005-05-10
RU2297574C2 true RU2297574C2 (ru) 2007-04-20

Family

ID=25369783

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003133281A RU2297574C2 (ru) 2001-06-08 2002-06-07 Неводные суспензии, используемые в качестве агентов, снижающих сопротивление течению, и способы производства таких суспензий

Country Status (11)

Country Link
US (1) US7012046B2 (ru)
EP (1) EP1392995B1 (ru)
CN (1) CN1267675C (ru)
AT (1) ATE420318T1 (ru)
AU (1) AU2002329180A1 (ru)
CA (1) CA2447798A1 (ru)
DE (1) DE60230745D1 (ru)
DK (1) DK1392995T3 (ru)
NO (1) NO20035404D0 (ru)
RU (1) RU2297574C2 (ru)
WO (1) WO2002101282A2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2463320C1 (ru) * 2011-07-27 2012-10-10 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов
RU2612834C1 (ru) * 2015-11-24 2017-03-13 Общество с ограниченной ответственностью "КЕМТЕК" Неводная суспензия агента снижения гидродинамического сопротивления течению углеводородных жидкостей
RU2627355C1 (ru) * 2016-11-15 2017-08-07 Общество с ограниченной ответственностью "МИРРИКО" Противотурбулентная присадка с антикоррозионными свойствами

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815011B2 (en) * 2000-11-27 2004-11-09 Energy & Environmental International, L.C. Alpha olefin monomer partitioning agents for drag reducing agents and methods of forming drag reducing agents using alpha olefin monomer partitioning agents
US6989357B2 (en) * 2001-06-08 2006-01-24 Eaton Gerald B Alcohol absorbed polyalphaolefin drag reducing agents
US6649670B1 (en) 2002-12-17 2003-11-18 Baker Hughes Incorporated Continuous neat polymerization and ambient grinding methods of polyolefin drag reducing agents
US6946500B2 (en) * 2002-12-17 2005-09-20 Baker Hughes Incorporated Non-cryogenic process for grinding polyolefin drag reducing agents
US6894088B2 (en) * 2003-03-24 2005-05-17 Baker Hughes Incorporated Process for homogenizing polyolefin drag reducing agents
CN1309777C (zh) * 2003-12-09 2007-04-11 中国石油天然气股份有限公司 一种高级α-烯烃减阻聚合物粉体的制备方法
US7271205B2 (en) * 2005-09-20 2007-09-18 Baker Hughes Incorporated Non-cryogenic process for granulating polymer drag reducing agents
CN105179943B (zh) * 2015-09-11 2017-12-22 中国石油大学胜利学院 PVA改性脲醛树脂微胶囊包覆的聚α‑烯烃稳定悬浮液
US9969826B2 (en) 2015-11-19 2018-05-15 Saudi Arabian Oil Company Catalyst composition and a process for making ultra high molecular weight poly (alpha-olefin) drag reducing agents

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151399A (en) * 1990-10-18 1992-09-29 Shell Oil Company Olefin polymerization catalyst
US3542044A (en) 1966-09-22 1970-11-24 John J Padden Friction reducing compositions for oil-based fracturing fluids
US3645822A (en) * 1969-01-31 1972-02-29 Dow Chemical Co Method for providing multilayer films having improved slip properties
US4057680A (en) 1969-11-26 1977-11-08 Showa Denko Kabushiki Kaisha Method of polymerizing α-olefins
US3692676A (en) * 1969-12-22 1972-09-19 Continental Oil Co Method of friction loss reduction in oleaginous fluids flowing through conduits
US3669948A (en) * 1970-09-04 1972-06-13 Chisso Corp Method for producing poly{60 -olefins
US3730275A (en) * 1971-02-16 1973-05-01 Continental Oil Co Method using low friction loss liquid composition having resistance to shear degradation
US3791913A (en) * 1971-05-17 1974-02-12 Exxon Research Engineering Co Free flowing elastomer pellets and process for their preparation
US3736288A (en) * 1971-07-09 1973-05-29 Union Carbide Corp Drag reducing formulations
US3767561A (en) 1971-07-21 1973-10-23 Exxon Research Engineering Co Alpha-olefin polymers as dewaxing aids
US5521242A (en) * 1971-09-30 1996-05-28 The United States Of America As Represented By The Secretary Of The Navy High concentration slurry-formulation and application
BE792607A (nl) 1971-12-20 1973-06-12 Shell Int Research Titaanchloride-bevattende composities geschikt voor polymerisatie
NL7206290A (ru) * 1972-05-10 1973-11-13
US3843589A (en) 1973-02-05 1974-10-22 Union Carbide Corp Stable pumpable slurries of ethylene oxide polymers
DE2329641C3 (de) * 1973-06-09 1978-09-28 Hoechst Ag, 6000 Frankfurt Verfahren zur Polymerisation von ct-Olefinen
US3884252A (en) * 1973-06-20 1975-05-20 Shell Oil Co Friction reduction
US4190069A (en) * 1975-06-06 1980-02-26 General Electric Company Process for transmitting a hydrocarbon fluid through a pipeline
US4142991A (en) * 1975-12-22 1979-03-06 Stauffer Chemical Company Substantially agglomeration-free catalyst component
US4147677A (en) * 1977-11-29 1979-04-03 Exxon Research & Engineering Co. Dry blending of neutralized sulfonated elastomeric powders
US4212312A (en) * 1978-08-28 1980-07-15 Shell Oil Company Fragmented polymers as friction reducers in pipeline transportation of products
DE2847986A1 (de) 1978-11-04 1980-05-22 Huels Chemische Werke Ag Verfahren zur herstellung von pulverfoermigen, thermoplastischen copolymeren aus aethylen und buten-(1)
US4335964A (en) * 1978-12-04 1982-06-22 Shell Oil Company Injection system for solid friction reducing polymers
US4263926A (en) * 1978-12-04 1981-04-28 Shell Oil Company Injection system for solid friction reducing polymers
US4415714A (en) 1979-01-02 1983-11-15 Conoco Inc. Catalyst and method for preparation of drag reducing substances
US4433123A (en) * 1979-01-29 1984-02-21 Conoco Inc. Polymerization process for drag reducing substances
US4282114A (en) * 1979-02-08 1981-08-04 Mitsui Toatsu Chemicals, Inc. Catalyst for polymerizing α-olefins
US4395358A (en) * 1979-02-12 1983-07-26 Exxon Research & Engineering Co. Titanium trichloride catalyst complex and process for the production thereof
US4262104A (en) * 1979-02-12 1981-04-14 Exxon Research & Engineering Co. Titanium trichloride catalyst complex and process for the production thereof
US4340076A (en) * 1979-02-27 1982-07-20 General Technology Applications, Inc. Dissolving polymers in compatible liquids and uses thereof
EP0019312B1 (en) * 1979-04-30 1983-08-17 Shell Internationale Researchmaatschappij B.V. Olefin polymerization catalyst compositions and a process for the polymerization of olefins employing such compositions
CA1141093A (en) * 1979-05-17 1983-02-08 Brian L. Goodall Olefin polymerization catalyst compositions and a process for the polymerization of olefins employing such compositions
US4289679A (en) * 1979-12-14 1981-09-15 Conoco, Inc. Method for producing solutions of drag reducing substances
US4267292A (en) * 1979-12-26 1981-05-12 The Standard Oil Company Addition of chlorine compound to Ziegler polymerization process
US4333488A (en) * 1980-09-08 1982-06-08 Conoco Inc. Method of transporting viscous hydrocarbons
US4358572A (en) 1981-05-07 1982-11-09 Conoco Inc. Method for the preparation of non-crystalline polymers of high molecular weight
US4493903A (en) * 1981-05-12 1985-01-15 Conoco Inc. Polymerization process for drag reducing substances
US4493904A (en) * 1981-06-29 1985-01-15 Conoco Inc. Catalyst and method for preparation of drag reducing substances
JPS5853905A (ja) 1981-09-29 1983-03-30 Toa Nenryo Kogyo Kk オレフイン重合用触媒成分
US4384089A (en) * 1981-10-15 1983-05-17 Atlantic Richfield Company Low temperature polymerization process
US4371455A (en) * 1981-12-21 1983-02-01 Conoco, Inc. Supported catalyst for olefin polymerization
US4426317A (en) * 1982-11-24 1984-01-17 Cities Service Company Process for making olefin polymerization catalyst
US4478951A (en) 1983-01-03 1984-10-23 Exxon Research & Engineering Co. Titanium trichloride catalyst component and the process for the production thereof
US4522982A (en) * 1983-06-06 1985-06-11 Exxon Research & Engineering Co. Isotactic-stereoblock polymers of alpha-olefins and process for producing the same
US4959436A (en) * 1983-06-15 1990-09-25 Exxon Research And Engineering Co. Narrow MWD alpha-olefin copolymers
JPS6094408A (ja) 1983-10-28 1985-05-27 Sumitomo Chem Co Ltd 重合体スラリ−の処理方法
US4656204A (en) * 1983-11-02 1987-04-07 Exxon Research And Engineering Company Process for use of drag reduction agent in a hydrocarbon liquid
US4539374A (en) * 1984-03-21 1985-09-03 E. I. Du Pont De Nemours And Company Polyolefin with improved processing properties
DE3501858A1 (de) * 1985-01-22 1986-07-24 Neste Oy, Espoo Katalysator-komponenten, katalysator und verfahren fuer die polymerisation von olefinen
US4642410A (en) * 1985-03-14 1987-02-10 Uniroyal Chemical Company, Inc. Catalytic poly alpha-olefin process
US4584244A (en) * 1985-05-28 1986-04-22 Conoco Inc. Preparation of cold flow resistant polymer powders
US4693321A (en) * 1985-11-18 1987-09-15 Conoco Inc. Method using encapsulated flow improvers to reduce turbulence
US4845178A (en) * 1985-11-21 1989-07-04 Pony Industries, Inc. Polymerization process
US4758354A (en) * 1985-12-12 1988-07-19 General Technology Applications, Inc. Separation process
US4720397A (en) 1985-12-12 1988-01-19 General Technology Applications, Inc. Rapid dissolving polymer compositions and uses therefor
US4659685A (en) * 1986-03-17 1987-04-21 The Dow Chemical Company Heterogeneous organometallic catalysts containing a supported titanium compound and at least one other supported organometallic compound
FR2597487B1 (fr) * 1986-04-17 1989-09-29 Bp Chimie Sa Copolymeres amorphes de masse moleculaire elevee d'ethylene et d'alpha-olefines.
USH316H (en) * 1986-05-02 1987-08-04 Exxon Research And Engineering Co. Hydrocarbon drag reduction with interpolymer complexes containing novel sulfo-octene
US5241025A (en) * 1987-01-30 1993-08-31 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
US4756326A (en) * 1987-07-13 1988-07-12 Conoco Inc. Polymeric drag reducer performance by injection through a land-length die
US4771800A (en) * 1987-07-13 1988-09-20 Conoco Inc. Dissolution performance by injection through a die-type nozzle
US4804794A (en) * 1987-07-13 1989-02-14 Exxon Chemical Patents Inc. Viscosity modifier polymers
DE3726067A1 (de) * 1987-08-06 1989-02-16 Hoechst Ag Verfahren zur herstellung von 1-olefinpolymeren
JPH072798B2 (ja) * 1987-10-28 1995-01-18 住友化学工業株式会社 オレフィン重合用固体触媒成分
US4771799A (en) * 1987-10-29 1988-09-20 Conoco Inc. Method for improving the performance of highly viscous concentrates of high molecular weight drag reducing polymers
US4968853A (en) 1987-12-29 1990-11-06 The Lubrizol Corporation Alpha-olefin polymers
US5320994A (en) * 1988-06-23 1994-06-14 Norsolor Process for preparing a catalyst for the polymerization of olefins
FR2633298B1 (fr) 1988-06-23 1991-01-18 Norsolor Sa Composant catalytique pour la polymerisation des olefines et son procede de preparation
US4881566A (en) 1988-10-11 1989-11-21 Conoco Inc. Method for reducing pressure drop in the transportation of drag reducer
US4945142A (en) * 1988-11-14 1990-07-31 Conoco Inc. Composition and process for friction loss reduction
US4952738A (en) * 1988-11-14 1990-08-28 Conoco Inc. Composition and method for friction loss reduction
US5276116A (en) * 1988-11-14 1994-01-04 Conoco Inc. Composition and method for friction loss reduction
US5639842A (en) * 1988-12-26 1997-06-17 Mitsui Petrochemical Industries, Ltd. Ethylene random copolymers
EP0380241B1 (en) * 1989-01-21 1996-03-20 Mitsubishi Chemical Corporation Process for preparing ethylene copolymers
JP2752695B2 (ja) 1989-05-25 1998-05-18 出光興産株式会社 アルミノキサンの乾燥方法およびポリマーの製造方法
GB8925945D0 (en) * 1989-11-16 1990-01-04 Shell Int Research Olefin polymerization catalysts
US5104839A (en) * 1990-05-29 1992-04-14 Phillips Petroleum Company Method for producing olefin polymer blends utilizing a chromium-zirconium dual catalyst system
US5080121A (en) * 1990-08-06 1992-01-14 Council Of Scientific & Industrial Research Process for the preparation of a new polymer useful for drag reduction in hydrocarbon fluids in exceptionally dilute polymer solutions
US5244937A (en) 1990-09-04 1993-09-14 Conoco Inc. Stable nonagglomerating aqueous suspensions of oil soluble polymeric friction reducers
US5162277A (en) 1990-10-18 1992-11-10 Shell Oil Company Olefin polymerization catalyst
US5243001A (en) 1990-11-12 1993-09-07 Hoechst Aktiengesellschaft Process for the preparation of a high molecular weight olefin polymer
FI86989C (fi) * 1990-12-19 1992-11-10 Neste Oy Foerfarande foer framstaellning av en polymerisationskatalysatorkomponent foer olefiner, en polymerisationskatalysatorkomponent som har framstaellts enligt foerfarandet, och dess anvaendning
FI86867C (fi) * 1990-12-28 1992-10-26 Neste Oy Flerstegsprocess foer framstaellning av polyeten
EP0702030B1 (de) 1991-05-27 2001-03-21 TARGOR GmbH Verfahren zur Herstellung von Polyolefinen mit breiter Molmassenverteilung
IT1251465B (it) * 1991-07-12 1995-05-15 Enichem Polimeri Catalizzatore supportato per la (co)polimerizzazione dell'etilene.
US5710224A (en) * 1991-07-23 1998-01-20 Phillips Petroleum Company Method for producing polymer of ethylene
IT1250706B (it) * 1991-07-25 1995-04-21 Enichem Polimeri Catalizzatore per la polimerizzazione di olefine
TW300901B (ru) * 1991-08-26 1997-03-21 Hoechst Ag
CA2077744C (en) * 1991-09-30 2003-04-15 Edwar Shoukri Shamshoum Homogeneous-heterogeneous catalyst system for polyolefins
EP0537686B1 (de) * 1991-10-15 2005-01-12 Basell Polyolefine GmbH Verfahren zur Herstellung eines Olefinpolymers unter Verwendung von Metallocenen mit speziell substituierten Indenylliganden
US5359015A (en) 1991-11-07 1994-10-25 Exxon Chemical Patents Inc. Metallocene catalysts and their production and use
EP0544308B1 (en) 1991-11-28 1998-02-18 Showa Denko Kabushikikaisha Novel metallocene and process for producing polyolefin using the same
TW318184B (ru) * 1991-11-30 1997-10-21 Hoechst Ag
JPH05178927A (ja) * 1991-12-27 1993-07-20 Tosoh Corp オレフィン重合用触媒およびオレフィン重合体の製造方法
US5165441A (en) 1991-12-30 1992-11-24 Conoco Inc. Process and apparatus for blending drag reducer in solvent
US5198399A (en) * 1992-01-17 1993-03-30 Quantum Chemical Corporation Polymerization catalyst and method
IT1254223B (it) 1992-02-26 1995-09-14 Enichem Polimeri Catalizzatore per la polimerizzazione di olefine
US5434115A (en) * 1992-05-22 1995-07-18 Tosoh Corporation Process for producing olefin polymer
US5238892A (en) * 1992-06-15 1993-08-24 Exxon Chemical Patents Inc. Supported catalyst for 1-olefin(s) (co)polymerization
US5276220A (en) * 1992-06-18 1994-01-04 Ethyl Corporation Actinide catalyzed chain growth process
CA2110654C (en) * 1992-12-17 2006-03-21 Albert Rossi Dilute process for the polymerization of ethylene/alpha-olefin copolymer using metallocene catalyst systems
EP0698619B1 (en) * 1993-03-31 2001-11-07 Idemitsu Kosan Company Limited Catalyst for producing vinyl polymer and process for producing vinylaromatic polymer
ZA943399B (en) * 1993-05-20 1995-11-17 Bp Chem Int Ltd Polymerisation process
US5449732A (en) * 1993-06-18 1995-09-12 Conoco Inc. Solvent free oil soluble drag reducing polymer suspension
US5376697B1 (en) 1993-06-21 1998-06-02 Conoco Inc Drag reducers for flowing hydrocarbons
BE1007698A3 (fr) * 1993-11-04 1995-10-03 Solvay Systeme catalytique utilisable pour la polymerisation des alpha-olefines et procede pour cette polymerisation.
US5416179A (en) * 1994-03-16 1995-05-16 Phillips Petroleum Company Catalyst compositions and olefin polymerization
US5442019A (en) * 1994-03-25 1995-08-15 Exxon Chemical Company Process for transitioning between incompatible polymerization catalysts
US5436212A (en) * 1994-04-15 1995-07-25 Phillips Petroleum Company Organoaluminoxy product, preparation, and use
US5539044A (en) * 1994-09-02 1996-07-23 Conoco In. Slurry drag reducer
US5712365A (en) * 1995-03-27 1998-01-27 Tosoh Corporation Process for producing ethylene alpha-olefin copolymer
US5733953A (en) * 1995-06-29 1998-03-31 Baker Hughes Incorporated Low viscosity, high concentration drag reducing agent and method therefor
US5728855A (en) * 1995-10-19 1998-03-17 Akzo Nobel Nv Modified polyalkylaluminoxane composition formed using reagent containing carbon-oxygen double bond
US6015779A (en) * 1996-03-19 2000-01-18 Energy & Environmental International, L.C. Methods for forming amorphous ultra-high molecular weight polyalphaolefin drag reducing agents
US5869570A (en) * 1996-03-19 1999-02-09 Energy & Environmental International, L.C. Composition of and process for forming polyalphaolefin drag reducing agents
US5644007A (en) * 1996-04-26 1997-07-01 Minnesota Mining And Manufacturing Company Continuous process for the production of poly(1-alkenes)
US6172151B1 (en) * 1996-10-15 2001-01-09 Conoco Inc. Nonaqueous drag reducing suspensions
US5932670A (en) * 1998-03-30 1999-08-03 Phillips Petroleum Company Polymerization catalysts and processes therefor
US6178980B1 (en) * 1998-08-26 2001-01-30 Texaco Inc. Method for reducing the pipeline drag of heavy oil and compositions useful therein
US6399676B1 (en) * 2000-11-28 2002-06-04 Conoco, Inc. Drag-reducing polymer suspensions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2463320C1 (ru) * 2011-07-27 2012-10-10 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов
RU2612834C1 (ru) * 2015-11-24 2017-03-13 Общество с ограниченной ответственностью "КЕМТЕК" Неводная суспензия агента снижения гидродинамического сопротивления течению углеводородных жидкостей
RU2627355C1 (ru) * 2016-11-15 2017-08-07 Общество с ограниченной ответственностью "МИРРИКО" Противотурбулентная присадка с антикоррозионными свойствами

Also Published As

Publication number Publication date
RU2003133281A (ru) 2005-05-10
CN1267675C (zh) 2006-08-02
ATE420318T1 (de) 2009-01-15
US20020198116A1 (en) 2002-12-26
CA2447798A1 (en) 2002-12-19
WO2002101282A3 (en) 2003-08-07
CN1513098A (zh) 2004-07-14
NO20035404D0 (no) 2003-12-05
DE60230745D1 (de) 2009-02-26
DK1392995T3 (da) 2009-04-20
AU2002329180A1 (en) 2002-12-23
EP1392995B1 (en) 2009-01-07
EP1392995A2 (en) 2004-03-03
US7012046B2 (en) 2006-03-14
WO2002101282A2 (en) 2002-12-19

Similar Documents

Publication Publication Date Title
RU2193569C2 (ru) Способ получения полиальфаолефиновых агентов, снижающих сопротивление течению, и состав, содержащий такие агенты
RU2297574C2 (ru) Неводные суспензии, используемые в качестве агентов, снижающих сопротивление течению, и способы производства таких суспензий
RU2232165C2 (ru) Способ получения аморфных высокомолекулярных полиальфаолефиновых агентов, снижающих сопротивление течению
US5733953A (en) Low viscosity, high concentration drag reducing agent and method therefor
MX2007015623A (es) Distribucion de tamano de particula bi-o multi-modal para mejorar la disolucion de polimero de reduccion de arrastre.
CA2444015C (en) Ultra high molecular weight polyolefin useful as flow improvers in cold fluids
CA2561566A1 (en) Alcohol absorbed polyalphaolefin drag reducing agents
WO2009151576A1 (en) Drag reducing compositions and methods of manufacture and use
RU2238282C1 (ru) Способ получения агента снижения гидродинамического сопротивления углеводородных жидкостей
CN1429262A (zh) 油生产和精炼设备的维护
JP2008511687A (ja) 汚染防止剤の存在下でのオレフィン重合方法
EP1366093B1 (en) Alpha olefin monomer partitioning agents for drag reducing agents and methods of forming drag reducing agents using alpha olefin monomer partitioning agents
EP0196350B1 (en) Improved use of flow improvers
US20220195085A1 (en) Rapid dissolution of drag-reducing agents at low temperatures

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20101126

MM4A The patent is invalid due to non-payment of fees

Effective date: 20140608