RU2280966C2 - Устройство расщепления для создания нейтронов - Google Patents

Устройство расщепления для создания нейтронов Download PDF

Info

Publication number
RU2280966C2
RU2280966C2 RU2003103847/06A RU2003103847A RU2280966C2 RU 2280966 C2 RU2280966 C2 RU 2280966C2 RU 2003103847/06 A RU2003103847/06 A RU 2003103847/06A RU 2003103847 A RU2003103847 A RU 2003103847A RU 2280966 C2 RU2280966 C2 RU 2280966C2
Authority
RU
Russia
Prior art keywords
target
particle beam
chamber
axis
propagation
Prior art date
Application number
RU2003103847/06A
Other languages
English (en)
Other versions
RU2003103847A (ru
Inventor
Гийом РИТТЕР (FR)
Гийом РИТТЕР
Original Assignee
Коммиссариат А Л`Энержи Атомик
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Коммиссариат А Л`Энержи Атомик filed Critical Коммиссариат А Л`Энержи Атомик
Publication of RU2003103847A publication Critical patent/RU2003103847A/ru
Application granted granted Critical
Publication of RU2280966C2 publication Critical patent/RU2280966C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/30Subcritical reactors ; Experimental reactors other than swimming-pool reactors or zero-energy reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/02Neutron sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Particle Accelerators (AREA)

Abstract

Изобретение относится к устройствам для генерирования нейтронных пучков. Устройство расщепления для создания нейтронов содержит мишень (63) расщепления, которая создает нейтроны при взаимодействии с полым пучком (88) частиц, распространяющимся внутри камеры (86), другую камеру (84), содержащую мишень, и герметичную перегородку (92), разделяющую камеры. Техническим результатом является минимизация термомеханических ограничений для основных компонентов устройства расщепления для создания нейтронов, главным образом для герметичной перегородки, отделяющей мишень расщепления от вакуумной камеры. 14 з.п. ф-лы, 12 ил.

Description

Область техники, к которой относится изобретение
Данное изобретение относится к устройству расщепления для создания нейтронов.
Устройство используется для применения в областях, в которых необходим источник интенсивного нейтронного излучения.
Изобретение применимо, в частности, для исследований в области физики, в медицине и для ядерных превращений материалов.
Уровень техники
Расщепление относится к взаимодействию частиц и, в частности, протонов, выходящих из ускорителя с большой энергией, равной около 200 МэВ или более, с ядром мишени.
Это взаимодействие создает нейтроны, например 30 нейтронов на 1 ГэВ падающего протона, когда мишень выполнена из жидкого свинца. Около 80% этих нейтронов образуются в результате испарения, а остальные нейтроны образуются вследствие внутриядерных каскадных процессов. Спектр этих нейтронов имеет максимум около 3,5 МэВ.
Мишень для расщепления может быть твердой или же может быть жидкой. Она может быть также толстой или тонкой.
Жидкая мишень расщепления представляет собой переносящую тепло жидкость. Она обычно состоит из тяжелого металла в жидком состоянии, например, выбранного из жидкого свинца, эвтектики свинца, висмута и ртути.
Эта жидкая мишень охлаждает последнюю поверхность раздела, отделяющую ее от вакуумной камеры, при этом частицы, которые будут взаимодействовать с этой мишенью, циркулируют в вакуумной камере, или в любой другой буферной зоне, введенной между этой вакуумной камерой и мишенью.
На фиг.1 показан продольный разрез известного устройства расщепления, содержащего мишень 2 расщепления, выполненную из жидкого тяжелого металла. Это устройство содержит также камеру 4, в которой циркулирует мишень расщепления. Позицией 6 обозначена зона расщепления.
На одном конце этой камеры 4 предусмотрен вход 8 для холодной жидкости, переносящей тепло (мишени), а на другом конце камеры - выход 10 для горячей жидкости, переносящей тепло.
Показана также вакуумная камера 12, внутри которой проходит пучок 14 частиц, который взаимодействуют с мишенью в зоне 6 расщепления. Эта вакуумная камера отделена от камеры 4 первым окном 16, образующим мембрану, которая охлаждается циркулирующей водой.
Предусмотрено также второе окно 18 выпуклой формы, которое является выпуклым внутрь камеры 4. Это второе окно 18 проходит от первого окна 16 внутрь камеры и взаимодействует с окном 16 для образования герметичной перегородки, ограничивающей буферную зону 20 или промежуточную зону, в которой может также создаваться вакуум.
Это второе окно 18 образует мембрану, охлаждаемую мишенью 2 расщепления.
Выпуклая форма этого окна обусловлена необходимостью направлять жидкость, входящую через входную трубу 8 в направлении зоны 6 расщепления, что минимизирует застойную зону n, в которой охлаждение неэффективно.
Предусмотрена также сетка 22, которая направляет поток от жидкой мишени и которая расположена в камере 4 между вторым окном 18 и зоной 6 расщепления.
Можно видеть, что мишень расщепления и второе окно 18 имеют симметрию вращения относительно оси X, вдоль которой проходит пучок 14 частиц.
В показанном примере выполнения этот пучок, который проходит последовательно через первое и второе окна и сетку 22 перед взаимодействием с жидкой мишенью в зоне 6 расщепления, и поток этой жидкой мишени в зоне 6 имеют одно и то же направление.
Известны также устройства расщепления с использованием твердых мишеней расщепления.
Устройство этого типа содержит окно, в котором удерживается твердая мишень и которое находится на одной линии со средствами ускорения пучка частиц, при этом сама мишень предназначена для получения нейтронов посредством расщепления и выполнена, например, в виде пластин, конусов, стержней, труб или микрошариков, и жидкость переноса тепла, которая охлаждает мишень расщепления. Свойства каждого из этих устройств определяются его термическими, гидравлическими, механическими и нейтронными параметрами.
Для твердой мишени, поставляющей тепловые нейтроны, переносящей тепло жидкостью может быть вода. Почти невозможно обеспечить, чтобы среда, окружающая мишень расщепления, имела спектр быстрых нейтронов.
На фиг.2 показаны изменения плотности D1 потока пучка частиц, используемого с известной мишенью расщепления, в зависимости от расстояния R до центральной оси этого пучка.
Пучок этого типа, для которого плотность потока имеет распределение приблизительно в ступенчатой форме (кривая I) или в форме колокола (кривая II), вызывает сильные термомеханические напряжения в герметичной перегородке, отделяющей мишень расщепления от вакуума, в котором распространяется пучок, а также в мишени, когда мишень является твердой, за счет большого градиента плотности потока.
Этот пучок частиц имеет максимум на оси симметрии мишени в зоне, в которой переносящая тепло жидкость циркулирует очень слабо (смотри кривую III на фиг.2, которая является кривой изменения скорости V жидкости в зависимости от R). Следовательно, на герметичной перегородке имеется горячая точка, которая ограничивает характеристики мишени расщепления и может представлять опасность нарушения герметичности.
В некоторых устройствах расщепления, включая показанное на фиг.1 устройство, наличие этой зоны, в которой переносящая тепло жидкость циркулирует очень слабо на центральной оси пучка частиц, приводит к необходимости устанавливать сетку 22, которая непосредственно облучается пучком и обеспечивает возможность направления потока так, чтобы ограничивать длину этой зоны, в которой скорость переносящей тепло жидкости очень мала.
Как и все элементы, расположенные на центральной оси пучка, сетка подвергается облучению этим пучком и ее механические и тепловые характеристики ухудшаются со временем. Однако эта сетка не вносит вклада в расщепление и ее объем такой, что при возникновении любого повреждения эта сетка в свою очередь повреждает или даже разрушает мишень расщепления, в частности, при частичном или полном перекрытии контуров переносящей тепло жидкости.
Охлаждение с помощью циркуляции сильного потока воды в мембране 16, выполненной обычно из стали, регулирует нарастание температуры, вызванное прохождением пучка.
В мишени, подвергаемой воздействию интенсивного пучка, наличие тяжелого материала непосредственно за окном 18 приводит к поглощению окном 18 части энергии пучка. Это происходит систематически при жидких мишенях.
Охлаждение окна 18 возможно только на одной поверхности окна, и это окно (или любое другое окно) необходимо охлаждать с помощью самой жидкой мишени.
Если пучок частиц имеет максимум плотности потока в точке, в которой скорость мишени, образующей переносящую тепло жидкость, является минимальной, то образуется горячая точка.
Следует отметить, что устройства расщепления описаны также в источниках [1] и [2], которые, также как другие источники, приведены в конце данного описания.
Сущность изобретения
Целью данного изобретения является устранение указанных выше недостатков известных устройств расщепления, а именно минимизация термомеханических ограничений для главных компонентов этих устройств, и в частности, герметичной перегородки, отделяющей мишень расщепления от камеры, в которой создается вакуум и через которую проходит пучок частиц перед достижением мишени.
Точнее, целью данного изобретения является создание устройства расщепления для получения нейтронов, при этом устройство содержит:
- мишень расщепления, которая образует нейтроны при взаимодействии с пучком частиц,
- первую камеру, содержащую мишень расщепления,
- средства генерирования пучка частиц,
- вторую камеру, в которой распространяется пучок частиц в направлении мишени расщепления вдоль линии распространения (что, очевидно, требует создания низкого давления ниже 10-8 Па в этой второй камере),
- герметичную перегородку, через которую может проходить пучок частиц и которая отделяет первую камеру и вторую камеру и достигает этой оси распространения, и
- переносящую тепло жидкость, предназначенную для циркуляции в первой камере, для охлаждения мишени расщепления,
при этом это устройство характеризуется тем, что пучок частиц является полым и окружает ось распространения.
Частицы предпочтительно выбраны из группы, содержащей протоны, ядра дейтерия, ядра трития, ядра гелия 3 и ядра гелия 4.
В соответствии с предпочтительным вариантом выполнения устройства, согласно изобретению, радиальное распределение плотности потока в пучке частиц в поперечной полуплоскости, ограниченной осью распространения, является приблизительно гауссовым и смещено от оси симметрии пучка. Эта система характеризуется минимальной плотностью потока на центральной линии пучка.
Плотность потока этого типа в пучке минимизирует концентрацию механических напряжений.
В соответствии с первым частным вариантом выполнения устройства, согласно изобретению, средства генерирования выполнены с возможностью создания непосредственно полого пучка частиц.
В соответствии со вторым частным вариантом выполнения, средства генерирования выполнены с возможностью создания полого пучка частиц из сплошного пучка частиц.
Мишень расщепления в данном изобретении может быть твердой.
В этом случае, в соответствии с предпочтительным вариантом выполнения изобретения, мишень расщепления содержит несколько последовательных элементарных мишеней, при этом каждая из элементарных мишеней содержит коническую пластину, в которой имеется центральное отверстие.
Элементарная мишень этого типа имеет форму, хорошо согласованную с полым пучком и с потоком переносящей тепло жидкости.
Если мишень расщепления является твердой, то предпочтительно предусмотрено пространство между герметичной перегородкой и мишенью расщепления для циркуляции переносящей тепло жидкости.
И наоборот, в данном изобретении можно использовать жидкую мишень расщепления, при этом эта мишень образует также переносящую тепло жидкость.
В этом случае, согласно первому частному варианту выполнения изобретения, мишень расщепления перемещается в первой камере вдоль оси распространения и вдоль распространения пучка частиц.
Согласно второму частному варианту выполнения, если мишень расщепления является жидкостью, то мишень расщепления перемещается внутри первой камеры вдоль оси распространения и в направлении, противоположном направлению распространения пучка частиц.
Согласно предпочтительному варианту выполнения данного изобретения, ось симметрии мишени расщепления совпадает с осью распространения.
Герметичная перегородка предпочтительно является выпуклой внутрь первой камеры.
В данном изобретении герметичная перегородка предпочтительно имеет ось симметрии вращения, которая совпадает с осью распространения.
Устройство, согласно изобретению, предпочтительно содержит также в первой камере направляющие средства для переносящей тепло жидкости, по меньшей мере в направлении герметичной перегородки.
Краткое описание чертежей
Ниже приводится подробное описание изобретения на примерах выполнения, служащих лишь иллюстрацией и не имеющих ограничительного характера, со ссылками на чертежи, на которых:
фиг.1 изображает продольный разрез известного устройства расщепления, описание которого было приведено выше;
фиг.2 - радиальное распределение плотности потока в пучке частиц, который используется в известном устройстве расщепления;
фиг.3 - радиальное распределение плотности потока в пучке частиц, который можно использовать в устройстве расщепления, согласно данному изобретению;
фиг.4 - развертывающее устройство, используемое для получения полого луча, который можно использовать в изобретении;
фиг.5 - радиальное распределение плотности потока в пучке частиц, который поступает в развертывающее устройство;
фиг.6 - различные системы установки расщепления;
фиг.6А - схему получения двух разных конфигураций потока переносящей тепло жидкости и пучка частиц в устройстве, согласно изобретению, с симметрией вращения вокруг оси падающего пучка частиц;
фиг.7 - частичный разрез конической пластины, которую можно использовать в изобретении в качестве элементарной мишени расщепления;
фиг.8 - мишень расщепления, которую можно использовать в изобретении и которая образована из пакета таких элементарных мишеней;
фиг.9 - расположение части переносящей тепло жидкости между мишенью, показанной на фиг.8, и герметичной перегородкой, отделяющей эту мишень от вакуумной камеры, из которой приходит пучок частиц; и
фиг.10-12 - частные варианты выполнения устройства, согласно изобретению.
Подробное описание частных вариантов выполнения
В примерах выполнения изобретения, описание которых приведено ниже, используется полый пучок частиц, называемый также кольцевым пучком частиц, в котором радиальное распределение плотности потока является приблизительно гауссовым. На фиг.3 показано изменение этой плотности D2 в зависимости от расстояния R от оси полого пучка.
Это является средством для решения двух следующих проблем:
- ограничения градиента плотности потока для исключения чрезмерных внутренних механических напряжений в ключевых компонентах устройства расщепления и мишени расщепления в случае использования твердой мишени, и
- смещения максимальной энергии с оси симметрии мишени для исключения проблем с охлаждением.
Кольцевое распределение плотности потока в пучке частиц можно получать с использованием магнитных оптических средств, которые расположены на внутренней стороне герметичной перегородки.
На фиг.4 показано создание полого пучка частиц. На фиг.4 показана вакуумная камера 24, которая продолжает ускоритель частиц (не изображен), выполненный с возможностью формирования сплошного пучка 26 частиц и ускорения этого пучка. Эта вакуумная камера (снабженная не изображенными средствами для создания вакуума) образует изгиб, на котором расположен криволинейный магнит 28. После этого криволинейного магнита предусмотрена магнитная система 30, выполненная с возможностью выполнения вращательного развертывания высокой частоты для получения полого пучка 32 частиц с осью X, из сплошного пучка 26.
Вакуумная камера 24 заканчивается выпуклой герметичной перегородкой 38.
Эта перегородка является наружной стороной буферной перегородки 36, если она имеется (в данном случае взаимодействующей с перегородкой 38 для ограничения опорной зоны 34 на фиг.4), и расположена внутри камеры 40, содержащей мишень расщепления.
Толщина и материал, из которого выполнены каждая из перегородок 36 и 38, выбраны, естественно, так, чтобы пучок 32 мог проходить через эти перегородки.
На фиг.5 показаны изменения плотности D3 потока в сплошном пучке 26 частиц в зависимости от расстояния R от центральной оси пучка на выходе из отклоняющего магнита 28. Можно видеть, что пучок 26 является приблизительно гауссовым.
После развертывающей системы 30 и, в частности, на мишени расщепления, пучок частиц становится полым, при этом распределение плотности в этом полом пучке показано на фиг.3.
Магнитная система 30, расположенная на внутренней стороне герметичной перегородки 38, расположена на траектории частиц высокой энергии, которые рассеиваются обратно мишенью расщепления. Поэтому система предпочтительно состоит из материалов, которые не очень чувствительны к облучению и активации. Криволинейный магнит 28 защищает ускоритель частиц от этих рассеянных частиц высокой энергии.
Следует отметить, что другие устройства, согласно изобретению, могут быть выполнены без криволинейного магнита. В этом случае используется вакуумная камера, которая является по существу прямолинейной на стороне входа магнитной развертывающей системы 30.
Развертывание, возможное с помощью системы 30, предпочтительно удовлетворяет условиям, указанным в источнике [3].
В другом примере выполнения, вместо формирования полого пучка частиц из ускоренного сплошного пучка, полый пучок формируется источником частиц и затем этот полый пучок разгоняется. Дополнительная информация по этому поводу содержится в источнике [4].
Следует отметить, что можно предусмотреть направляющие средства в камере 40, например ребра для направления охлаждения на герметичную перегородку 38, с целью исключения необходимости очень часто заменять эту перегородку 38.
Дополнительно к этому, в устройстве, согласно изобретению, мишень расщепления предпочтительно охлаждать с помощью принудительной конвекции независимо от того, является ли мишень твердой или жидкой.
Кроме того, в устройстве, согласно изобретению, полый пучок частиц может входить в мишень расщепления под любым углом, сверху или снизу, наклонно или горизонтально.
На фиг.6 показано несколько систем, каждая из которых является примером установки расщепления с использованием изобретения.
Эта установка содержит:
- систему 42, которая поставляет полый пучок частиц и которая включает криволинейный магнит 28 и систему 30 развертки, показанную на фиг.4,
- устройство 44 расщепления, согласно изобретению, в которое направлен полый пучок,
- систему 46, содержащую контуры транспортировки переносящей тепло жидкости,
- теплообменную систему 48, которая принимает горячую переносящую тепло жидкость 50 из устройства 44 и подает холодную переносящую тепло жидкость в это устройство через систему 46,
- систему 54 с рабочей зоной, содержащей облучаемые средства или ядерное топливо и/или изотопы, подлежащие ядерному превращению, и принимающую нейтроны 56, созданные с помощью устройства расщепления,
- систему 58 для очистки контуров и для обработки радиоактивных потоков, которая соединена с системой 46 контуров транспортировки переносящей тепло жидкости, и
- систему 60 для осушения этих контуров.
Эта дренажная система 60 является полезной для операций запуска, остановки и обслуживания установки, а также во время поломок или помех в этой установке.
Система 58 используется для удаления нежелательных элементов из установки, таких как тяжелые радиоактивные загрязнения и радиоактивные газы и, в частности трития.
В устройстве, согласно изобретению, ускоренные частицы являются предпочтительно легкими (заряженными) частицами, такими как протоны, дейтроны, тритоны, ядра гелия 3 и ядра гелия 4.
Например, можно использовать протоны с энергией Ер, равной приблизительно 600 МэВ, для обеспечения компромисса между эффективностью расщепления нейтронов, повреждением герметичной перегородки и других структур мишени, активацией ускорителя за счет частиц, потерянных вследствие эффекта пространственного заряда, и активацией устройства расщепления, включая биологическое экранирование и заземление.
В зависимости от конфигурации, эту энергию Ер можно регулировать в диапазоне от 200 МэВ до нескольких ГэВ.
Интенсивность пучка, поставляемого ускорителем, определяется потребностью пользователей устройства расщепления в нейтронах расщепления и может изменяться, например, между 0,5 мА и несколькими сотнями мА.
Таким образом, в устройстве, согласно изобретению, с симметрией вращения относительно оси падающего пучка частиц можно получить две разные конфигурации потока переносящей тепло жидкости и пучка частиц (как показано на фиг.6А, на которой кривая I представляет скорость V жидкости, а кривая II - плотность D потока луча) за счет использования кольцевого пучка частиц при сохранении симметрии вращения вокруг оси луча.
Кроме того, в устройстве, согласно изобретению, с использованием твердой мишени расщепления можно отделять охлаждение герметичной перегородки от охлаждения мишени, что обеспечивает большее число степеней свободы для направления переносящей тепло жидкости.
Согласно изобретению, предпочтительно использовать конические пластины для образования твердой мишени расщепления. Пример выполнения этих пластин показан на фиг.7.
В центре каждой пластины 62а имеется отверстие 65, через которое переносящая тепло жидкость может рассеивать тепло, создаваемое в этой пластине.
Мишень 63 расщепления образована с использованием нескольких таких пластин 62, расположенных друг за другом, так что полученный узел 63 имеет симметрию вращения вокруг оси Х полого пучка 64 частиц, как показано на фиг.8 и 9.
Пластины 62 расположены друг за другом, так что угловой сектор, воспринимаемый освещенной частью пластины со стороны зоны, в которой используются источники нейтронов, и со стороны перегородки 74 на фиг.9 (нейтроны обратного рассеивания) занят не освещенной частью пластины и наоборот.
Таким образом, спектр источника теряет энергию в этой части мишени перед достижением полезной зоны, так что повреждение может быть ограничено структурными материалами, когда это повреждение обусловлено нейтронами наивысшей энергии.
Дополнительно к этому, количество обратно рассеиваемых нейтронов является минимальным, так что срок службы перегородки 74 увеличивается (фиг.9) и можно ограничить повреждение структур ускорителя перед мишенью.
Следует отметить, что стрелки 66 на фиг.8 обозначают переносящую тепло жидкость.
Как показано на фиг.7, пластины имеют оболочку, и между элементарной мишенью расщепления, состоящей из конической пластины 70, выполненной, например, из вольфрама, и оболочкой 72 этой элементарной мишени, например, оболочкой из стали или алюминиевого сплава, предусмотрено полое пространство 68 для обеспечения расширения элементарной мишени во время использования.
Следует отметить, что толщина пластины 70 изменяется от одной пластины к другой для сглаживания осевого распределения источника нейтронов.
При твердой мишени, аналогичной показанной на фиг.8, возникают проблемы, связанные с коррозией, вызванной переносящей тепло жидкостью. Для твердых мишеней расщепления предпочтительно используют воду в качестве переносящей тепло жидкости в случае бланкета, когда необходимы тепловые нейтроны, или жидкий натрий в случае, когда не требуются тепловые нейтроны. Технологии, связанные с этими типами жидкости, являются управляемыми.
Реакции расщепления в переносящей тепло жидкости являются нежелательными, поскольку они уменьшают эффективность нейтронов установки и способствуют полной или локальной активации контуров (за счет повторных отложений).
Однако известны технологии очистки контуров, загрязненных нежелательными веществами, как для натрия, так и для воды.
Кроме того, переносящие тепло газы, такие как диоксид углерода или гелий, почти не реагируют с падающими частицами вследствие низкой плотности этих газов, что улучшает эффективность без создания помех для работы всей установки.
Таким образом, твердая мишень расщепления имеет то преимущество, что она локализует радиоактивность в этой мишени (которая снабжена оболочкой) и в системах очистки контуров. Пространственное расположение элементов этой мишени расщепления совместимо с системой манипулирования, предусмотренной для этих элементов.
Жидкие мишени расщепления предпочтительно состоят из материалов, у которых атомная масса является высокой и которые применяются в чистом виде или в виде эвтектики, так что они являются жидкими при температурах, совместимых с механическим и химическим поведением материалов, используемых в мишени и в соответствующих контурах.
Например, можно использовать ртуть, свинец и эвтектики свинца. Главным преимуществом эвтектики, такой как свинец-висмут с 45% по массе свинца и 55% по массе висмута, наряду с ее низкой температурой плавления является то, что ее плотность не изменяется во время изменения фазы. Обычно, предпочтительным является отсутствие висмута, поскольку висмут можно легко активировать в полоний 210 и другие долгоживущие радиоактивные изотопы.
Сечение неупругих реакций (n, nx) свинца, в частности реакций (n, 2n), для нейтронов с энергией свыше 6,22 МэВ является средством максимизации эффективности источника.
В некоторых устройствах исключается применение ртути вследствие ее высокой коррозийности. При температуре окружающей среды неподвижная ртуть растворяет около 1 мм стали в год.
Свинец и сплавы свинца являются также коррозийными для сталей, что является причиной предпочтительного применения твердых мишеней с оболочкой.
Можно использовать чистый или легированный свинец для ограничения эффектов коррозии за счет управления концентрацией кислорода в жидком свинце. Рабочие условия задают диапазон концентрации кислорода, выше которого свинец и примеси окисляются и выпадают в осадок, а ниже которого свинец корродирует сталь. Затем сталь растворяется в контуре и может осаждаться в холодных зонах или же в зонах, где скорость переносящей тепло жидкости является низкой. Такие отложения могут вызывать блокирование контуров.
Наконец, материалы, используемые в изобретении, являются прозрачными для нейтронов в главном спектре мишени. Таким образом, чистый или легированный свинец может быть подходящим для мишеней с быстрым или тепловым спектром, если даже некоторые естественно присутствующие изотопы можно удалять с помощью разделения изотопов вследствие их большого сечения захвата нейтронов.
Ртуть и вольфрам лучше подходят для мишеней с по существу быстрыми спектрами в том смысле, что эти два элемента более способны захватывать нейтроны в тепловом диапазоне.
В данном изобретении мишень расщепления (которая содержит зону расщепления) является локализованной и обеспечивает только прохождение нейтронов источника.
Структуры, включенные в эту мишень, являются прозрачными для нейтронов и в нормальных или ухудшенных условиях обеспечивают максимально возможную локализацию материалов. Таким образом, любая система механической изоляции для зоны расщепления определяет мишень.
Биологическое экранирование для присутствующих и операторов устройства расщепления выбирается в соответствии с действующими предписаниями.
Ускоренные частицы останавливаются мишенью расщепления для максимизации эффективности.
Нейтронное экранирование, которое предусмотрено для устройства, согласно изобретению, также способствует решению проблемы защиты от заряженных частиц.
Положение мишени расщепления в системе, в которой она установлена (например, активная зона реактора атомной энергии или реактора ядерных превращений, замедлитель ядерного реактора или сеть элементов, которые могут создавать тритий), предпочтительно определяется посредством максимизации весового коэффициента φ*, который определен в источнике [5].
Ниже приводится описание преимуществ, обеспечиваемых изобретением.
Использование мишени расщепления с кольцевым пучком частиц является простым и эффективным средством рассеяния тепла, создаваемого в герметичной перегородке или окне, отделяющем мишень расщепления от наиболее близкой к этой мишени расщепления вакуумной зоны (без сложной геометрической формы и без необходимости сетки 22 на фиг.1, которая подвергается облучению пучком).
Устройство, согласно изобретению, может быть также выполнено с возможностью работы со слабым потоком или с фронтальным потоком переносящей тепло жидкости, без использования потока переносящей тепло жидкости для охлаждения чувствительных компонентов в устройстве. Для этого необходимо лишь обеспечить прохождение переносящей тепло жидкости через зону, на которую не воздействует расщепление.
Эти преимущества относятся в основном к герметичной перегородке, которая является наиболее сильно нагружаемой частью системы. Эта герметичная перегородка должна выдерживать очень низкое давление, обычно порядка 10-9 Па, на стороне, с которой приходит пучок частиц, и давление переносящей тепло жидкости на другой стороне. Давление переносящей тепло жидкости является очень большим, обычно более 5×106 Па, когда эта жидкость является водой или газом, и порядка 105 Па, когда переносящая тепло жидкость является жидким металлом.
Кроме того, введение слоя переносящей тепло жидкости между герметичной перегородкой и мишенью расщепления является средством для уменьшения доли рассеиваемых обратно нейтронов вблизи этой герметичной перегородки. Это обусловлено эффектом пространственного угла и тем фактом, что переносящая тепло жидкость рассеивает нейтроны.
На фиг.9 показан продольный разрез герметичной перегородки или окна 74, за которым следует комплект 63 конических лопаток 62 с центральным отверстием, при этом эти лопатки установлены вдоль направления Х устройства (оси распространения пучка частиц).
Слой переносящей тепло жидкости, которая циркулирует между герметичной перегородкой 74 и конической пластиной 62, наиболее близкой к герметичной перегородке, обозначен условно двумя стрелками 66, наиболее близкими к этой перегородке. Стрелкой 76 обозначены рассеиваемые обратно нейтроны. Система из лопаток 62 может уменьшить количество этих нейтронов в направлении центральной линии пучка в направлении перегородки 74. На фиг.9 показан также падающий пучок 64 частиц.
На фиг.10 показан продольный разрез устройства расщепления, согласно частному варианту изобретению.
В этом примере выполнения устройство образует часть гибридного реактора для ядерных превращений или производства энергии, при этом мишень 78 расщепления является жидким металлом и образует переносящую тепло жидкость, а поток этой жидкости имеет утечку.
Показана активная зона 80 (расщепляющаяся часть) реактора, в которой установлено устройство. На каждой стороне активной зоны 80 имеется камера 82.
Показана также камера 84, в которой циркулирует мишень 78 расщепления, и один конец вакуумной камеры 86, в которой распространяется полый пучок 88 частиц в направлении зоны расщепления. Эта зона ограничена штрихпунктирной линией 90 внутри камеры 84.
Конец вакуумной камеры 86 образован имеющей выпуклую форму герметичной перегородкой 92, выполненной, например, из стали, которая является выпуклой внутрь камеры 84 и которая обеспечивает прохождение пучка 88 через нее.
Форма перегородки 92 является приблизительно полусферической для исключения концентрации механических напряжений.
Средства 89 генерирования полого пучка не изображены. Дальнейшие подробности в этом отношении показаны на фиг.4.
Стрелками 94 обозначена циркуляция мишени из жидкого металла. Эта циркуляция происходит вдоль оси распространения пучка и вдоль направления распространения пучка.
Эта ось Х является осью симметрии вращения камеры 84 и герметичной перегородки 92.
Показаны также ребра 96, закрепленные на внутренней перегородке 84 вблизи герметичной перегородки 92. Расстояние между этими ребрами достаточно для прохождения без помех пучка 64 частиц. Эти ребра образуют направляющую для потока жидкой мишени и тем самым для переносящей тепло жидкости.
Эта направляющая жидкости улучшает турбулентность и тем самым обмен тепла у герметичной перегородки 92.
Стрелки 98 на фиг.10 обозначают нейтроны, образованные в зоне расщепления.
Установка, в которой установлено устройство, показанное на фиг.10, запускается последовательно. Первая стадия состоит в нагревании переносящей тепло жидкости до рабочей температуры в несколько стадий в резервуаре хранения (не изображен), а затем переносящую тепло жидкость вводят в контуры (не изображены), предусмотренные для ее циркуляции. Затем запускают насосы (не изображены) для циркуляции жидкости. Следующей стадией является запуск ускорителя частиц (не изображен) с очень низкой интенсивностью и затем увеличивают мощность для минимизации нагрузок на различные структуры в установке.
Одну и ту же процедуру используют для остановки и для запуска в обратном порядке.
Активация жидкой переносящей тепло среды и индуцированная остаточная мощность предотвращают застывание переносящей тепло жидкости. Независимо от конфигурации, размеры устройства расщепления выбираются так, что остаточная мощность после плановой или случайной остановки может быть рассеяна с помощью пассивного средства, такого как естественная конвекция.
Интенсивность ускорителя определяется потребностями применения нейтронов после завершения повышения мощности.
В случае применения реактора для генерирования электричества или ядерных превращений реактивность и мощность (измеренные на основании данных о входной и выходной температуре переносящей тепло жидкости и информации из системы управления нейтронами) задают интенсивность пучка.
В случае использования источника нейтронов для фундаментальных физических исследований или технологических испытаний мощность, извлекаемая из мишени расщепления, является управляемой.
На фиг.11 показан продольный разрез другого частного варианта выполнения устройства, согласно изобретению, снова с использованием жидкой металлической мишени расщепления, однако с фронтальным потоком вместо потока утечки для этой жидкой мишени и тем самым для переносящей тепло жидкости.
Поэтому этот поток происходит в направлении, противоположном распространению пучка 88 частиц.
Устройство, показанное на фиг.11, является идентичным устройству, показанному на фиг.10, за исключением того, что отсутствуют ребра 96 и у конца камеры 84, противоположного концу с перегородкой 92, устройство содержит главную трубчатую направляющую 100 потока, ось которой является осью симметрии вращения устройства (совпадающей с осью Х распространения пучка 88 частиц), и отверстия 102 на каждой стороне этой главной направляющей потока.
Внутренний диаметр пучка частиц больше наружного диаметра этой главной направляющей потока.
Жидкая мишень расщепления (переносящая тепло жидкость) входит в камеру 84 через направляющую 100 потока и отверстия 102.
На фиг.12 показан продольный разрез устройства, согласно другому частному варианту выполнения изобретения.
Это устройство является идентичным с устройством, показанным на фиг.10, за исключением того, что оно не имеет ребер 96 и что мишень расщепления в нем является твердой.
В устройстве, показанном на фиг.12, поток 95 переносящей тепло жидкости, обозначенный стрелками 95, проходит в том же направлении, в котором распространяется пучок 88 частиц.
Мишень 63 расщепления содержит несколько конических элементарных мишеней 62 с центральным отверстием, подобно мишени на фиг.7. Эти мишени 62 идентичны друг другу и расположены друг за другом в камере 84 вдоль оси Х распространения пучка, которая является также осью симметрии вращения мишени расщепления и герметичной перегородки 92.
Диаметр, общий для всех отверстий 65, меньше внутреннего диаметра пучка 88, и мишени 62 имеют большой общий диаметр, который больше наружного диаметра пучка 88.
Предусмотрены средства (не изображены) для крепления каждой элементарной мишени 62 к внутренней перегородке камеры 84.
Переносящая тепло жидкость 95 циркулирует вокруг герметичной перегородки 92 между герметичной перегородкой и элементарной мишенью 62, наиболее близкой к этой герметичной перегородке, и между другими элементарными мишенями 62.
За счет своей конической формы все эти элементарные мишени можно использовать также для направления потока переносящей тепло жидкости.
Зона расщепления, ограниченная линиями 90 на фиг.10 и 11 и элементарными концевыми мишенями на фиг.12, предпочтительно расположена так, чтобы максимизировать нейтронную эффективность устройства расщепления.
В случае устройств, согласно фиг.10-12, может быть предусмотрен механический или магнитный насос для обеспечения принудительной конвекции переносящей тепло жидкости.
Источники информации
1. US 5160696 (С.D.Bowman).
2. US 5774514 (С.Rubbia).
3. J.M.Lagniel. «Различные части ускорителя - от источника протона до пучка в 1. ГэВ». GEDEON Workshop «Какой ускоритель для какого DEMO?», страницы 1-24, Aix en Provence (Франция), 25-26 ноября 1999.
4. US 5811943 (A.Mishin и др.).
5. M.Salvatores и др. Nuclear Science and Engineering, 126, страницы 333-340 (1997).

Claims (15)

1. Устройство расщепления для получения нейтронов, содержащее мишень расщепления (63, 78), которая образует нейтроны при взаимодействии с пучком (64, 78) частиц, первую камеру (84), содержащую мишень расщепления, средства (86) генерирования пучка частиц, вторую камеру, в которой распространяется пучок частиц в направлении мишени расщепления вдоль оси (X) распространения, герметичную перегородку (74, 92), через которую может проходить пучок частиц, при этом указанная герметичная перегородка отделяет первую камеру и вторую камеру, простираясь до этой оси распространения, и переносящую тепло жидкость (78, 95), предназначенную для циркуляции в первой камере для охлаждения мишени расщепления, отличающееся тем, что пучок частиц является полым и окружает ось (X) распространения.
2. Устройство по п.1, отличающееся тем, что частицы выбраны из группы, содержащей протоны, ядра дейтерия, ядра трития, ядра гелия 3 и ядра гелия 4.
3. Устройство по любому из п.1 или 2, отличающееся тем, что радиальное распределение плотности потока в пучке является по существу гауссовым и смещено от оси симметрии пучка.
4. Устройство по любому из пп.1-3, отличающееся тем, что средства генерирования выполнены с возможностью создания полого пучка частиц.
5. Устройство по любому из пп.1-3, отличающееся тем, что средства (30) генерирования выполнены с возможностью создания полого пучка частиц из сплошного пучка (26) частиц.
6. Устройство по любому из пп.1-5, отличающееся тем, что мишень (63) расщепления является твердой.
7. Устройство по п.6, отличающееся тем, что мишень (63) расщепления содержит несколько последовательных элементарных мишеней (62), при этом каждая элементарная мишень содержит коническую пластину, снабженную центральным отверстием (65).
8. Устройство по любому из п.6 или 7, отличающееся тем, что предусмотрено пространство между герметичной перегородкой (92) и мишенью (63) расщепления для циркуляции переносящей тепло жидкости (95).
9. Устройство по любому из пп.1-5, отличающееся тем, что мишень (78) расщепления является жидкой и образует переносящую тепло жидкость.
10. Устройство по п.9, отличающееся тем, что мишень (78) расщепления перемещается в первой камере вдоль оси (X) распространения и в направлении распространения пучка (88) частиц.
11. Устройство по п.9, отличающееся тем, что мишень (78) расщепления перемещается внутри первой камеры вдоль оси (X) распространения и в направлении, противоположном направлению распространения пучка (88) частиц.
12. Устройство по любому из пп.1-11, отличающееся тем, что мишень расщепления имеет ось симметрии вращения, которая совпадает с осью (X) распространения.
13. Устройство по любому из пп.1-12, отличающееся тем, что герметичная перегородка (92) является выпуклой в направлении внутреннего пространства первой камеры.
14. Устройство по любому из пп.1-13, отличающееся тем, что герметичная перегородка имеет ось симметрии вращения, которая совпадает с осью (X) распространения.
15. Устройство по любому из пп.1-14, отличающееся тем, что содержит также в первой камере направляющие средства (96) для переносящей тепло жидкости, по меньшей мере, в направлении герметичной перегородки (92).
RU2003103847/06A 2000-07-11 2001-07-10 Устройство расщепления для создания нейтронов RU2280966C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/09028 2000-07-11
FR0009028A FR2811857B1 (fr) 2000-07-11 2000-07-11 Dispositif de spallation pour la production de neutrons

Publications (2)

Publication Number Publication Date
RU2003103847A RU2003103847A (ru) 2005-01-10
RU2280966C2 true RU2280966C2 (ru) 2006-07-27

Family

ID=8852338

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003103847/06A RU2280966C2 (ru) 2000-07-11 2001-07-10 Устройство расщепления для создания нейтронов

Country Status (7)

Country Link
US (2) US6895064B2 (ru)
EP (1) EP1300058B1 (ru)
JP (1) JP4993835B2 (ru)
ES (1) ES2215141T3 (ru)
FR (1) FR2811857B1 (ru)
RU (1) RU2280966C2 (ru)
WO (1) WO2002005602A1 (ru)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2806206B1 (fr) * 2000-03-08 2002-04-26 Commissariat Energie Atomique Procede d'incineration d'elements chimiques transuraniens et reacteur nucleaire mettant en oeuvre ce procede
DE10203591B4 (de) * 2002-01-23 2008-09-18 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Neutronenoptische Bauelementanordnung zur gezielten spektralen Gestaltung von Neutronenstrahlen oder -pulsen
US8249211B2 (en) * 2004-06-29 2012-08-21 Advanced Applied Physics Solutions, Inc. Forced convection target assembly
US20060062342A1 (en) * 2004-09-17 2006-03-23 Cyclotron Partners, L.P. Method and apparatus for the production of radioisotopes
US8953731B2 (en) 2004-12-03 2015-02-10 General Electric Company Method of producing isotopes in power nuclear reactors
US7526058B2 (en) * 2004-12-03 2009-04-28 General Electric Company Rod assembly for nuclear reactors
KR100768944B1 (ko) 2006-02-15 2007-10-19 재단법인 한국원자력의학원 열분산 고선속 중성자 표적시스템
WO2008060663A2 (en) * 2006-04-14 2008-05-22 Thorenco, Llc Compact neutron generator for medical and commercial isotope production, fission product purification and controlled gamma reactions for direct electric power generation
KR100923917B1 (ko) 2007-09-28 2009-10-28 한국전력공사 중성자 발생기
US20090135989A1 (en) * 2007-11-28 2009-05-28 Ge-Hitachi Nuclear Energy Americas Llc Segmented fuel rod bundle designs using fixed spacer plates
US8842800B2 (en) * 2007-11-28 2014-09-23 Ge-Hitachi Nuclear Energy Americas Llc Fuel rod designs using internal spacer element and methods of using the same
US9202598B2 (en) * 2007-11-28 2015-12-01 Ge-Hitachi Nuclear Energy Americas Llc Fail-free fuel bundle assembly
US9362009B2 (en) * 2007-11-28 2016-06-07 Ge-Hitachi Nuclear Energy Americas Llc Cross-section reducing isotope system
US20090135990A1 (en) * 2007-11-28 2009-05-28 Ge-Hitachi Nuclear Energy Americas Llc Placement of target rods in BWR bundle
US8437443B2 (en) * 2008-02-21 2013-05-07 Ge-Hitachi Nuclear Energy Americas Llc Apparatuses and methods for production of radioisotopes in nuclear reactor instrumentation tubes
US8712000B2 (en) 2007-12-13 2014-04-29 Global Nuclear Fuel—Americas, LLC Tranverse in-core probe monitoring and calibration device for nuclear power plants, and method thereof
US8885791B2 (en) 2007-12-18 2014-11-11 Ge-Hitachi Nuclear Energy Americas Llc Fuel rods having irradiation target end pieces
US8180014B2 (en) * 2007-12-20 2012-05-15 Global Nuclear Fuel-Americas, Llc Tiered tie plates and fuel bundles using the same
US7970095B2 (en) 2008-04-03 2011-06-28 GE - Hitachi Nuclear Energy Americas LLC Radioisotope production structures, fuel assemblies having the same, and methods of using the same
US8050377B2 (en) 2008-05-01 2011-11-01 Ge-Hitachi Nuclear Energy Americas Llc Irradiation target retention systems, fuel assemblies having the same, and methods of using the same
US8270555B2 (en) * 2008-05-01 2012-09-18 Ge-Hitachi Nuclear Energy Americas Llc Systems and methods for storage and processing of radioisotopes
US7781637B2 (en) * 2008-07-30 2010-08-24 Ge-Hitachi Nuclear Energy Americas Llc Segmented waste rods for handling nuclear waste and methods of using and fabricating the same
US8699651B2 (en) * 2009-04-15 2014-04-15 Ge-Hitachi Nuclear Energy Americas Llc Method and system for simultaneous irradiation and elution capsule
US9165691B2 (en) * 2009-04-17 2015-10-20 Ge-Hitachi Nuclear Energy Americas Llc Burnable poison materials and apparatuses for nuclear reactors and methods of using the same
US9431138B2 (en) * 2009-07-10 2016-08-30 Ge-Hitachi Nuclear Energy Americas, Llc Method of generating specified activities within a target holding device
US8366088B2 (en) * 2009-07-10 2013-02-05 Ge-Hitachi Nuclear Energy Americas Llc Brachytherapy and radiography target holding device
US8638899B2 (en) * 2009-07-15 2014-01-28 Ge-Hitachi Nuclear Energy Americas Llc Methods and apparatuses for producing isotopes in nuclear fuel assembly water rods
US9773577B2 (en) * 2009-08-25 2017-09-26 Ge-Hitachi Nuclear Energy Americas Llc Irradiation targets for isotope delivery systems
US8488733B2 (en) 2009-08-25 2013-07-16 Ge-Hitachi Nuclear Energy Americas Llc Irradiation target retention assemblies for isotope delivery systems
US9183959B2 (en) * 2009-08-25 2015-11-10 Ge-Hitachi Nuclear Energy Americas Llc Cable driven isotope delivery system
US9202602B2 (en) * 2010-02-10 2015-12-01 Uchicago Argonne, Llc Production of isotopes using high power proton beams
US9177679B2 (en) * 2010-02-11 2015-11-03 Uchicago Argonne, Llc Accelerator-based method of producing isotopes
US8542789B2 (en) * 2010-03-05 2013-09-24 Ge-Hitachi Nuclear Energy Americas Llc Irradiation target positioning devices and methods of using the same
DE102010032216B4 (de) * 2010-07-26 2012-05-03 Siemens Aktiengesellschaft Gepulste Spallations-Neutronenquelle
DE102010035132A1 (de) * 2010-08-23 2012-03-29 Ludwig Maximilians Universität Verfahren und Vorrichtung zum Erzeugen von freien Neutronen
US9899107B2 (en) 2010-09-10 2018-02-20 Ge-Hitachi Nuclear Energy Americas Llc Rod assembly for nuclear reactors
DE102011012737B3 (de) * 2011-02-24 2012-08-30 Forschungszentrum Jülich GmbH Targets für die Erzeugung von Sekundärstrahlung aus einer Primärstrahlung, Vorrichtung für die Transmutation radioaktiver Abfälle und Verfahren zum Betreiben
US10332646B2 (en) 2011-12-05 2019-06-25 Wisconsin Alumni Research Foundation Apparatus and method for generating medical isotopes
JP2015518139A (ja) * 2012-03-21 2015-06-25 エイチ アール ディー コーポレーション 第一の物質を第二の物質に変換するための装置、システム、方法
EP2709429B1 (en) * 2012-09-14 2018-05-02 Ecole Polytechnique Arrangement for generating a proton beam and an installation for transmutation of nuclear wastes
US9330800B2 (en) 2012-12-03 2016-05-03 Wisconsin Alumni Research Foundation Dry phase reactor for generating medical isotopes
US9837176B2 (en) * 2013-05-23 2017-12-05 Canadian Light Source Inc. Production of molybdenum-99 using electron beams
CN104036840B (zh) * 2014-06-28 2017-12-29 中国科学院合肥物质科学研究院 一种扰动式液态重金属有窗靶系统
WO2016081484A1 (en) * 2014-11-17 2016-05-26 Los Alamos National Security, Llc Apparatus for preparing medical radioisotopes
CN108934120B (zh) * 2017-05-26 2024-04-12 南京中硼联康医疗科技有限公司 用于中子线产生装置的靶材及中子捕获治疗系统
CN110402614B (zh) * 2017-01-26 2022-09-06 加拿大光源公司 同位素生产中的电子束出射窗
US10468148B2 (en) * 2017-04-24 2019-11-05 Infineon Technologies Ag Apparatus and method for neutron transmutation doping of semiconductor wafers
CN107481770A (zh) * 2017-08-08 2017-12-15 中国科学院近代物理研究所 有窗散裂靶和加速器驱动次临界系统
JP7184342B2 (ja) * 2019-02-28 2022-12-06 国立研究開発法人理化学研究所 ビーム標的およびビーム標的システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2929933A (en) * 1956-05-24 1960-03-22 Jr Benjamin W Ela Target assembly
US2933442A (en) * 1958-07-11 1960-04-19 Ernest O Lawrence Electronuclear reactor
US3013173A (en) * 1959-02-16 1961-12-12 Varian Associates Magnetic beam focusing method and apparatus
US3453175A (en) * 1966-06-10 1969-07-01 Ronald I Hodge System for extracting heat from a liquid metal target
US3993910A (en) * 1975-12-02 1976-11-23 The United States Of America As Represented By The United States Energy Research & Development Administration Liquid lithium target as a high intensity, high energy neutron source
US4119858A (en) * 1976-08-11 1978-10-10 Lawrence Cranberg Compact long-lived neutron source
US4122347A (en) * 1977-03-21 1978-10-24 Georgy Alexandrovich Kovalsky Ion source
US4293794A (en) * 1980-04-01 1981-10-06 Kapetanakos Christos A Generation of intense, high-energy ion pulses by magnetic compression of ion rings
GB8331911D0 (en) * 1983-11-30 1984-01-04 Atomic Energy Authority Uk Ore irradiator
US5160696A (en) * 1990-07-17 1992-11-03 The United States Of America As Represented By The United States Department Of Energy Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux
US5159170A (en) * 1991-04-26 1992-10-27 International Business Machines Corporation Grid structure for reducing current density in focussed ion beam
JP3494652B2 (ja) 1993-10-29 2004-02-09 ルビア、カルロ クリーンな核エネルギーの生産のための粒子線加速器により駆動されるエネルギー増幅器
US5811943A (en) * 1996-09-23 1998-09-22 Schonberg Research Corporation Hollow-beam microwave linear accelerator
US5870447A (en) * 1996-12-30 1999-02-09 Brookhaven Science Associates Method and apparatus for generating low energy nuclear particles
JPH11133199A (ja) * 1997-11-04 1999-05-21 Hitachi Ltd 固体ターゲット及び固体ターゲットシステム
JPH11169470A (ja) * 1997-12-12 1999-06-29 Mitsubishi Electric Corp 中性子発生装置
JPH11224798A (ja) * 1998-02-04 1999-08-17 Hitachi Ltd 中性子発生装置用液体ターゲット
JPH11238598A (ja) * 1998-02-20 1999-08-31 Hitachi Ltd 中性子源固体ターゲット
JP3381612B2 (ja) * 1998-03-13 2003-03-04 株式会社日立製作所 液体ターゲット及び中性子発生設備
ITTO980399A1 (it) * 1998-05-12 1999-11-12 Finmeccanica Spa Dispositivo di produzione di neutroni, in particolare per un reattore nucleare operante in condizioni sottocritiche, e reattore nucleare pro
JP2000082598A (ja) * 1998-09-07 2000-03-21 Japan Atom Energy Res Inst 中性子散乱施設用ターゲット
JP2000180600A (ja) * 1998-12-11 2000-06-30 Hitachi Ltd 固体ターゲット及び中性子発生装置

Also Published As

Publication number Publication date
WO2002005602A1 (fr) 2002-01-17
US6895064B2 (en) 2005-05-17
US20050220248A1 (en) 2005-10-06
JP4993835B2 (ja) 2012-08-08
ES2215141T3 (es) 2004-10-01
FR2811857B1 (fr) 2003-01-17
RU2003103847A (ru) 2005-01-10
JP2004514242A (ja) 2004-05-13
EP1300058A1 (fr) 2003-04-09
FR2811857A1 (fr) 2002-01-18
US20030152187A1 (en) 2003-08-14
EP1300058B1 (fr) 2004-02-18

Similar Documents

Publication Publication Date Title
RU2280966C2 (ru) Устройство расщепления для создания нейтронов
Rapp et al. The development of the material plasma exposure experiment
US4267488A (en) Containment of plasmas at thermonuclear temperatures
Bagryansky et al. Gas dynamic trap as high power 14 MeV neutron source
Najmabadi et al. Spherical torus concept as power plants—the ARIES-ST study
Blink et al. High-yield lithium-injection fusion-energy (HYLIFE) reactor
Proust et al. Breeding blanket for DEMO
Nolen et al. Liquid-lithium cooling for 100-kW ISOL and fragmentation targets
JP6702546B2 (ja) 核融合炉用ブランケット及びその支持構造
Van Oost et al. The plasma-facing materials of tokamak thermonuclear reactors: requirements, thermal stabilization, and tests (a review)
Abdel-Khalik et al. Engineering problems of laser-driven fusion reactors
Monsler et al. A conceptual design strategy for liquid-metal-wall inertial fusion reactors
US11923095B2 (en) Plasma generator with permanent magnet divertor
RU2160938C1 (ru) Генератор ультрахолодных нейтронов
US11488728B2 (en) Confinement walls for inertial confinement fusion chambers
WO2023021997A1 (ja) 核融合炉用ブランケット
JP2001337200A (ja) 中性子発生装置
Ammerman et al. Conceptual designs for a spallation neutron target constructed of a helium-cooled, packed bed of tungsten particles
Noah Targets and secondary beam extraction
Kulcinski et al. IFE power plant design principles. Reaction chamber systems
Frank et al. Inertial confinement fusion reactor systems
McGrath et al. Plasma facing component development: boundary layer physics and component engineering
JP2002258000A (ja) 材料照射用液体金属ターゲット
Woloshun et al. Comparison of 2 Lead-Bismuth Spallation Neutron Targets
Meier et al. Chamber technology concepts for inertial fusion energy—three recent examples

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160711