RU2294335C2 - Усовершенствованный состав спандекса - Google Patents

Усовершенствованный состав спандекса Download PDF

Info

Publication number
RU2294335C2
RU2294335C2 RU2004102679/04A RU2004102679A RU2294335C2 RU 2294335 C2 RU2294335 C2 RU 2294335C2 RU 2004102679/04 A RU2004102679/04 A RU 2004102679/04A RU 2004102679 A RU2004102679 A RU 2004102679A RU 2294335 C2 RU2294335 C2 RU 2294335C2
Authority
RU
Russia
Prior art keywords
alkoxylated
spandex
glycol
bis
hydroxyphenyl
Prior art date
Application number
RU2004102679/04A
Other languages
English (en)
Other versions
RU2004102679A (ru
Inventor
Андреа ДЕГУЙЯ (US)
Андреа ДЕГУЙЯ
Original Assignee
Рэдисиспандекс Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Рэдисиспандекс Корпорейшн filed Critical Рэдисиспандекс Корпорейшн
Publication of RU2004102679A publication Critical patent/RU2004102679A/ru
Application granted granted Critical
Publication of RU2294335C2 publication Critical patent/RU2294335C2/ru

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S528/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S528/906Fiber or elastomer prepared from an isocyanate reactant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Artificial Filaments (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

Изобретение относится к химии полиуретанов, а именно к усовершенствованным составам спандекса, являющегося продуктом реакции, по меньшей мере, одного полимерного гликоля и, по меньшей мере, одного полиола, имеющего алкоксилированную ароматическую функциональную группу с, по меньшей мере, одним органическим диизоцианатом с последующей полимеризацией полученного защищенного гликоля, по меньшей мере, с одним диамином. В качестве полиола, имеющего алкоксилированную ароматическую функциональную группу, используют алкоксилированный дифенол или алкоксилированный дигидрофенол. Описан способ получения спандекса, включающий помимо стадий приготовления защищенных изоцианатом полиолов и полимеризации последних с диаминами также стадии формования из реакционной смеси, формования из расплава, сухого формования или мокрого формования полиуретана. Спандекс обладает лучшей устойчивостью к высокотемпературному окрашиванию с минимальной потерей физических свойств, таких как упругое восстановление формы. 15 н. и 44 з.п. ф-лы, 5 ил., 4 табл.

Description

Перекрестные ссылки на родственные заявки
Данная заявка претендует на приоритет и эффект изобретения в соответствии с предварительной заявкой на патент США с регистрационным номером 60/307154, поданной 24 июля 2001 г., содержание которой включено в настоящее описание посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к спандексу. Более конкретно, изобретение предусматривает спандекс, полученный из одного или нескольких полиолов, имеющих ароматическую функциональную группу (ароматическое ядро). Спандекс согласно настоящему изобретению обладает повышенной устойчивостью к действию высокой температуры, в том числе к высокотемпературному окрашиванию, с минимальной потерей желательных физических свойств, таких как упругое восстановление формы.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Спандекс - это длинноцепочечное синтетическое полимерное волокно, примерно на 85 мас.% состоящее из сегментированного полиуретана. Как показано на фиг.1, спандекс имеет два сегмента: гибкий резиновый сегмент А и жесткий сегмент В. Гибкий сегмент А обычно состоит из полимерного гликоля, который придает волокну способность растягиваться и восстанавливать исходную форму. Жесткий сегмент В обычно состоит из полиуретана, который сообщает волокну жесткость и прочность на разрыв. Полиуретан может быть полиуретанмочевиной, которая является подклассом полиуретана.
Полиуретан обычно получают в реакции полимерного гликоля с диизоцианатом с образованием защищенного полимерного гликоля. Если желательно получение полиуретана без мочевины, можно провести реакцию защищенного полимерного гликоля с удлинителем диольной цепи и, по выбору, с терминатором монофункциональной цепи либо в расплаве, либо после растворения в растворителе. Если желательно получение полиуретанмочевины, защищенный полимерный гликоль можно растворить в растворителе перед проведением реакции с удлинителем диаминной цепи и, по выбору, с терминатором монофункциональной цепи.
Спандекс в типичном случае получают посредством формования из реакционной смеси, формования из расплава, сухого формования или мокрого формования из раствора полиуретана либо в колонке, заполненной горячим инертным газом, например воздухом, азотом или паром, либо в водяной бане для удаления растворителя с последующим сматыванием волокна. Способы формования из реакционной смеси, формования из расплава, сухого формования и мокрого формования известны в данной области техники.
Сухое формование - это процесс принудительного пропускания раствора полимера через фильерные отверстия в трубку с образованием волокна. Через камеру пропускают нагретый инертный газ, который испаряет растворитель из волокна по мере прохождения волокна через трубку. Полученный спандекс можно затем намотать на цилиндрическую основу с получением упаковки спандекса, поставляемой потребителю.
Из-за хорошей упругости и прочности на разрыв спандекс использовали для производства предметов одежды, таких как нижнее белье, купальники, спортивные костюмы, чулки, носки, платья, костюмы, верхняя одежда и тому подобное. Также спандекс использовали для производства одноразовых гигиенических изделий, таких как детские пеленки, гигиенические изделия для женщин, гигиенические изделия, используемые при недержании у взрослых, защитные маски, медицинская спецодежда, производственная спецодежда и тому подобное. Спандекс можно также использовать для производства обивочных материалов и в других торговых и промышленных прикладных задачах. Спандекс обычно смешивают с другими природными или синтетическими волокнами, такими как нейлон, полиэфир, хлопок, шерсть, шелк и лен.
Спандекс имеет тенденцию к потере упругости в том случае, если он подвергается действию высоких температур в процессе окрашивания. С учетом этого в данной области техники существует потребность в получении спандекса, который имел бы превосходную упругость после воздействия высоких температур, связанных с процессом окрашивания. Изобретение направлено на эту и другие важные задачи.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одной из форм осуществления изобретение предусматривает спандекс, содержащий полиол, имеющий, по меньшей мере, одну ароматическую функциональную группу, например фенол.
В другой форме осуществления изобретение предусматривает спандекс, являющийся продуктом реакции полимерного гликоля, полиола, имеющего, по меньшей мере, одну ароматическую функциональную группу, органического диизоцианата и, по меньшей мере, одного удлинителя цепи.
В следующей форме осуществления изобретения изобретение предусматривает способ получения спандекса посредством смешивания полимерного гликоля и полиола, имеющего, по меньшей мере, одну ароматическую функциональную группу, с образованием полимерной смеси; смешивания полимерной смеси с органическим диизоцианатом с образованием защищенного гликоля; полимеризации защищенного гликоля с образованием полиуретана и последующего формования спандекса из полиуретана.
Эти и другие аспекты изобретения далее описаны более подробно.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Фиг.1 изображает типичную структуру спандекса, соответствующего современному уровню техники.
Фиг.2 является графическим изображением модуля восстановления при удлинении на 200% после окрашивания под давлением спандекса согласно настоящему изобретению и спандекса, взятого для сравнения.
Фиг.3 является графическим изображением модуля восстановления при удлинении на 250% после окрашивания под давлением спандекса согласно настоящему изобретению и спандекса, взятого для сравнения.
Фиг.4 является графическим изображением модуля растяжения при 200% удлинении после окрашивания под давлением спандекса согласно настоящему изобретению и спандекса, взятого для сравнения.
Фиг.5 является графическим изображением модуля растяжения при 250% удлинении после окрашивания под давлением спандекса согласно настоящему изобретению и спандекса, взятого для сравнения.
СВЕДЕНИЯ, ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Авторы изобретения неожиданно обнаружили, что у спандекса, полученного из одного или нескольких полиолов, имеющих ароматическое ядро (ароматическую функциональную группу), значительно повышалась термостойкость и значительно улучшался модуль удержания. Это открытие имеет большое значение, поскольку спандекс имеет тенденцию утрачивать упругость и прочность после воздействия повышенных температур, например когда его подвергают процессу высокотемпературного окрашивания.
Изобретение предусматривает спандекс, полученный из полиуретана, в котором гибкий сегмент содержит один или несколько полимерных гликолей (например, поликарбонаты гликолей, сложные полиэфиры гликолей, простые полиэфиры гликолей или смеси двух или более из них) и один или несколько полиолов, имеющих ароматическую функциональную группу.
В другой форме осуществления настоящего изобретения гибкий сегмент полиуретана содержит от примерно 95 мас.% до примерно 60 мас.% одного или более полимерных гликолей и от примерно 5 мас.% до примерно 40 мас.% одного или более полиолов, имеющих ароматическую функциональную группу.
В другой форме осуществления настоящего изобретения гибкий сегмент полиуретана содержит от примерно 90 мас.% до примерно 70 мас.% одного или более полимерных гликолей и от примерно 10 мас.% до примерно 30 мас.% одного или более полиолов, имеющих ароматическую функциональную группу.
В следующей форме осуществления настоящего изобретения гибкий сегмент полиуретана содержит от примерно 90 мас.% до примерно 75 мас.% одного или более полимерных гликолей и от примерно 10 мас.% до примерно 25 мас.% одного или более полиолов, имеющих ароматическую функциональную группу.
В следующей форме осуществления настоящего изобретения гибкий сегмент полиуретана содержит от примерно 85 мас.% до примерно 80 мас.% одного или более полимерных гликолей и от примерно 15 мас.% до примерно 20 мас.% одного или более полиолов, имеющих ароматическую функциональную группу.
«Волокно» включает, например, штапельные волокна и непрерывные нити. Предпочтительными полимерными гликолями являются простые полиэфиры диолов и сложные полиэфиры диолов, более предпочтительно простые полиэфиры диолов.
Любые поликарбонаты гликолей, известные в данной области техники, могут быть использованы в гибком сегменте полиуретана. Иллюстративные примеры поликарбонатов гликолей включают поли(пентан-1,5-карбонат)диол и поли(гексан-1,6-карбонат)диол.
Любые сложные полиэфиры гликолей, известные в данной области техники, могут быть использованы в гибком сегменте полиуретана. Иллюстративными примерами сложных полиэфиров гликолей являются такие полиэфиры, которые являются продуктами поликонденсации диолов (например, этиленгликоля, 1,4-бутандиола, 2,2-диметил-1,3-пропандиола) с дикислотами (например, адипиновой кислотой, янтарной кислотой, додекандиоевой кислотой и их сополимерами).
Любые простые полиэфиры гликолей, известные в данной области техники, могут быть использованы в гибком сегменте полиуретана. Иллюстративные примеры простых полиэфиров гликолей включают полиметилтетрагидрофуран, полибутиленгликоль, политетрагидрофуран (PTHF), политетраметиленгликоль (PTMEG), полипропиленгликоль (PPG), поли(3-метил-1,5-пентаметилен)гликоль, сополимер политетраметиленгликоля и поли-3-метилтетраметиленгликоля, и смеси двух или более из них. Простые полиэфиры гликолей обычно являются линейными, оканчивающимися гидроксильными группами полиолами со средним молекулярным весом (Мn), лежащим в диапазоне от примерно 500 до примерно 10000 или от примерно 500 до примерно 5000, или от примерно 600 до примерно 2000. В другой форме осуществления изобретения молекулярный вес простого полиэфира гликоля лежит в диапазоне от примерно 1750 до примерно 2250. В одной из форм осуществления изобретения простой полиэфир гликоля является политетрагидрофураном.
Полиолы, имеющие ароматическую функциональную группу, включают, например, алкоксилированные фенолы. Алкоксилированные фенолы включают, например, алкоксилированные дифенолы и алкоксилированные дигидрофенолы.
Иллюстративными алкоксилированными дигидрофенолами являются алкоксилированный 2,2-бис(4-гидроксифенил)пропан (то есть алкоксилированный бисфенол А), алкоксилированный бис(4-гидроксифенил)метан, алкоксилированный 1,1-бис(4-гидроксифенил)этан, алкоксилированный 2,2-бис(4-гидрокси-3,5-диметилфенил)пропан, алкоксилированный 2,2-бис(4-гидрокси-3,5-дибромфенил)пропан, алкоксилированный 2,2-бис(4-гидрокси-3-метилфенил)пропан, алкоксилированный бис(4-гидроксифенил)сульфид и алкоксилированный бис(4-гидроксифенил)сульфон. Дигидрофенолы типа алкоксилированных бис(4-гидроксифенил)алканов более желательны, причем алкоксилированный бисфенол А является наиболее предпочтительным. Иллюстративные примеры алкоксилированных дифенолов включают алкоксилированный дифенилфенол, алкоксилированный бисфенол А, алкоксилированный 2,4-бис(4-гидроксифенил)-2-метилбутан, алкоксилированный 1,1-бис(4-гидроксифенил)циклогексан, алкоксилированный 1,1-бис(4-гидроксифенил)-3,3,5-триметилциклогексан, алкоксилированный 4,4'-дигидроксидифенилсульфид, алкоксилированный 4,4'-дигидроксидифенилсульфон, а также их ди- и тетрабромированные или хлорированные производные, например алкоксилированный 2,2-бис(3-хлор-4-гидроксифенил)пропан, алкоксилированный 2,2-бис(3,5-дихлор-4-гидроксифенил)пропан или алкоксилированный 2,2-бис(3,5-дибром-4-гидроксифенил)пропан. В одной из форм осуществления изобретения алкоксилированным фенолом является алкоксилированный бисфенол А.
Термин «алкоксилированный» относится к группе (OR)x, где R является прямой или разветвленной C1-22-алкильной группой, более предпочтительно С2-алкильной группой, а х относится к числу молей OR и является целым числом от 1 до примерно 25, предпочтительно от 2 до примерно 10.
Алкоксилированный бисфенол А включает, например, этоксилированный бисфенол А, пропоксилированный бисфенол А и их смеси. Этоксилированный бисфенол А может содержать от примерно 2 до примерно 10 молей этиленоксида, предпочтительно от примерно 4 до примерно 8 молей этиленоксида. Алкоксилированный бисфенол А обычно имеет молекулярный вес меньше 500. Алкоксилированный бисфенол А имеет обычно уретановое качество, что означает, что он должен иметь низкое содержание воды (то есть влаги) и низкую щелочность, относящуюся к остаточному калиевому (К) катализатору из процесса алкоксилирования. Например, содержание воды может быть равно примерно 600 миллионных долей (ppm) или менее или примерно 550 миллионных долей или менее, или примерно 300 миллионных долей или менее, или примерно 250 миллионных долей или менее, или примерно 100 миллионных долей или менее. Содержание калия может быть равно примерно 40 миллионных долей или менее, или примерно 25 миллионных долей или менее, или примерно 20 миллионных долей или менее, или примерно 15 миллионных долей или менее, или примерно 10 миллионных долей или менее.
Обычно полимерный гликоль смешивают с полиолом, имеющим ароматическую функциональную группу, с получением полимерной смеси гликолей. Затем проводят реакцию полимерной смеси с органическим диизоцианатом с получением полиуретана.
Жесткий сегмент полиуретана содержит полиуретаны, являющиеся производными органических диизоцианатов. В одной из форм осуществления изобретения полиуретан является полиуретанмочевиной. Можно использовать любые органические диизоцианаты, известные на современном уровне техники. Иллюстративные примеры органических диизоцианатов включают 4,4'-метилен-бис(фенилизоцианат) (MDI); 1,1'-метилен-бис(4-изоцианатциклогексан); 4-метил-1,3-фенилендиизоцианат; 5-изоцианат-1-(изоцианатметил)-1,3,3-триметилцикпогексан; 1,6-гексаметилендиизоцианат; толуол-2,4-диизоцианат (TDI) и смеси двух или более из них. В одной из форм осуществления изобретения органическим диизоцианатом является 4,4'-метилен-бис(фенилизоцианат).
Спандекс согласно настоящему изобретению может быть получен с использованием процессов, известных на современном уровне техники. Например, полимерную смесь гликолей, описанную в данной работе, можно смешать и провести реакцию (то есть «защитить») с одним или несколькими органическими диизоцианатами с образованием защищенных гликолей. Степень защиты (соотношение изоцианатной концевой группы (NCO) и ОН-групп) обычно находится в диапазоне от примерно 1,5 до примерно 3, от примерно 1,5 до примерно 2, от примерно 1,6 до примерно 1,9, от примерно 1,6 до примерно 1,8 или от примерно 1,6 до примерно 1,7. «Степень защиты» - это молярное соотношение органических диизоцианатов и полимерных гликолей, используемое в реакции образования защищенных гликолей.
В одной из форм осуществления изобретения полимерную смесь гликолей, описанную в данной работе, смешивают и проводят реакцию с избытком одного или более органических диизоцианатов с образованием защищенных гликолей. В типичном случае избыточное содержание NCO в защищенных гликолях находится в диапазоне от примерно 2 до примерно 4%, или от примерно 2,4 до примерно 3,6%, или от примерно 2,8 до примерно 3,4%, или от примерно 2,9 до примерно 3,3%, или от примерно 3% до примерно 3,2%. «Содержание NCO» обозначает содержание концевых изоцианатных групп в гликолях, защищенных изоцианатом, перед реакцией удлинения цепи.
После этого защищенные гликоли полимеризуют с одним или несколькими удлинителями цепи и, по выбору, с одним или несколькими терминаторами цепи. В одной из форм осуществления изобретения цепь защищенных гликолей удлиняют с использованием смеси двух или более диаминов.
Можно использовать любой удлинитель цепи, известный на современном уровне техники. Удлинители цепи обычно включают диолы, диамины, аминоспирты и смеси двух или более из них. Обычно удлинители цепи имеют молекулярный вес от примерно 60 до примерно 500.
Любой диол, известный на современном уровне техники, может быть использован в качестве удлинителя цепи. Обычно для получения полиуретанов используют диолы. Иллюстративные примеры диолов включают триметиленгликоль, этандиол, 1,6-гександиол, неопентилгликоль, диэтиленгликоль, дипропиленгликоль, 1,4-бутандиол, 1,2-пропиленгликоль, 1,4-циклогександиметилол, 1,4-циклогександиол, 1,4-бис(2-гидроксиэтокси)бензол, бис(2-гидроксиэтил)терефталат, пара-ксилилендиол и смеси двух и более из них. В одной из форм осуществления изобретения удлинитель цепи является алифатическим диолом, имеющим от 2 до примерно 14 атомов углерода. В другой форме осуществления изобретения удлинитель цепи является 1,4-бутандиолом.
Любой диамин, известный на современном уровне техники, может быть использован в качестве удлинителя цепи. Обычно для получения полиуретанмочевины используют диамины. Иллюстративные примеры диаминов включают этилендиамин (EDA), 1,3-циклогександиамин, 1,4-циклогександиамин, 1,3-диаминопропан, 1,2-диаминопропан (PDA), 1,3-диаминопентан, 2-метил-1,5-пентандиамин, изофорондиамин (IPDA), 1-амино-3-аминоэтил-3,5,5-триметилциклогексан и смеси двух или более из них. Количество используемого диамина обычно составляет от примерно 7 до примерно 13%, предпочтительно от примерно 9 до примерно 11%, от общего веса защищенного гликоля. В одной из форм осуществления изобретения реакцию удлинения цепи проводят с использованием смеси, содержащей от примерно 83 до примерно 92% этилендиамина и от примерно 8 до примерно 17% 1,2-диаминопропана, в пересчете на молярные концентрации в смеси диаминов.
Терминаторы цепи обычно используют в реакции удлинения цепи для того, чтобы контролировать молекулярный вес полиуретана. Можно использовать любой терминатор цепи, известный на современном уровне техники. Иллюстративными примерами терминаторов цепи являются диэтиламин (DEA), циклогексиламин, бутиламин, гексанол, бутанол и смеси двух или более из них.
В одной из форм осуществления изобретения в качестве терминатора цепи используют диэтиламин совместно, по меньшей мере, с двумя диаминами (например, этилендиамином и 1,2-диаминопропаном) в качестве удлинителей цепи. Например, смесью диаминов - удлинителей и терминаторов цепи - могут быть этилендиамин в количестве от примерно 83 мас.% до примерно 92 мас.%, 1,2-диаминопропан в количестве от примерно 8 мас.% до примерно 17 мас.% и диэтиламин в количестве от примерно 5 мас.% до 15 мас.%.
Реакцию удлинения цепи можно провести в одном или более стандартных растворителей. Иллюстративные примеры растворителей включают диметилацетамид, диметилформамид, N-метилпирролидон, диметилсульфоксид и смеси двух или более из них. В одной из форм осуществления изобретения растворителем является диметилацетамид.
После завершения реакции полимеризации концентрация полиуретана (или полиуретанмочевины) в растворе в типичном случае составляет от примерно 30 мас.% до примерно 40 мас.%, или от примерно 31 мас.% до примерно 38 мас.%, или от примерно 32 мас.% до примерно 36 мас.%, или от примерно 33 мас.% до примерно 35 мас.%, в расчете на общую массу раствора.
После завершения реакции полимеризации можно получить спандекс посредством формования реакционной смеси, формования расплава, сухого формования или мокрого формования - все эти способы известны на современном уровне техники. В одной из форм осуществления изобретения спандекс формуют посредством сухого формования из того же растворителя, который был использован для реакций полимеризации. Например, полученный полиуретан может быть использован для получения спандекса, который можно сматывать (т.е. прясть) со скоростью не менее 550 метров в минуту, предпочтительно не менее 700 метров в минуту, наиболее предпочтительно не менее 900 метров в минуту. В результате получают спандекс, смотанный с высокой скоростью.
Спандекс можно сматывать (прясть) в виде отдельных волокон или его можно соединять с использованием стандартных способов в многоволоконные нити. Каждое волокно имеет текстильную линейную плотность, например, в диапазоне от 6 до примерно 25 децитекс на волокно.
Спандекс согласно настоящему изобретению может также содержать или иметь покрытие из стандартных веществ, которые добавляют для достижения конкретных целей, таких как добавки, придающие устойчивость к хлору, антибактериальные вещества, антиоксиданты, термостабилизаторы (например, IRGANOX® MD 1024), стабилизаторы, придающие устойчивость к УФ-излучению (например, TINUVIN® 328), стабилизаторы, придающие устойчивость к газам, пигменты (например, ультрамарин синий, ультрамарин зеленый) и матирующие вещества (например, этилен-бис-стеарамид, этилен-бис-олеиламид), добавки, предупреждающие термоусадку, красители, эмульгаторы, увлажнители, антистатики, регуляторы рН, средства, уплотняющие волокно, ингибиторы коррозии, диспергирующие средства (например, NUOSPERSE® 657) и смазки (например,силиконовое масло), которые известны на современном уровне техники.
Добавки, придающие устойчивость к хлору, известные на современном уровне развития техники, могут быть использованы в настоящем изобретении. Иллюстративными примерами добавок, придающих устойчивость к хлору, являются магний-алюминий гидроксид карбонат гидрат; гидроталькиты, такие как DHT (то есть Mg6Al2(СО3)(ОН)16·4(Н2O)) и гидратированные карбонаты магния, такие как гидромагнезит (то есть Mg5(СО3)4(ОН)2·4(Н2O)). В одной из форм осуществления изобретения гидротапькит содержит кристаллизационную воду и модифицирован так, что содержит присоединенную к нему С1030-жирную кислоту (например, каприновую кислоту, лауриновую кислоту, миристиновую кислоту, пальмитиновую кислоту, стеариновую кислоту). Добавку, придающую устойчивость к хлору, обычно используют в количестве от примерно 0,1 до 10 мас.% от количества полиуретана. В еще одной форме осуществления изобретения полиуретан может содержать от 0,5 до 10 мас.% частиц композитного оксида, содержащих алюминий и, по меньшей мере, один металл из цинка и магния.
В другой форме осуществления изобретения добавка, придающая устойчивость к хлору, является гидроталькитом и/или другим соединением, содержащим гидроокиси щелочного металла и алюминия, с покрытием из полиорганосилоксана и/или из смеси полиорганосилоксана и полиорганогидросилоксана.
Спандекс может иметь превосходную устойчивость к пожелтению и высокую механическую стойкость к хлору, если совместно используются гидромагнезит, хунтит (CaMg3(СО3)4), оксид цинка и поли(N,N-диэтил-2-аминоэтилметакрилат).
Добавки, уменьшающие липкость, известные на современном уровне техники, могут быть использованы в настоящем изобретении. Иллюстративными примерами добавок, уменьшающих липкость, являются стеараты металлов (например, стеарат кальция, стеарат магния, стеарат цинка) и сульфат бария.
Добавки, снижающие термоусадку, известные на современном уровне техники, могут быть использованы в настоящем изобретении. Типичными добавками, снижающими термоусадку, являются добавки на основе четвертичных аминов. В одной из форм осуществления изобретения добавка, снижающая термоусадку, является четвертичным амином, имеющим содержание функциональной группы на килограмм, составляющее от примерно 3 до примерно 100 мэкв.
Антиоксиданты придают устойчивость к высоким температурам и стабильность при длительном хранении. Можно использовать любой антиоксидант, известный на современном уровне техники, например, антиоксиданты на основе аминов и на основе фенола. Иллюстративными примерами антиоксиданатов на основе аминов являются N,N-ди(нонилфенил)амин, диарилдиамины (например, N,N'-дифенилэтилендиамин, N,N'-дитолилэтилендиамин), нафтиламины (например, N-фенил-1-нафтиламин, N-фенил-2-нафтиламин), ароматические амины (например, N,N'-диизобутил-пара-фенилендиамин, N-циклогексил-N'-фенил-пара-фенилендиамин, N,N'-динафтил-пара-фенилендиамин, N,N'-дитолил-пара-фенилендиамин, N,N'-дифенил-пара-фенилендиамин, 6-этоксидигидрохинолин, 4-изопропоксидифениламин) и алкилированные дифениламины. Иллюстративные примеры антиоксидантов на основе фенола включают бисфенолы, монофенолы, полифенолы и аминофенолы. Антиоксиданты на основе фенола включают 2,2'-метилен-бис(4-метил-6-трет-бутилфенол), 4,4'-метилен-бис(2,6-ди-трет-бутилфенол), 4,4'-бутилиден-бис-(3-метил-6-трет-бутилфенол), 4,4'-тио-бис-(3-метил-6-трет-бутилфенол), 4-трет-бутилпирокатехол, монометиловые эфиры гидрохинона, 2,6-ди-трет-бутил-пара-крезол, 1,1,3-трис(2-метил-4-гидрокси-5-трет-бутилфенил)бутан, 2,4,6-трет-аминофенол и тому подобные. Предпочтительные антиоксиданты включают IRGANOX® 245 (триэтиленгликоль-бис[3-(3-трет-бутил-4-гидрокси-5-метилфенил)пропионат) (Ciba Specialty Chemicals, Tarrytown, NY) и бис-(2,4-дихлорбензил)гидроксиламин.
Также могут быть использованы смазывающие средства, известные на современном уровне техники, такие как LUROL® 6534 (DSF-36) и LUROL® SF 8973A (Goulston Technologies, Inc.) или смазочный материал Witco (органически модифицированный полидиметилсилоксан) (Crompton Corporation). Другие смазки включают минеральные масла и сложные эфиры жирных кислот, содержащие от 8 до 22 атомов углерода в жирнокислотной части и от 1 до 22 атомов углерода в спиртовой части. Конкретные примеры включают метиловый эфир пальмитиновой кислоты, изобутилстеарат и 2-этилгексиловый эфир жирных кислот сала, сложные эфиры полиолов и карбоновых кислот, сложные эфиры кокосовых жирных кислот или глицерин и алкоксилированный глицерин, силиконы, диметилполисилоксан, полиалкиленгликоли и сополимеры этиленоксида/пропиленоксида, а также другие комбинации, включающие стеарат магния и высшие жирные кислоты пальмитиновой/стеариновой кислоты.
Спандекс предпочтительно должен проявлять превосходную смазывающую способность, статическое сопротивление и стабильность при длительном хранении. Например, спандекс может быть обработан составом для обработки волокон, содержащим полидиметилсилоксан, диорганополисилоксан, содержащий полиоксиалкиленовую функциональную группу, и антиоксидант. Антиоксидант может иметь прямую или разветвленную цепь и может быть линейным или циклическим. В случае структур с прямой цепью конечной группой молекулярной цепи может быть триметилсилоксигруппа или диметилгидроксисилоксигруппа. Такой состав для обработки волокна может содержать, например, 100 мас. частей диметилполисилоксана, имеющего вязкость от 3 до 30 мм2/сек при 25°С, и от 0,5 до 50 мас. частей диорганополисилоксана с полиоксиалкиленовой функциональной группой.
Изобретение также предусматривает упаковки для поставки спандекса, содержащие центральную часть (например, цилиндрическую центральную часть) и спандекс согласно настоящему изобретению, намотанный на центральную часть.
В другой форме осуществления изобретения изобретение предусматривает предметы одежды и одноразовые продукты индивидуальной гигиены, изготовленные из спандекса.
Приведенные ниже примеры предназначены только для иллюстративных целей и не предназначены для ограничения объема прилагаемой формулы изобретения.
Пример 1
160 граммов полиола политетрагидрофурана (PTHF) с молекулярным весом 2000 и 26 граммов этоксилированного бисфенола А (ЕВА), содержащего 4 моля этиленоксида, отвешивали в колбу объемом 1 л, оборудованную мешалкой, термометром и входным каналом для подачи азота/вакуума и нагревали до 110°F. Затем добавляли 58 граммов 4,4'-метилен-бис(фенилизоцианата) (MDI), давали выделиться теплу и нагревали до 160°F. Реакции позволяли идти при 160-165°F в течение часа под вакуумом, после чего проверяли избыток NCO. Добавляли 224 грамма диметилацетамида с получением 50%-ного раствора и охлаждали до 80°F для удлинения цепи. Раствор для реакции удлинения цепи готовили с использованием 75% этилендиамина, 15% 1,2-диаминопропана, 10% диэтиламина, 0,4% CDSA гидроксиламина, 0,5% IRGANOX® 245 (фенольный антиоксидант производства Ciba Specialty Chemicals, Tarrytown, NY), 0,25% IRGANOX® MD 1024 (фенольный антиоксидант производства Ciba Specialty Chemicals, Tarrytown, NY) и антиблокирующего агента. После перемешивания в течение часа под вакуумом раствор для получения волокна спандекс переносили в широкогорлый сосуд объемом в 1 кварту. Пленки откидывали на стекло и сушили в термостате в атмосфере азота в течение 1 часа при 150°F. Предел прочности на разрыв измеряли у пленок до и после нагревания до 300°F в течение 30 минут, а модули - до и после нагревания до 265°F в течение 30 минут. Сохранение свойств в примере 1 показано в таблице 1.
Пример 2
Процедура, использованная в примере 2, была такой же, как в примере 1, за исключением того, что было использовано 156 граммов полиола политетрагидрофурана (PTHF) и 31 грамм этоксилированного бисфенола А (ЕВА) с 6 молями этиленоксида. Сохранение свойств в примере 2 показано в таблице 1.
Пример 3
Процедура, использованная в примере 3, была такой же, как в примере 2, за исключением того, что в примере 3 была использована температура реакции от 180 до 185°F. Сохранение свойств в примере 3 показано в Таблице 1.
Пример 4
Процедура, использованная в примере 4, была такой же, как в примере 1, за исключением того, что не был использован антиблокирующий агент. Сохранение свойств в примере 4 показано в таблице 1.
Сравнительный пример А
В сравнительном примере А не был использован этоксилированный бисфенол А (ЕВА). Проводили реакцию 200 граммов полиола политетрагидрофурана (PTHF) с молекулярным весом 2000 и 45 граммов 4,4'-метилен-бис(фенилизоцианата) (MDI) в колбе на 1 л при 200-205°F в течение одного часа. После того как удавалось достигнуть правильного избытка NCO, смесь разбавляли до 50%-ного содержания твердого вещества диметилацетамидом, охлаждали до 80°F и добавляли необходимые амины, совместно со стабилизаторами и антиблокирующим агентом (как описано в примере 1). На сухих пленках измеряли предел прочности на разрыв до и после нагревания до 300°F в течение 30 минут и модули до и после нагревания до 265°F в течение 30 минут.
Сохранение свойств в сравнительном примере А показано в таблице 1. Состав и реакционные свойства сравнительного примера А показаны в таблице 2.
Таблица 1
Свойство Пример 1 Пример 2 Пример 3 Пример 4 Сравнительный пример А
% сохранения предела прочности на разрыв 92 131 120,3 187,3 124,9
Модуль растяжения при растяжении на 200%, % сохранения 110,5 112,5 107,7 133,3 87,2
Модуль растяжения при растяжении на 250%, % сохранения 114,3 115,1 107,9 130,4 84,8
Модуль восстановления при растяжении на 100%, % сохранения 116,7 115,4 110,5 144,8 93,3
Модуль восстановления при растяжении на 200%, % сохранения 108,7 113,8 103 191,7 88
Примеры 5, 6 и 7
Примеры 5, 6 и 7 были выполнены с использованием процедуры, описанной в примере 1. В примерах 5-7 настоящего изобретения этоксилированный бисфенол А (ЕВА) содержал 6 молей этиленоксида. Содержания влаги/калия в миллионных долях (ppm) для примеров 5, 6 и 7 были равны 530/12, 250/6,2 и 250/15 соответственно. Рецептуры, использованные в примерах 5, 6 и 7, показаны в таблице 2. Свойства примеров 5, 6 и 7 показаны в таблице 3.
Сравнительный пример В
Сравнительный пример В был получен, как описано в примере 1, без использования этоксилированного бисфенола А (ЕВА). Рецептура, использованная в сравнительном примере В, показана в таблице 2. Свойства сравнительного примера В показаны в таблице 3.
Таблица 2
Ингредиент предварительной смеси, вес в г Пример 5 Пример 6 Пример 7 Пример 8 Пример 9 Пример 10 Сравнительный пример А Сравнительный пример В Сравнительный пример С
PTHF 156 156 156 148 160 156 200 200 200
ЕВА 31 31 31 37 26 31 - - -
MDI 58 58 58 60 58 57 45 45 45
ITP
Свойства
Теоретическое содержание NCO 3,12% 3,12% 3,12% 3,12% 3,07% 3,0% 2,74% 2,74% 2,74%
Фактическое содержание NCO 2,84% 2,82% 2,81% 2,91% 3,42% 3,26% 2,65% 2,53% 2,86%
Таблица 3
Пример 5 Пример 6 Пример 7 Сравнительный пример В
Н2О в ppm/K в ppm 530/12 250/6,2 250/15
% ЕВА 16,6 16,6 16,6 0
NCO/OH 1,645 1,645 1,645 1,8
Теоретическое содержание NCO в % 3,12 3,12 3,12 2,74
Вязкость 38400 68800 60800 20000
Сохранение предела прочности на разрыв в % после 30 мин при 300°F 172,2 167,3 135,5 123,7
Модуль растяжения в % при растяжении на 200%, сохранение после 30 мин при 265°F 113,8 107,7 111,1 112,5
Модуль растяжения в % при растяжении на 250%, сохранение после 30 мин при 265°F 110 102,8 108,1 112,9
Модуль восстановления в % при растяжении на 100%, сохранение после 30 мин при 265°F 125 110 109,1 122,2
Модуль восстановления в % при растяжении на 200%, сохранение после 30 мин при 265°F 115 105,6 111,1 106,7
Модуль растяжения в % при растяжении на 200%, сохранение после 1 мин при 390°F 100 92,3 88,9 87,5
Примеры 8, 9 и 10
Аналогично приведенным выше примерам примеры 8, 9 и 10 были получены с использованием смеси, содержавшей 20% этоксилированного бисфенола А (ЕВА) с 6 молями этиленоксида, но с различными содержаниями влаги и калия (250/15; 250/6,2 и 530/12 соответственно). Рецептуры, использованные в примерах 8, 9 и 10, показаны в таблице 2. Свойства примеров 8, 9 и 10 показаны в таблице 4.
Сравнительный пример С
Рецептура, использованная в сравнительном примере С, показана в таблице 2. Свойства сравнительного примера С показаны в таблице 4.
Улучшение в % сохранения свойств согласно настоящему изобретению отчетливо демонстрируется при сравнении с результатами, показанными для сравнительного примера С. Эти результаты демонстрируют влияние высокой концентрации калия в примере 8 на сохранение модуля растяжения и лучшее сохранение свойств в примерах с использованием этоксилированного бисфенола А (ЕВА) по сравнению со сравнительным примером. Фиг.1-2 дают графическое представление улучшенного сохранения модулей растяжения и восстановления в примерах 8-10.
Таблица 4
Ингредиенты предварительной смеси, вес Пример 8 Пример 9 Пример 10 Сравнительный пример С
ppm Н2O/ppm К 250/15 250/6,2 530/12 Контроль
% ЕВА 20 20 20 0
NCO/OH 1,61 1,61 1,61 1,8
Теоретическое содержание NCO в % 3,12 3,12 3,12 2,74
Вязкость 18400 28800 35200 11 200
Удлинение в % 650 667 650 700
Сохранение предела прочности на разрыв
Через 60' при 250°F 122,0 97,1 117,9 125,5
Через 60' при 265°F 137,9 114,5 123,8 121,5
Модуль растяжения в % при растяжении на 200%, сохранение
Через 60' при 250°F 133,3 124,3 127,0 88,2
Через 60' при 265°F 112,6 128,8 118,0 102,9
Модуль растяжения в % при растяжении на 250%, сохранение
Через 60' при 250°F 133,0 121,0 123,3 90,3
Через 60' при 265°F 115,0 126,8 120,6 107,3
Модуль восстановления в % при растяжении на 200%, сохранение
Через 60' при 250°F 151,6 200,0 205,0 133,0
Через 60' при 265°F 100,0 188.2 145,0 140,0
Модуль восстановления в % при растяжении на 250%, сохранение
Через 60' при 250°F 144,6 148,8 153,1 105,6
Через 60' при 265°F 110,7 148,8 128,6 119,0
Процедуры испытаний
Вязкость
Вязкость измеряли с помощью вискозиметра Брукфилда, модель LV-DVII+, имеющего LV-шпиндели 1-4. Смолы с высокой вязкостью и предполимеры измеряли при 25,6°С с использованием шпинделя SC4-25. Показания при измерениях в высоковязких смолах и предполимерах снимали с пятиминутными интервалами только после того, как исследуемый материал находился в вискозиметре в течение двадцати минут. Измерение считали последним после того, как два последовательных показания совпадали.
Испытание на удлинение
Образец материала, подлежащего испытанию, штамповали с помощью эталона размером в один дюйм, маркируя образец в двух местах с интервалом в один дюйм. Соблюдали осторожность, чтобы образец не был растянут больше чем на 300%. После совмещения первой отметки с нулевой точкой на линейке длиной двадцать дюймов образец растягивали до тех пор, пока он не разрывался. В момент разрыва отмечали положение второй отметки на линейке. Процент удлинения рассчитывали, вычитая исходную длину из длины по второй отметке при разрыве и умножая на сто.
Испытание на модуль упругости
Образец материала, подлежащего испытанию, нарезали на куски размером примерно по 12 дюймов при помощи ножниц или ножниц 12" калибра и немедленно испытывали с помощью прибора Sintech, оборудованного тензодатчиком с пределами показаний шкалы 1-500 г. Внимательно следили за тем, чтобы испытываемые материалы перед испытанием не были растянуты.
Испытание на сопротивление растяжению
Сопротивление растяжению материала, подлежащего испытанию, измеряли с помощью сферического динамометрического стенда, имеющего вращающийся шпиндель диаметром 1/2" и вертикально расположенный пружинный датчик, который регистрировал силу в унциях или фунтах. Весы были снабжены блоком, который необходимо было установить на расстоянии, примерно равном 4 дюймам, от шпинделя динамометрического стенда.
Образец материала, подлежащего испытанию, оборачивали вокруг блока весов или вокруг эквивалента блока. Затем приводили в движение шпиндель динамометра. В то время как шпиндель вращался, свободные концы образца оборачивались вокруг шпинделя до тех пор, пока не захватывались концы, и образец не начинал вращаться целиком. После этого регистрировали максимальную нагрузку в фунтах.
Приготовление пленки
Пленку получали, выливая подходящее количество раствора полимера на стеклянную пластинку и используя нож Гарднера 0,060 для распределения пробы на желаемую длину. Полученную пленку сушили в термостате в атмосфере азота при 150°F в течение часа.
Процедура крашения под давлением
Эту процедуру выполняли на нарезанных полосках пленки с использованием красильной машины Polymat. Испытуемые образцы помещали в различные стаканы машины, изготовленные из нержавеющей стали, содержащие по 200 куб. см деионизированной воды, рН которой был доведен до 4,5-5,0, а затем закрывали крышкой. Испытание производили при трех значениях температуры: 230°F, 250°F и 265°F, в течение часа, после чего образцы полностью высушивали и давали им возможность восстановиться. Затем измеряли сопротивление растяжению, удлинение при разрыве и модуль упругости обработанных пленок для определения сохранения вышеуказанных свойств.
Патенты, заявки на патенты и публикации, процитированные в данной работе, полностью включены в нее посредством ссылок.
Специалисту в данной области техники из приведенного выше описания будут очевидны различные модификации изобретения, кроме тех, которые описаны в данной работе. Такие модификации должны входить в объем прилагаемой формулы изобретения.

Claims (59)

1. Спандекс, полученный из полиуретана, характеризующийся тем, что полиуретан получен способом, включающим
а) смешивание, по меньшей мере, одного полимерного гликоля и, по меньшей мере, одного полиола, имеющего алкоксилированную ароматическую функциональную группу,
б) проведение реакции продукта, полученного на этапе (а), по меньшей мере, с одним органическим диизоцианатом и
в) полимеризацию продукта, полученного на этапе (б), по меньшей мере, с одним диамином.
2. Спандекс по п.1, отличающийся тем, что полимерный гликоль является полиметилтетрагидрофураном, полибутиленгликолем, политетрагидрофураном, политетраметиленгликолевым эфиром, полипропиленгликолем, поли(3-метил-1,5-пентаметилен)гликолевым эфиром, сополимером политетраметиленгликолевого эфира и поли(3-метилтетраметилен)гликолевого эфира или смесью двух или более из них, в котором полиол, имеющий алкоксилированную ароматическую функциональную группу, является алкоксилированным бисфенолом А, алкоксилированным бис(4-гидроксифенил)метаном, алкоксилированным 1,1 -бис(4-гидроксифенил)этаном, алкоксилированным 2,2-бис(4-гидрокси-3,5-диметилфенил)пропаном, алкоксилированным 2,2-бис(4-гидрокси-3,5-дибромфенил)пропаном, алкоксилированным 2,2-бис(4-гидрокси-3-метилфенил)пропаном, алкоксилированным бис(4-гидроксифенил)сульфидом, алкоксилированным бис(4-гидроксифенил)сульфоном, алкоксилированным дифенилфенолом, алкоксилированным 2,4-бис(4-гидроксифенил)-2-метилбутаном, алкоксилированным 1,1-бис(4-гидроксифенил)циклогексаном, алкоксилированным 1,1-бис(4-гидроксифенил)-3,3,5-триметилциклогексаном, алкоксилированным 4,4'-дигидроксидифенилсульфидом, алкоксилированным 4,4'-дигидроксидифенилсульфоном или смесью двух или более из них и в котором органический диизоцианат является 4,4'-метилен-бис(фенилизоцианатом); 1,1'-метилен-бис(4-изоцианатциклогексаном), 4-метил-1,3-фенилендиизоцианатом, 5-изоцианат-1-(изоцианатметил)-1,3,3-триметилциклогексаном; 1,6-гексаметилендиизоцианатом; толуол-2,4-диизоцианатом или смесью двух или более из них.
3. Спандекс по п.1, отличающийся тем, что он содержит смесь, по меньшей мере, одного полимерного гликоля в количестве от 70 до 90 мас.% и, по меньшей мере, одного полиола, имеющего алкоксилированную ароматическую функциональную группу, в количестве от 10 до 30 мас.%.
4. Спандекс по п.1, отличающийся тем, что полимерный гликоль представляет собой поликарбонат гликоля, сложный полиэфир гликоля, простой полиэфир гликоля или смесь двух или более из них.
5. Спандекс по п.1, отличающийся тем, что полимерный гликоль представляет собой поли(пентан-1,5-карбонат)диол, поли(гексан-1,6-карбонат)диол или их смесь.
6. Спандекс по п.1, отличающийся тем, что полимерный гликоль представляет собой продукт поликонденсации диола с дикислотой.
7. Спандекс по п.6, отличающийся тем, что диол представляет собой этиленгликоль, 1,4-бутандиол, 2,2-диметил-1,3-пропандиол или смесь двух или более из них.
8. Спандекс по п.6, отличающийся тем, что дикислота представляет собой адипиновую кислоту, янтарную кислоту, додекандиоевую кислоту или смесь двух или более из них.
9. Спандекс по п.1, отличающийся тем, что полиол, имеющий алкоксилированную ароматическую функциональную группу, представляет собой алкоксилированный 2,2-бис(4-гидроксифенил)пропан, алкоксилированный бис(4-гидроксифенил)метан, алкоксилированный 1,1-бис(4-гидроксифенил)этан, алкоксилированный 2,2-бис(4-гидрокси-3,5-диметилфенил)пропан, алкоксилированный 2,2-бис(4-гидрокси-3,5-дибромфенил)пропан, алкоксилированный 2,2-бис(4-гидрокси-3-метилфенил)пропан, алкоксилированный бис(4-гидроксифенил)сульфид, алкоксилированный бис(4-гидроксифенил)сульфон или смесь двух или более из них.
10. Спандекс по п.1, отличающийся тем, что полиол, имеющий алкоксилированную ароматическую функциональную группу, представляет собой алкоксилированный фенол.
11. Спандекс по п.10, отличающийся тем, что алкоксилированный фенол представляет собой алкоксилированный дифенол или алкоксилированный дигидрофенол.
12. Спандекс по п.1, отличающийся тем, что полимеризацию продукта, полученного на этапе (б), осуществляют, по меньшей мере, с одним диамином и, по меньшей мере, с одним удлинителем цепи, выбранным из группы, состоящей из диола и аминоспирта.
13. Спандекс по п.1, отличающийся тем, что он дополнительно содержит, по меньшей мере, одно соединение, выбранное из группы, включающей добавку, придающую устойчивость к хлору, антибактериальное вещество, антиоксидант, термостабилизатор, стабилизатор, придающий устойчивость к газам, пигмент, матирующее вещество, вещество, предупреждающее клейкость, добавку, предупреждающую термоусадку, краситель, эмульгатор, увлажнитель, антистатик, регулятор рН, антиадгезив, средство, уплотняющее волокно, ингибитор коррозии, диспергирующее средство и смазку.
14. Спандекс, полученный сухим формованием из раствора полиуретанмочевины в органическом растворителе, характеризующийся тем, что полиуретанмочевина получена посредством смешивания от 90 до 70 мас.% политетрагидрофурана и от 10 до 30 мас.% этоксилированного бисфенола А с образованием смолы и проведения реакции смолы с 4,4'-метилен-бис(фенилизоцианатом), причем степень защиты равна от 1,5 до 2.
15. Спандекс по п.14, отличающийся тем, что этоксилированный бисфенол А содержит от примерно 2 до примерно 10 моль этиленоксида.
16. Спандекс по п.15, отличающийся тем, что этоксилированный бисфенол А содержит от примерно 4 до примерно 8 моль этиленоксида.
17. Спандекс по п.14, отличающийся тем, что органический растворитель содержит диметилацетамид, диметилформамид, N-метилпирролидон, диметилсульфоксид или смесь двух или более из них.
18. Спандекс по п.14, отличающийся тем, что он дополнительно содержит добавку, придающую устойчивость к хлору, антибактериальное вещество, антиоксидант, термостабилизатор, стабилизатор, придающий устойчивость к газам, пигмент, матирующее вещество, вещество, предупреждающее клейкость, добавку, предупреждающую термоусадку, краситель, эмульгатор, увлажнитель, антистатик, регулятор рН, антиадгезив, средство, уплотняющее волокно, ингибитор коррозии, диспергирующее средство, смазку или смесь двух или более из них.
19. Комплект для поставки спандекса, содержащий центральную часть и спандекс по п.14.
20. Спандекс, полученный сухим формованием из раствора полиуретанмочевины в органическом растворителе, характеризующийся тем, что полиуретанмочевина получена способом, включающим смешивание от 90 до 70 мас.% политетрагидрофурана и от 10 до 30 мас.% этоксилированного бисфенола А с образованием смолы, проведения реакции смолы с 4,4'-метиленбис(фенилизоцианатом) с образованием защищенного гликоля, причем степень защиты равна от 1,5 до 2, и полимеризации защищенного гликоля со смесью, содержащей от 83 до 92 мас.% этилендиамина, от 8 до 17% 1,2-диаминопропана и от 5 до 15% диэтиламина с образованием полиуретанмочевины.
21. Спандекс по п.20, отличающийся тем, что этоксилированный бисфенол А содержит от примерно 2 до примерно 10 моль этиленоксида.
22. Спандекс по п.21, отличающийся тем, что этоксилированный бисфенол А содержит от примерно 4 до примерно 8 моль этиленоксида.
23. Спандекс по п.20, отличающийся тем, что органический растворитель содержит диметилацетамид, диметилформамид, N-метилпирролидон, диметилсульфоксид или смесь двух или более из них.
24. Спандекс по п.20, отличающийся тем, что он дополнительно содержит добавку, придающую устойчивость к хлору, антибактериальное вещество, антиоксидант, термостабилизатор, стабилизатор, придающий устойчивость к газам, пигмент, матирующее вещество, вещество, предупреждающее клейкость, добавку, предупреждающую термоусадку, краситель, эмульгатор, увлажнитель, антистатик, регулятор рН, антиадгезив, средство, уплотняющее волокно, ингибитор коррозии, диспергирующее средство, смазку или смесь двух или более из них.
25. Комплект для поставки спандекса, содержащий центральную часть, и спандекс по п.20.
26. Спандекс, содержащий полиуретанмочевину, характеризующийся тем, что дополнительно содержит алкоксилированный бисфенол А.
27. Спандекс по п.26, отличающийся тем, что алкоксилированный бисфенол А является этоксилированным бисфенолом А, содержащим от 2 до 10 моль этиленоксида.
28. Спандекс по п.26, отличающийся тем, что алкоксилированный бисфенол А имеет содержание воды менее 550 миллионных долей и содержание калия менее 25 миллионных долей.
29. Способ получения спандекса, включающий
смешивание, по меньшей мере, одного полимерного гликоля и, по меньшей мере, одного полиола, имеющего алкоксилированую ароматическую функциональную группу, с получением полимерной смеси;
смешивание полимерной смеси, по меньшей мере, с одним органическим диизоцианатом с получением гликоля, защищенного изоцианатом;
полимеризацию гликоля, защищенного изоцианатом, по меньшей мере, с одним диамином с получением полиуретана и
формование из реакционной смеси, формование из расплава, сухое формование или мокрое формование полиуретана с получением спандекса.
30. Способ по п.29, отличающийся тем, что полимерный гликоль является полиметилтетрагидрофураном, полибутиленгликолем, политетрагидрофураном, политетраметиленгликолевым эфиром, полипропиленгликолем, поли(3-метил-1,5-пентаметилен)гликолевым эфиром, сополимером политетраметиленгликолевого эфира и (3-метилтетраметилен)гликолевого эфира или смесью двух или более из них, где полиол, имеющий алкоксилированную ароматическую функциональную группу, является алкоксилированным бисфенолом А, алкоксилированным бис(4-гидроксифенил)метаном, алкоксилированным 1,1 -бис(4-гидроксифенил)этаном, алкоксилированным 2,2-бис(4-гидрокси-3,5-диметилфенил)пропаном, алкоксилированным 2,2-бис(4-гидрокси-3,5-дибромфенил)пропаном, алкоксилированным 2,2-бис(4-гидрокси-3-метилфенил)пропаном, алкоксилированным бис(4-гидроксифенил)сульфидом, алкоксилированным бис(4-гидроксифенил)сульфоном, алкоксилированным дифенилфенолом, алкоксилированным 2,4-бис(4-гидроксифенил)2-метилбутаном, алкоксилированным 1,1-бис(4-гидроксифенил)циклогексаном, алкоксилированным 1,1-бис(4-гидроксифенил)-3,3,5-триметилциклогексаном, алкоксилированным 4,4'-дигидроксидифенилсульфидом, алкоксилированным 4,4'-дигидроксидифенилсульфоном или смесью двух или более из них, и где органический диизоцианат является 4,4'-метилен-бис(фенилизоцианатом), 1,1'-метилен-бис(4-изоцианатциклогексаном), 4-метил-1,3-фенилендиизоцианатом, 5-изоцианат-1-(изоцианатметил)-1,3,3-триметилциклогексаном, 1,6-гексаметилендиизоцианатом, толуол-2,4-диизоцианатом или смесью двух или более из них.
31. Способ по п.29, отличающийся тем, что он включает смешивание, по меньшей мере, одного полимерного гликоля в количестве от 70 до 90 мас.% и, по меньшей мере, одного полиола, имеющего алкоксилированную ароматическую функциональную группу, в количестве от 10 до 30 мас.% с образованием полимерной смеси.
32. Способ по п.29, отличающийся тем, что степень защиты гликоля, защищенного изоцианатом, равна от 1,5 до 2.
33. Способ по п.29, отличающийся тем, что полимерный гликоль является политетрагидрофураном; полиол, имеющий алкоксилированную ароматическую функциональную группу, является алкоксилированным бисфенолом А, а органический диизоцианат является 4,4'-метилен-бис(фенилизоцианатом).
34. Способ по п.29, отличающийся тем, что он включает полимеризацию гликоля, защищенного изоцианатом, по меньшей мере, с двумя диаминами с образованием полиуретана.
35. Способ по п.29, отличающийся тем, что он включает полимеризацию гликоля, защищенного изоцианатом, с этилендиамином, 1,2-диаминопропаном и диэтиламином.
36. Способ по п.29, отличающийся тем, что полимерный гликоль представляет собой поликарбонат гликоля, сложный полиэфир гликоля, простой полиэфир гликоля или смесь двух или более из них.
37. Способ по п.29, отличающийся тем, что полиол, имеющий алкоксилированную ароматическую функциональную группу, представляет собой алкоксилированный фенол.
38. Способ по п.37, отличающийся тем, что алкоксилированный фенол представляет собой алкоксилированный дифенол или алкоксилированный дигидрофенол.
39. Способ по п.29, отличающийся тем, что содержит этап сухого формования полиуретана с получением спандекса.
40. Спандекс, полученный способом, как он определен в п.29.
41. Предмет одежды, содержащий спандекс, как он определен в пп.1, 14, 20, 26 или 40.
42. Одноразовое индивидуальное гигиеническое изделие, содержащее спандекс, как он определен в пп.1, 14, 20, 26 или 40.
43. Спандекс, полученный формованием из раствора полиуретанмочевины в растворителе, характеризующийся тем, что полиуретанмочевина получена способом, включающим
смешивание от 95 до 60 мас.% полимерного гликоля и от 5 до 40 мас.% алкоксилированного бисфенола А с образованием смолы;
проведение реакции смолы, по меньшей мере, с одним органическим диизоцианатом с образованием защищенного гликоля и
полимеризацию защищенного гликоля, по меньшей мере, с одним удлинителем цепи с образованием полиуретана.
44. Спандекс по п.43, отличающийся тем, что полимерный гликоль представляет собой поликарбонат гликоля, сложный полиэфир гликоля, простой полиэфир гликоля или смесь двух или более из них.
45. Спандекс по п.43, отличающийся тем, что полимерный гликоль представляет собой полиметилтетрагидрофуран, полибутиленгликоль, политетрагидрофуран, политетраметиленгликолевый эфир, полипропиленгликоль, поли(3-метил-1,5-пентаметилен)гликолевый эфир, сополимер политетраметиленгликолевого эфира и поли-3-метилтетраметиленгликолевого эфира или смесь двух или более из них.
46. Спандекс по п.43, отличающийся тем, что органический диизоцианат является 4,4'-метилен-бис(фенилизоцианатом), 1,1'-метилен-бис(4-изоцианатциклогексаном), 4-метил-1,3-фенилендиизоцианатом, 5-изоцианат-1-(изоцианатметил)-1,3,3-триметилциклогексаном, 1,6-гексаметилендиизоцианатом, толуол- 2,4-диизоцианатом или смесью двух или более из них.
47. Спандекс по п.43, отличающийся тем, что, по меньшей мере, один удлинитель цепи представляет собой этилендиамин, 1,3-циклогександиамин, 1,4-циклогександиамин, 1,3-диаминопропан, 1,2-диаминопропан, 1,3-диаминопентан, 2-метил-1,5-пентандиамин, изофорондиамин, 1-амино-3-аминоэтил-3,5,5-триметилциклогексан или смесь двух или более из них.
48. Спандекс по п.43, отличающийся тем, что полиуретанмочевина получена способом, включающим смешивание от 90 до 70 мас.% полимерного гликоля и от 10 до 30 мас.% алкоксилированного бисфенола А с образованием смолы.
49. Спандекс по п.48, отличающийся тем, что полиуретанмочевина получена способом, включающим смешивание от 90 до 75 мас.% полимерного гликоля и от 10 до 25 мас.% алкоксилированного бисфенола А с образованием смолы.
50. Спандекс по п.49, отличающийся тем, что полиуретанмочевина получена способом, включающим смешивание от 85 до 80 мас.% полимерного гликоля и от 15 до 20 мас.% алкоксилированного бисфенола А с образованием смолы.
51. Спандекс по п.43, отличающийся тем, что степень защиты составляет от 1,5 до 3.
52. Спандекс по п.51, отличающийся тем, что степень защиты составляет от 1,5 до 2.
53. Спандекс по п.52, отличающийся тем, что степень защиты составляет от 1,6 до 1,9.
54. Спандекс по п.43, отличающийся тем, что он получен путем сухого формования из раствора полиуретанмочевины в растворителе.
55. Спандекс, полученный сухим формованием из раствора полиуретанмочевины в органическом растворителе, характеризующийся тем, что полиуретанмочевина получена посредством смешивания от 95 до 60 мас.% политетрагидрофурана и от 5 до 40 мас.% алкоксилированного бисфенола А с образованием смолы и проведения реакции смолы с 4,4'-метилен-бис(фенилизоцианатом), причем степень защиты равна от 1,5 до 3.
56. Спандекс, полученный сухим формованием из раствора полиуретанмочевины в органическом растворителе, характеризующийся тем, что полиуретанмочевина получена посредством смешивания от 95 до 60 мас.% политетрагидрофурана и от 5 до 40 мас.% алкоксилированного бисфенола А с образованием смолы, проведения реакции смолы с 4,4'-метилен-бис(фенилизоцианатом) с образованием защищенного гликоля, причем степень защиты равна от 1,5 до 3, и полимеризации защищенного гликоля со смесью, содержащей от 83 до 92 мас.% этилендиамина, от 8 до 17% 1,2-диаминопропана и от 5 до 15% диэтиламина с образованием полиуретанмочевины.
57. Спандекс, содержащий полиуретанмочевину, характеризующийся тем, что дополнительно содержит этоксилированный бисфенол А.
58. Спандекс, содержащий, по меньшей мере, один из алкоксилированных дифенолов и алкоксилированных дигидрофенолов.
59. Спандекс по п.58, отличающийся тем, что, по меньшей мере, один из алкоксилированных дифенолов и алкоксилированных дигидрофенолов является алкоксилированным бисфенолом А, алкоксилированным бис(4-гидроксифенил)метаном, алкоксилированным 1,1-бис(4-гидроксифенил)этаном, алкоксилированным 2,2-бис(4-гидрокси-3,5-диметилфенил)пропаном, алкоксилированным 2,2-бис(4-гидрокси-3,5-дибромфенил)пропаном, алкоксилированным 2,2-бис(4-гидрокси-3-метилфенил)пропаном, алкоксилированным бис(4-гидроксифенил)сульфидом, алкоксилированным бис(4-гидроксифенил)сульфоном, алкоксилированным дифенилфенолом, алкоксилированным 2,4-бис(4-гидроксифенил)-2-метилбутаном, алкоксилированным 1,1-бис(4-гидроксифенил)циклогексаном, алкоксилированным 1,1-бис(4-гидроксифенил)-3,3,5-триметилциклогексаном, алкоксилированным 4,4'-дигидроксидифенилсульфидом, алкоксилированным 4,4'-дигидроксидифенилсульфоном или смесью двух или более из них.
RU2004102679/04A 2001-07-24 2002-07-24 Усовершенствованный состав спандекса RU2294335C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30715401P 2001-07-24 2001-07-24
US60/307,154 2001-07-24

Publications (2)

Publication Number Publication Date
RU2004102679A RU2004102679A (ru) 2005-06-27
RU2294335C2 true RU2294335C2 (ru) 2007-02-27

Family

ID=23188478

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004102679/04A RU2294335C2 (ru) 2001-07-24 2002-07-24 Усовершенствованный состав спандекса

Country Status (16)

Country Link
US (2) US6780958B2 (ru)
EP (1) EP1409564A4 (ru)
JP (1) JP2004536975A (ru)
KR (1) KR100710737B1 (ru)
CN (1) CN1310991C (ru)
AR (1) AR034894A1 (ru)
AU (1) AU2002322614A1 (ru)
BR (1) BR0211363A (ru)
CA (1) CA2454138A1 (ru)
CO (1) CO5650170A2 (ru)
HK (1) HK1068146A1 (ru)
IL (1) IL159557A0 (ru)
LT (1) LT5181B (ru)
MX (1) MXPA04000704A (ru)
RU (1) RU2294335C2 (ru)
WO (1) WO2003010216A1 (ru)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3700645B2 (ja) * 2001-12-20 2005-09-28 宇部興産株式会社 相溶化剤およびそれを含むポリエステルポリオール混合物ならびにこの混合物を使用した溶融接着剤
DE10302912A1 (de) * 2003-01-24 2004-08-12 Bayer Faser Gmbh Chlorbeständige Elastanfasern
US8148475B2 (en) 2003-06-30 2012-04-03 Lubrizol Advanced Materials, Inc. Melt spun polyether TPU fibers having mixed polyols and process
CN100381477C (zh) * 2003-06-30 2008-04-16 路博润高级材料公司 含有混合多醇的熔融纺丝的聚醚tpu纤维和方法
WO2005078009A1 (en) * 2004-02-06 2005-08-25 Invista Technologies S.A R.L. Substrates conatining adhesion promoting additives and articles prepared therewith
KR100615778B1 (ko) * 2004-12-28 2006-08-25 주식회사 효성 항균성 탄성섬유의 제조방법
US20100152405A1 (en) * 2005-12-06 2010-06-17 E.I. Du Pont De Nemours And Company Thermoplastic polyurethanes comprising polytrimethylene ether soft segments
US20070129524A1 (en) * 2005-12-06 2007-06-07 Sunkara Hari B Thermoplastic polyurethanes comprising polytrimethylene ether soft segments
KR20090004369A (ko) * 2007-07-06 2009-01-12 주식회사 효성 응력유지율이 높은 스판덱스 탄성사를 적용한 일회용위생용품
KR101052574B1 (ko) * 2008-11-04 2011-07-29 씨제이제일제당 (주) 인삼으로부터 진세노사이드 Rg1 또는 Rb1이 강화된 추출물 분획을 제조하는 방법
US8292863B2 (en) 2009-10-21 2012-10-23 Donoho Christopher D Disposable diaper with pouches
CN103109005B (zh) * 2010-09-21 2016-09-07 英威达技术有限公司 制备和使用包含抗粘添加剂的弹性纤维的方法
CN102154729B (zh) * 2011-05-18 2012-08-22 浙江开普特氨纶有限公司 一种高伸长高牵伸氨纶纤维的制备方法
CN102220653B (zh) * 2011-05-18 2013-03-13 浙江开普特氨纶有限公司 一种耐热氨纶纤维的制备方法
CN103588945A (zh) * 2012-08-16 2014-02-19 南通华盛高聚物科技发展有限公司 一种低熔点氨纶切片及其制备方法
KR101396107B1 (ko) 2012-10-26 2014-05-15 주식회사 효성 열세트성이 향상된 폴리우레탄우레아 탄성사 및 그 제조 방법
KR101396100B1 (ko) 2012-10-26 2014-05-15 주식회사 효성 고속방사용 폴리우레탄우레아 탄성사의 제조 방법
WO2015088061A1 (ko) * 2013-12-10 2015-06-18 주식회사 효성 고속방사용 폴리우레탄우레아 탄성사의 제조 방법
WO2015088059A1 (ko) * 2013-12-10 2015-06-18 주식회사 효성 열세트성이 향상된 폴리우레탄우레아 탄성사 및 그 제조 방법
WO2015088060A1 (ko) * 2013-12-10 2015-06-18 주식회사 효성 열세트성이 향상된 폴리우레탄우레아 탄성사 및 그 제조 방법
CN104357943B (zh) * 2014-10-24 2016-08-17 浙江华峰氨纶股份有限公司 一种多孔细旦氨纶的制备方法
JP6912385B2 (ja) * 2015-12-25 2021-08-04 日本ポリテック株式会社 硬化性組成物、硬化物、オーバーコート膜、被覆フレキシブル配線板およびその製造方法
CN116261581A (zh) 2020-12-17 2023-06-13 巴斯夫欧洲公司 从含己内酰胺的聚合物和含聚氨酯的聚合物,特别是聚氨酯嵌段共聚物的混合物选择性解聚聚酰胺6以得到己内酰胺
MX2024011005A (es) 2022-03-10 2024-09-17 Basf Se Poliuretano urea y su metodo de preparacion.
KR20240076116A (ko) * 2022-11-23 2024-05-30 효성티앤씨 주식회사 내열성 및 회복탄성이 우수한 폴리우레탄우레아 탄성사 및 그의 제조방법
WO2024175671A1 (en) 2023-02-22 2024-08-29 Basf Se Process for depolymerizing polyamide prepared from caprolactam

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679631A (en) 1971-02-08 1972-07-25 Globe Mfg Co Higher heat set spandex prepared from a mixture of a polyether or polyester prepolymer and a dihydric phenol and method of preparation
US4137398A (en) * 1978-06-09 1979-01-30 Basf Wyandotte Corporation Process for the removal of catalyst from polyether polyol
JPS58194915A (ja) 1982-05-10 1983-11-14 Fuji Boseki Kk ポリウレタン弾性体の製造方法
DE3233384A1 (de) * 1982-09-08 1984-03-08 Akzo Gmbh, 5600 Wuppertal Thermoplastische polyurethan-elastomere aus cyclohexan-1.4-diisocyanat
US5000899A (en) 1988-05-26 1991-03-19 E. I. Du Pont De Nemours And Company Spandex fiber with copolymer soft segment
US4973647A (en) 1989-05-31 1990-11-27 E. I. Du Pont De Nemours And Company Fiber from polyether-based spandex
JP3023483B2 (ja) 1990-03-27 2000-03-21 東洋紡績株式会社 ポリウレタン弾性繊維の製造方法
US5362432A (en) * 1993-04-02 1994-11-08 E. I. Du Pont De Nemours And Company Process for dry spinning spandex
DE4446332A1 (de) * 1994-12-23 1996-06-27 Bayer Ag Thermoplastische Polyurethane mit verbessertem Schmelzefluß
US6022939A (en) * 1994-12-23 2000-02-08 Bayer Aktiengesellschaft Thermoplastic polyurethanes with improved melt flow
JP3160230B2 (ja) * 1996-09-25 2001-04-25 三洋化成工業株式会社 熱溶融性改良剤および熱溶融性樹脂組成物
US5959059A (en) * 1997-06-10 1999-09-28 The B.F. Goodrich Company Thermoplastic polyether urethane
US5840233A (en) * 1997-09-16 1998-11-24 Optimer, Inc. Process of making melt-spun elastomeric fibers
DE19816525A1 (de) * 1998-04-15 1999-10-21 Basf Ag Verfahren zur Herstellung von thermoplastischen Polyurethanen
JP3059707B2 (ja) * 1998-09-28 2000-07-04 三洋化成工業株式会社 ポリウレタン樹脂系スラッシュ成形用材料
KR100273189B1 (ko) 1998-10-08 2000-12-01 조정래 내열성 및 물리적 성질이 우수한 폴리우레탄 탄성섬유의 제조방법
KR20000025061A (ko) 1998-10-08 2000-05-06 조정래 내열성이 우수한 폴리우레탄 탄성섬유의 제조방법
US6342641B1 (en) * 2000-05-10 2002-01-29 Milliken & Company Purified bisphenol a ethoxylates and processes of purifying thereof

Also Published As

Publication number Publication date
HK1068146A1 (en) 2005-04-22
US20030088049A1 (en) 2003-05-08
US20050027094A1 (en) 2005-02-03
CN1310991C (zh) 2007-04-18
LT2003112A (en) 2004-07-26
RU2004102679A (ru) 2005-06-27
MXPA04000704A (es) 2005-02-17
US6780958B2 (en) 2004-08-24
CN1533408A (zh) 2004-09-29
KR20040027882A (ko) 2004-04-01
LT5181B (lt) 2004-11-25
CA2454138A1 (en) 2003-02-06
BR0211363A (pt) 2004-09-21
AR034894A1 (es) 2004-03-24
CO5650170A2 (es) 2006-06-30
JP2004536975A (ja) 2004-12-09
EP1409564A1 (en) 2004-04-21
WO2003010216A1 (en) 2003-02-06
EP1409564A4 (en) 2006-05-03
AU2002322614A1 (en) 2003-02-17
KR100710737B1 (ko) 2007-04-23
IL159557A0 (en) 2004-06-01

Similar Documents

Publication Publication Date Title
RU2294335C2 (ru) Усовершенствованный состав спандекса
EP2495270B1 (en) Polyester polyol, polyurethane utilizing the polyester polyol and process for production thereof, and polyurethane molded article
JP5271085B2 (ja) 高分子量ポリ(テトラメチレン−コ−エチレンエーテル)グリコールからのスパンデックス
US20060135724A1 (en) Spandex having low heat-set temperature and materials for their production
JP2009516769A (ja) 高分子グリコールとブレンドされたポリ(テトラメチレン−コ−エチレンエーテル)グリコールからのスパンデックス
US5981686A (en) Spandex made with 1,3-diaminopentane
US20060276610A1 (en) Spandex from poly(tetramethylene-co-ethyleneether)glycols having high ethyleneether content
JP6031331B2 (ja) ポリウレタン弾性繊維及びその製造方法
WO2011071502A1 (en) Improved elastomeric compositions
KR100580418B1 (ko) 1,3-디아미노펜탄을 사슬 연장제로서 사용하여 제조한스판덱스-섬유 폴리우레탄우레아 중합체

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080725