RU2294320C2 - Способ алкилирования бензола и алкилатор для его осуществления - Google Patents

Способ алкилирования бензола и алкилатор для его осуществления Download PDF

Info

Publication number
RU2294320C2
RU2294320C2 RU2005112040/04A RU2005112040A RU2294320C2 RU 2294320 C2 RU2294320 C2 RU 2294320C2 RU 2005112040/04 A RU2005112040/04 A RU 2005112040/04A RU 2005112040 A RU2005112040 A RU 2005112040A RU 2294320 C2 RU2294320 C2 RU 2294320C2
Authority
RU
Russia
Prior art keywords
benzene
alkylator
turbulization
ethylene
catalytic complex
Prior art date
Application number
RU2005112040/04A
Other languages
English (en)
Other versions
RU2005112040A (ru
Inventor
Рустам Якубович Дебердеев (RU)
Рустам Якубович Дебердеев
Харлампий Эвклидович Харлампиди (RU)
Харлампий Эвклидович Харлампиди
Александр Александрович Берлин (RU)
Александр Александрович Берлин
Тимур Рустамович Дебердеев (RU)
Тимур Рустамович Дебердеев
Вадим Петрович Захаров (RU)
Вадим Петрович Захаров
Руслан Мирсаетович Гарипов (RU)
Руслан Мирсаетович Гарипов
Original Assignee
Рустам Якубович Дебердеев
Харлампий Эвклидович Харлампиди
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Рустам Якубович Дебердеев, Харлампий Эвклидович Харлампиди filed Critical Рустам Якубович Дебердеев
Priority to RU2005112040/04A priority Critical patent/RU2294320C2/ru
Publication of RU2005112040A publication Critical patent/RU2005112040A/ru
Application granted granted Critical
Publication of RU2294320C2 publication Critical patent/RU2294320C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к получению мономеров, используемых в производстве высокомолекулярных соединении, конкретно к алкилированию бензола низшими олефинами в алкилаторе. Способ осуществляют в три этапа: на первом смешивают жидкие углеводороды: осушенный бензол, полиалкилбензолы и возвратный бензол, на втором - в смесь жидких углеводородов вводят этилен или другие олефины, на третьем - каталитический комплекс на основе хлористого алюминия, причем на всех трех этапах обеспечивают движение потока в турбулентном режиме в алкилаторе, оснащенном статическими средствами турбулизации. Алкилатор включает вертикальный цилиндрический пустотелый корпус с нижним расположением патрубков для ввода компонентов, в том числе через гребенку, и верхним расположением патрубков для отвода реакционной массы и газообразных продуктов. Корпус выполнен из конфузорных, диффузорных и цилиндрических элементов, соосно связанных между собой. Патрубки ввода исходных компонентов расположены вдоль оси корпуса, причем патрубки ввода олефинов и каталитического комплекса разнесены между собой и от патрубков ввода жидких углеводородов не менее чем на две секции турбулизации. Технический результат - повышение выхода алкилбензола за счет непрерывного осуществления процесса в малогабаритном оборудовании. 2 н. и 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области получения мономеров, используемых в производстве высокомолекулярных соединений, а именно к способу алкилирования бензола в предлагаемом алкилаторе. Изобретение также относится к устройствам для осуществления процесса алкилирования бензола.
Известен способ непрерывной растворной сополимеризации (пат. RU №2141873, кл. С 08 F 2/06, В 01 J 19/18, 27.11.99, Бюл. №33), включающий растворение в углеводородном растворителе мономеров, водорода и компонентов каталитического комплекса, подачу раствора газожидкостной смеси, содержащей мономер, растворитель и водород, в нижнюю часть реактора, снабженного мешалкой, подачу растворов компонентов каталитического комплекса в реактор, сополимеризацию при повышенных давлении и температуре. Приготовление газожидкостной смеси мономеров, водорода, растворителя и раздельное растворение компонентов каталитического комплекса в растворителе осуществляют в потоке при турбулентном смешении в трубчатых насадках, соответствующих входных штуцерах реактора, при скоростях движения потока не менее 3±2 м/с для газожидкостной смеси и не менее 0,3 м/с для компонентов каталитического комплекса.
Однако недостатком данного способа является сложность реализации процесса алкилирования бензола с получением этилбензола, это связано с тем, что при возможности обеспечения смешения газожидкостной смеси за счет турбулентного движения потока стабильный процесс алкилирования обеспечить сложно. Сложности обусловлены перемешиванием в реакторе большого объема при высоких скоростях реакции алкилирования.
Наиболее близким, по сути, является известный способ алкилирования бензола (А.П.Крючков. Общая технология синтетических каучуков. М.: Химия, 1969, с.235-240), основанный на смешении жидких углеводородов: осушенного бензола, возвратного бензола, полиалкилбензола с этиленом или другими олефинами и каталитическим комплексом на основе хлористого алюминия, который подают в нижнюю часть реактора через соответствующие патрубки или через гребенку. В реакторе они смешиваются с помощью барботажа этилена и взаимодействуют при повышенном давлении и температуре с выделением тепла. Реакционная масса отводится через верхний патрубок корпуса алкилата.
Описанный способ имеет низкую конверсию основного продукта ввиду слабого перемешивания взаимодействующих сред.
Известен реактор-смеситель для непрерывной растворной сополимеризации (пат. RU №2141873, кл. С 08 F 2/06, В 01 J 19/18, 27.11.99, Бюл. №33), содержащий корпус с мешалкой и технологические патрубки ввода исходных компонентов и отвода раствора сополимера, причем патрубки снабжены трубчатыми насадками, выполненными из расширяющихся и сужающихся усеченных конусов при соотношении диаметров конфузора и диффузора 1:1,3-5 и углов наклона образующих конусов к оси насадки 15-70°.
Реактор-смеситель описанной конструкции предназначен для смешения отдельных компонентов, но не подходит для процесса алкилирования бензола.
Наиболее близким к заявляемому техническому решению является алкилатор (А.П.Крючков. Общая технология синтетических каучуков. М.: Химия, 1969, с.235-240), который выполнен из пустотелой, вертикальной стальной колонны с рубашками обогрева. В нижней части колонны выполнены патрубки для ввода исходных компонентов, часть из них может предварительно вводится в гребенку, соединенную с патрубком колонны. В верхней части колонны патрубки отвода реакционной массы и газообразных продуктов. Корпус колонны выполняют из кислотостойкой стали, например «Хостелой», или внутри колонны выкладывают кислотостойкую футеровку, или покрывают кислотоупорной эмалью.
Однако полимеризатор объемный, имеет большие размеры и массу, требует большой фундамент и этажерку для обслуживания.
Задачей является разработка способа и устройства-алкилатора, позволяющего непрерывно осуществлять процесс алкилирования бензола с повышенным выходом этилбензола и использовать в процессе оборудование малого размера и массы.
Поставленная задача решается использованием способа алкилирования бензола, включающего смешение осушенного бензола, полиалкилбензолов, возвратного бензола, этилена или других олефинов и суспензии каталитического комплекса, при этом процесс осуществляют в три этапа: на первом смешивают жидкие углеводороды - осушенный бензол, полиалкилбензол, возвратный бензол, на втором - в смесь жидких углеводородов вводят этилен, на третьем - каталитический комплекс, причем на всех трех этапах обеспечивают движение потока в турбулентном режиме в алкилаторе, оснащенном статическими средствами турбулизации.
Заявляемый способ осуществляют в алкилаторе, содержащем вертикальный цилиндрический пустотельный корпус из кислостойкой стали, или с антикоррозионной защитой и нижним, относительно корпуса, расположением патрубков ввода компонентов, в т.ч. через гребенку, и верхним расположением патрубков отвода реакционной массы и газообразных продуктов, при этом корпус, оснащенный статическими средствами турбулизации, выполнен из конфузорных, диффузорных и цилиндрических элементов, соосно связанных между собой, а патрубки ввода исходных компонентов расположены вдоль оси корпуса, причем патрубки ввода этилена и каталитического комплекса разнесены между собой и от патрубков ввода жидких углеводородов не менее чем на две секции турбулизации. В алкилаторе, как минимум, в одном цилиндрическом элементе секции турбулизации, находящемся по ходу потока, после патрубка подачи этилена выполнена насадка из пористого материала.
Отличительными признаками заявляемого способа алкилирования бензола является то, что процесс осуществляют в три этапа: на первом смешивают жидкие углеводороды - осушенный бензол, полиалкилбензолы и возвратный бензол, на втором - в смесь жидких углеводородов вводят этилен, на третьем - каталитический комплекс, причем на всех трех этапах обеспечивают движение потока в турбулентном режиме в алкилаторе, оснащенном статическими средствами турбулизации.
Отличительными признаками заявляемого алкилатора является то, что корпус, оснащенный статическими средствами турбулизации, выполнен из конфузорных, диффузорных и цилиндрических элементов, соосно связанных между собой, а патрубки ввода исходных компонентов расположены вдоль оси корпуса, причем патрубки ввода этилена и каталитического комплекса разнесены между собой и от патрубков ввода жидких углеводородов не менее чем на две секции турбулизации. В алкилаторе, как минимум, в одном цилиндрическом элементе секции турбулизации, находящемся по ходу потока, после патрубка подачи этилена выполнена насадка из пористого материала.
Процесс алкилирования бензола заключается во взаимодействии бензола с этиленом или другими олефинами в присутствии каталитического комплекса при повышенных температуре и давлении и во многом определяется интенсивностью смешения взаимодействующих сред.
Интенсивное взаимодействие технологических сред обеспечивает турбулентное движение, которое с учетом особенностей химической активности сред возможно в устройствах со статическими средствами турбулизации. Сочетание конфузор-диффузорных (сходящихся и расходящихся усеченных конусов) и цилиндрического элементов образуют секцию турбулизации. Наибольший диаметр имеет цилиндрический элемент, наименьший - в месте сочленения конфузора и диффузора. Углы наклона образующихся усеченых конусов 15-85° относительно оси секции турбулизации. Выбор диаметров конфузора и диффузора и длины секции турбулизации обусловлен обеспечением турбулентного движения при заданной скорости потока.
Элементы секции турбулизации, соосно жестко связываясь друг с другом, составляют корпус алкилатора, образуя внутри корпуса статические средства турбулизации.
Поток, двигаясь через сужающиеся и расширяющиеся диаметры секции турбулизации, подвергается последовательно сжатию и расширению, способен при определенных скоростях (выше числа Re 2500) образовывать вихри, обеспечивая турбулизацию потока. Это приводит к полному и быстрому смешению жидкостей, газов и суспензий. Полнота протекания обеспечивается на 1-12 секциях турбулизации в зависимости от характеристик взаимодействующих сред.
Особенность процесса алкилирования в данном способе заключается в том, что его необходимо осуществлять поэтапно. В начале смешать жидкие углеводороды: осушенный бензол, возвратный бензол и полиалкилбензолы. Затем в поток жидких углеводородов, движущийся в турбулентном режиме, вводят газообразный этилен. За счет турбулизации потока газообразный этилен быстро распределяют и растворяют в жидких углеводородах, как минимум, на двух секциях турбулизации.
И последняя операция - введение каталитического комплекса в турбулентный поток смеси жидких углеводородов и этилена. Равномерное распределение каталитического комплекса по объему технологического потока и постоянное обновление среды вокруг катализатора приводит к быстрому и полному протеканию химического взаимодействия - алкилированию бензола.
Использование заявляемой конструкции алкилатора, оснащенного статическими средствами турбулизации, и последовательное разнесение вдоль оси корпуса технологических патрубков введения жидких углеводов (либо одновременно, либо последовательно), этилена и каталитического комплекса, и последующее продолжение турбулентного движения обеспечивает ряд преимуществ:
- повышают выход конечного продукта;
- алкилатор не объемный, малой массы, не требует фундамента и устанавливается на любой высоте и пространственном положении.
В литературе не найдено использование совокупности признаков способа алкилирования бензола и алкилатора для его осуществления, что говорит о соответствии критериям патентоспособности.
На фиг.1 изображен продольный разрез алкилатора. Алкилатор содержит цилиндрический корпус 1 со статическими средствами турбулизации, образованными конфузорными 2, диффузорными 3 и цилиндрическими 4 элементами, которые вместе составляют секцию турбулизации. Корпус 1 имеет две теплообменные рубашки: для подогрева 5 и отвода тепла 6, технологические патрубки для подачи осушенного бензола 7, полиалкилбензолов 8, возвратного бензола 9, этилена 10, каталитического комплекса 11 и отвода реакционной массы 12. Возможен вариант, когда патрубки 8 и 9 размещены в одной секции турбулизации. В секции турбулизации после патрубка подачи этилена 10 выполнена насадка из пористого материала 13.
Алкилатор работает следующим образом. Осушенный бензол через патрубок 7 подают во внутреннюю полость корпуса 1 алкилатора, и на секции турбулизации поток приобретает турбулентное движение, и в него вводят через патрубок 8 полиалкилбензол, который быстро и равномерно смешивают с осушенным бензолом в турбулентном потоке. Затем на следующей секции турбулизации через патрубок 9 вводят возвратный бензол и вновь осуществляют быстрое и равномерное смешение жидких углеводородов. Возможен вариант, когда введение полиалкилбензолов и возвратного бензола проводят одновременно в одной секции турбулизации.
В турбулентный поток смеси жидких углеводородов через патрубок 10 вводят определенное количество этилена, который, как минимум, на двух секциях турбулизации смешивают и растворяют в объеме смеси жидких углеводородов, при этом в одной из секций поток этилена дополнительно разбивают на насадке из пористого материала. Затем через патрубок 11 вводят каталитический комплекс. В результате интенсивного турбулентного смешения каталитический комплекс быстро и равномерно распределяют в технологическом потоке, и начинается реакция алкилирования бензола с выделением тепла, для чего часть тепла отводится через стенку корпуса в теплообменную рубашку 6. Полученная реакционная масса через патрубок 12 отводится на дальнейшие операции.
Заявляемый способ алкилирования бензола осуществляют в заявляемом алкилаторе.
Пример 1
В алкилатор, корпус которого выполнен из стеклянной трубки диаметром 20 мм и длиной 1300 мм с выполненными в нем одиннадцатью статическими средствами турбулизации и рубашками нагрева и охлаждения, подают с помощью центробежного насоса производительностью 200 кг/час заранее смешанные углеводороды под давлением 0,13 МПа в соотношении:
Осушенный бензол 50 м.ч.
Полиалкилбензолы 8 м.ч.
Возвратный бензол 42 м.ч.
Внутренняя поверхность корпуса представляет собой поверхность с чередованием диаметров разного размера, наибольший 20 мм, наименьший 15 мм, как показано на чертеже.
Температура смеси жидких углеводородов 80°С. Через патрубок в турбулентный поток вводят газообразный этилен под давлением 0,14 МПа в соотношении к объему жидких углеводородов как 5:1.
После введения этилена в следующей секции турбулизации по ходу движения потока укреплена насадка из крупнопористого стекла с порозностью 0,85.
После перемещения смеси жидких углеводородов и этилена еще в 2-х секциях турбулизации в поток вводят под давлением 0,15 МПа стандартный каталитический комплекс Густавсона, состоящий из хлористого алюминия, хлорэтила, соляной кислоты и этилбензола. Каталитичесикй комплекс подают специально футерованным насосом в соотношении 1:10 к массе жидких углеводородов при температуре 65°С.
Затем технологический поток дополнительно турбулизируют в корпусе алкилатора на семи статических средствах турбулизации и полученную реакционную массу с температурой 102°С охлаждают, нейтрализуют и анализируют.
Состав реакционной массы по хроматографическому анализу, мас.%:
Этилбензол 47,8
Полиалкилбензолы 6,5
Бензол 45,7
Пример 2 (сравнительный)
В алкилатор, корпус которого представляет вертикально установленную стеклянную трубу неизменного диаметра размером 80 мм с рубашкой обогрева и длиной 1500 мм, снизу вводят через патрубок смесь жидких углеводородов с температурой 80°С под давлением 0,13 МПа. Производительность центробежного насоса 200 кг/час. На расстоянии 75 мм выше патрубка ввода жидких углеводородов внутри корпуса укреплена кольцевая трубка с отверстиями и патрубком для равномерной подачи этилена по сечению корпуса. Этилен под давлением 0,15 МПа через патрубок и кольцо, в соотношении 5:1 к объему жидких углеводородов барботируют в поток. Выше патрубка этилена через 100 мм на корпусе установлен патрубок подачи суспензии каталитического комплекса, который специальным футерованным насосом закачивают во внутрь корпуса в соотношении 1:10 к объему жидких углеводородов при температуре 65°С. В результате барботажа протекает перемешивание технологических сред и начинается реакция алкилирования.
После протекания химического взаимодействия реакционная масса имеет температуру 94°С, и далее ее подвергают охлаждению и нейтрализации.
Состав реакционной массы:
Этилбензол 38,2
Полиалкилбензолы 8,4
Бензол 53,4
Пример 3. Условия, как в примере 1.
В качестве олефина использовали пропилен (ГОСТ 25043-87), подаваемый при температуре 100°С в соотношении к объему жидких углеводородов как 5,5:1.
Состав реакционной массы по хроматографическому анализу, мас.%.
Изопропилбензол 32,4
Полиалкилбензолы 9,8
Бензол 57,8
Из приведенных примеров видно, что турбулизация технологических сред и поэтапная подача исходных компонентов обеспечивает увеличение выхода этилбензола.
Алкилатор прост в изготовлении, небольшой по размерам и массе, его можно устанавливать в любом пространственном положении, он не требует фундаментов и этажерки для обслуживания.

Claims (3)

1. Способ алкилирования бензола, включающий смешение осушенного бензола, полиалкилбензолов, возвратного бензола, этилена или других олефинов и суспензии каталитического комплекса, отличающийся тем, что процесс осуществляют в три этапа: на первом смешивают жидкие углеводороды: - осушенный бензол, полиалкилбензолы и возвратный бензол, на втором в смесь жидких углеводородов вводят этилен или другие олефины, на третьем - каталитический комплекс, причем на всех трех этапах обеспечивают движение потока в турбулентном режиме в алкилаторе, оснащенном статическими средствами турбулизации.
2. Алкилатор, содержащий вертикальный цилиндрический пустотелый корпус из кислотостойкой стали или с антикоррозийной защитой и нижним относительно корпуса расположением патрубков ввода компонентов, в том числе через гребенку, и верхним расположением патрубков отвода реакционной массы и газообразных продуктов, отличающийся тем, что корпус, оснащенный статическими средствами турбулизации, выполнен из конфузорных, диффузорных и цилиндрических элементов, соосно связанных между собой, а патрубки ввода исходных компонентов расположены вдоль оси корпуса, причем патрубки ввода этилена и каталитического комплекса разнесены между собой и от патрубков ввода жидких углеводородов не менее чем на две секции турбулизации.
3. Алкилатор по п.2, отличающийся тем, что как минимум в одном цилиндрическом элементе секции турбулизации, находящемся по ходу потока, после патрубка подачи этилена выполнена насадка из пористого материала.
RU2005112040/04A 2005-04-11 2005-04-11 Способ алкилирования бензола и алкилатор для его осуществления RU2294320C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005112040/04A RU2294320C2 (ru) 2005-04-11 2005-04-11 Способ алкилирования бензола и алкилатор для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005112040/04A RU2294320C2 (ru) 2005-04-11 2005-04-11 Способ алкилирования бензола и алкилатор для его осуществления

Publications (2)

Publication Number Publication Date
RU2005112040A RU2005112040A (ru) 2006-10-20
RU2294320C2 true RU2294320C2 (ru) 2007-02-27

Family

ID=37437761

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005112040/04A RU2294320C2 (ru) 2005-04-11 2005-04-11 Способ алкилирования бензола и алкилатор для его осуществления

Country Status (1)

Country Link
RU (1) RU2294320C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU191347U1 (ru) * 2018-12-10 2019-08-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Устройство для разделения продуктов реакции алкилирования бензола
RU2770585C1 (ru) * 2021-06-08 2022-04-18 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ получения изопропилбензола алкилированием бензола пропиленом

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КРЮЧКОВ А.П. Общая технология синтетических каучуков, М., Химия, 1969, с.235-240. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU191347U1 (ru) * 2018-12-10 2019-08-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Устройство для разделения продуктов реакции алкилирования бензола
RU2770585C1 (ru) * 2021-06-08 2022-04-18 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ получения изопропилбензола алкилированием бензола пропиленом

Also Published As

Publication number Publication date
RU2005112040A (ru) 2006-10-20

Similar Documents

Publication Publication Date Title
KR100634922B1 (ko) 기-액, 액-액 또는 기-액-고 화학 반응 수행용 반응기
CA2650675A1 (en) Process for converting synthesis gas into higher hydrocarbons
KR20090089346A (ko) 고압 분리기
KR20140057465A (ko) 반응기 및 상기 반응기를 이용한 알킬화 공정
WO2018111149A1 (ru) Способ активации катализатора, реактор и способ получения углеводородов в процессе фишера-тропша
CN105944652A (zh) 列管式微通道烷基化反应器及其使用方法
JP2007530275A (ja) スラリー気泡塔の反応器
BRPI0510932B1 (pt) Processo para produzir líquido e, opcionalmente, hidrocarbonetos gasosos a partir de reagentes gasosos em um leito expandido de lama
KR100582125B1 (ko) α-올레핀의 기상 중합 방법 및 장치
RU2294320C2 (ru) Способ алкилирования бензола и алкилатор для его осуществления
KR20010032198A (ko) 중합체 제조 방법 및 장치
JP2004533315A (ja) 気体/液体反応用又は気体/液体/固体反応用の反応器
JP2004533315A5 (ru)
RO120544B1 (ro) Procedeu semicontinuu şi reactor pentru producere de poliaducte de oxizi de alchilenă
RU2562483C2 (ru) Способ и установка для получения битума
RU2372572C2 (ru) Теплообменный аппарат (варианты)
JP2023522374A (ja) ポリα-オレフィンの製造装置および調製方法
CN111203171B (zh) 一种用于气液相反应的新型自压强制循环式反应器
CN111434377B (zh) 一种盘管微反应器和一种微反应器系统
WO2006097906A1 (en) Production of liquid and, optionally, gaseous products from gaseous reactants
CN111434753A (zh) 一种合成聚α烯烃基础油的方法
CN212068771U (zh) 格氏试剂连续制备装置及系统
RU32706U1 (ru) Установка для жидкофазного одностадийного синтеза изопрена (варианты)
RU42185U1 (ru) Установка для одностадийного жидкофазного синтеза изопрена
RU2241533C1 (ru) Установка для жидкофазного одностадийного синтеза изопрена (варианты)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070412