RU2270707C2 - Устройство для миниинвазивного ультразвукового лечения болезни диска - Google Patents

Устройство для миниинвазивного ультразвукового лечения болезни диска Download PDF

Info

Publication number
RU2270707C2
RU2270707C2 RU2003101107/14A RU2003101107A RU2270707C2 RU 2270707 C2 RU2270707 C2 RU 2270707C2 RU 2003101107/14 A RU2003101107/14 A RU 2003101107/14A RU 2003101107 A RU2003101107 A RU 2003101107A RU 2270707 C2 RU2270707 C2 RU 2270707C2
Authority
RU
Russia
Prior art keywords
disk
temperature
therapeutic
ultrasonic
disc
Prior art date
Application number
RU2003101107/14A
Other languages
English (en)
Other versions
RU2003101107A (ru
Inventor
Ларс Оке Альвар ЛИДГРЕН (SE)
Ларс Оке Альвар ЛИДГРЕН
Original Assignee
Ультразоникс ДНТ АБ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ультразоникс ДНТ АБ filed Critical Ультразоникс ДНТ АБ
Publication of RU2003101107A publication Critical patent/RU2003101107A/ru
Application granted granted Critical
Publication of RU2270707C2 publication Critical patent/RU2270707C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00261Discectomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Surgical Instruments (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Prostheses (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

Изобретение относится к медицинской технике, а именно к устройствам для лечения заболеваний межпозвонкового диска. Устройство содержит терапевтический ультразвуковой преобразователь, создающий ультразвуковое поле, температурный фокус которого располагается в диске для его нагревания, оптическое навигационное устройство и опорное устройство. Терапевтический ультразвуковой преобразователь приспособлен для введения через кожу пациента и взаимодействия с диском, предпочтительно с фиброзным кольцом, и имеет гибкую стенку с ультразвуковым излучающим элементом, находящимся внутри гибкой стенки, для измерения температуры в диске, предпочтительно фиброзном кольце, предусмотрен датчик температуры. Использование изобретения позволяет облегчить установку температурного фокуса ультразвукового поля ультразвукового преобразователя на требуемую точку в диске. 18 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к устройству для миниинвазивного ультразвукового лечения болезни диска, в котором для лечения диска, предпочтительно студенистого ядра, пациента, имеется, по меньшей мере, один терапевтический ультразвуковой преобразователь, создающий ультразвуковое поле, температурный фокус которого расположен в диске, предпочтительно в студенистом ядре, для нагревания последнего.
Межпозвоночный диск состоит из внешнего кольца из волокнистой ткани, или фиброзного кольца, и внутренней, более вязкой части, студенистого ядра. Диск выполняет функцию поглотителя ударов, и если фиброзное кольцо повреждается, например, получает небольшую трещину, вещество диска может выйти наружу и вызвать сжатие нервных корешков и воспалительную реакцию.
Выпадение межпозвоночных дисков с тридцатых годов лечили хирургически путем удаления смещенного вещества диска и/или части разбухшего диска. Позднее хирургическое лечение развивалось в направлении меньшего оперативного вмешательства, и теперь при удалении вещества диска используются микроскопы и чрескожная техника. Альтернативным способом по отношению к хирургическому лечению является хемонуклеолиз, при котором энзим химопапаин вводится в студенистое ядро - центральную часть диска. Энзим полимеризует длинные протеогликановые цепи в студенистом ядре с последующей утратой гигроскопичности. Это уменьшает объем и давление в студенистом ядре и разбухшей части диска, что объясняет облегчение болей у пациентов с невралгией седалищного нерва после химонуклеолиза. Способ показал уменьшение болей в 75% случаев и имеет хорошо документированную экономическую эффективность. К сожалению, способ вызывает серьезные аллергические реакции примерно в 1% случаев. Следующим шагом в развитии могло бы стать неинвазивное лечение или терапия выпадения межпозвоночных дисков, которое предпочтительно должно быть безболезненным, избегать риска инфекций и должно выполняться амбулаторно.
Способ термотерапии и коагуляции ткани включает использование сфокусированного ультразвука высокой интенсивности. Ультразвук хорошо проходит через мягкие ткани и может быть сфокусирован в удаленных точках на поверхности размером в несколько миллиметров. Поглощение энергии в ткани повышает температуру при резком температурном градиенте так, что границы обрабатываемого объема четко выделены, и не причиняется вреда окружающим тканям (документы US 5291890 и US 5501655). Ультразвуковое лечение или терапия выпадения межпозвоночных дисков известны из более раннего источника ЕР 0872262.
Лечение теплом, или термотерапия дисков, оказалось успешным в способе, названном IDET (документы US 6073051, US 6007570, US 5980504). Целью способа является введение катетера в диск с помощью канюли. На дальнем конце катетера находится катушка, которая нагревается путем приложения к ней напряжения радиочастоты (документ US 5785705). В студенистом ядре, где расположен нагревательный элемент катетера, температура повышается примерно до 90°С. Лечение или терапию проводят в течение примерно 15 минут.
Хирургия со сфокусированным ультразвуком имеет несколько преимуществ по сравнению с другими термическими технологиями. Во-первых, она является не инвазивной, во-вторых, фокус может быть сделан подвижным, и в-третьих, энергия может быть подана в течение нескольких секунд. Ограничением для ультразвука является его поглощение в костях и плохое прохождение через заполненные газом проходы. Клинические приложения ультразвуковой хирургии в настоящее время более всего известны в офтальмологической хирургии, урологии и онкологии. Результат воздействия ультразвука можно разделить на термические и нетермические эффекты.
Термические эффекты ультразвука вызваны поглощением ультразвука в тканях. Это приводит к росту температуры, который зависит от параметров ультразвука (частоты и интенсивности) и акустических свойств ткани. Поглощение ультразвука в тканях скелетных мышц возрастает с ростом содержания апатита и протеина, что означает высокое поглощение в костях, хрящах, сухожилиях и связках. Вода, однако, обладает низкой способностью поглощения ультразвука и может по этой причине использоваться как акустическая среда между ультразвуковым преобразователем и тканью. Можно ожидать более высокого поглощения в фиброзном кольце (высокое содержание коллагена), нежели в студенистом ядре (высокое содержание воды). Это приведет к более высоким температурам во внешней части межпозвоночного диска, чем в центральной части. Чтобы избежать превышения температурой в фиброзном кольце уровня вредного воздействия при достижении температурой в студенистом ядре достаточного уровня, ультразвук можно излучать несколькими источниками ультразвука. Таким образом поля будут перекрывать друг друга и усиливать эффект в студенистом ядре, в то время как интенсивность в окружающих тканях, включая фиброзное кольцо, может оставаться низкой.
Целью данного изобретения является облегчение, в случае вышеупомянутых устройств, установки температурного фокуса ультразвукового поля ультразвукового преобразователя на требуемую точку в диске, предпочтительно в студенистом ядре. Это достигается согласно изобретению посредством устройства, имеющего отличительные признаки, указанные в п.1 формулы изобретения.
Посредством устройства, описанного в формуле изобретения, можно добиться установки и поддержания температурного фокуса ультразвукового поля терапевтического ультразвукового преобразователя в требуемой точке диска, предпочтительно в студенистом ядре.
Изобретение описано ниже со ссылкой на сопровождающие чертежи, на которых:
фиг.1 схематически иллюстрирует конструктивный вариант устройства согласно изобретению;
фиг.2 схематически иллюстрирует терапевтический ультразвуковой преобразователь, образующий часть устройства, приведенного на фиг.1; и
фиг.3 схематически иллюстрирует калибровочное устройство, которое может составлять часть устройства, приведенного на фиг.1.
Устройство 1 для лечения, схематически показанное на фиг.1, выполнено с возможностью создания, посредством терапевтического ультразвукового преобразователя 2 (так называемого терапевтического преобразователя), ультразвукового поля 3, температурный фокус F которого должен располагаться в межпозвоночном диске 5, предпочтительно в студенистом ядре 6, пациента 4 для его лечения. Терапевтический ультразвуковой преобразователь 2 содержит датчики 7 положения, предпочтительно по меньшей мере три датчика, для определения его положения.
Терапевтический ультразвуковой преобразователь 2 выполнен с возможностью введения его через кожу пациента 4 и взаимодействия с диском 5, предпочтительно с фиброзным кольцом 8, для обеспечения локального повышения температуры в студенистом ядре 6, так чтобы энзимы, например коллагеназа, присутствующие в диске, активировались и вызвали разложение коллагена и протеоглюканов, результатом чего является усадка студенистого ядра 6, главным образом, из-за меньшей гигроскопичности. Терапевтический ультразвуковой преобразователь 2 может быть помещен против диска 5 без перфорации фиброзного кольца 8, и таким образом излучать ультразвуковое поле 3, сфокусированное в температурном фокусе F, в направлении обрабатываемого объема. Излучающий элемент 9 терапевтического ультразвукового преобразователя 2, например пьезоэлектрический элемент, может охлаждаться водой для охлаждения кристалла и тканей, расположенных наиболее близко к терапевтическому ультразвуковому преобразователю 2, так же, как это делается при микроволновой терапии рака простаты (документ US 5964791).
Чтобы обеспечить охлаждение, терапевтический ультразвуковой преобразователь 2 снабжен на своем дистальном конце 10 по меньшей мере одной охлаждающей камерой 11 с охлаждающей жидкостью 12. Эта охлаждающая камера 11 расположена между излучающим элементом 9 и мембранной стенкой 13, выполненной из такого гибкого материала, что она способна прилегать к поверхности фиброзного кольца 8, когда она приведена в контакт с ним.
Терапевтический ультразвуковой преобразователь 2, кроме того, содержит, по меньшей мере, один температурный датчик 14 для измерения температуры до и/или во время лечения. Чтобы увеличить объем терапии или лечения, направление или установку терапевтического ультразвукового преобразователя 2 можно изменять так, чтобы сканирование температурного фокуса F осуществлялось по большей площади. Для измерения температуры на внутренней стороне гибкой стенки 13 предусмотрен температурный датчик 14, который в предпочтительном варианте присоединен к стенке 13, так что он следует за стенкой 13, когда она деформируется, вступая в контакт с поверхностью фиброзного кольца 8.
Охлаждающей жидкостью 12 в предпочтительном варианте является вода, которая подается к охлаждающей камере 11 через впускной канал 15, а через выпускной канал 16 выводится из нее, так что вода может циркулировать через охлаждающую камеру 11. Для предотвращения выхода охлаждающей жидкости 12 из охлаждающей камеры 11 в излучающем элементе 9 предусмотрено герметизирующее средство 17.
Если рассматривать более подробно, то терапевтический ультразвуковой преобразователь 2 выполнен с возможностью вызывать локальное повышение температуры в студенистом ядре 6, так что энзимы, например коллагеназа, присутствующие в диске 5, активируются и вызывают разложение коллагена и протеогликанов, результатом чего является усадка студенистого ядра 6, главным образом, из-за меньшей гигроскопичности.
Устройство 1 для лечения может содержать жесткую трубку 18 с присоединенной внутренней частью и несколько датчиков 19 положения. Трубку 18 можно, посредством оптического навигационного оборудования, вводить дорсолатерально в направлении диска 5. Внутренняя часть трубки 18, схематически показанной на фиг.1 штриховой линией, затем заменяется терапевтическим ультразвуковым преобразователем 2.
Устройство 1 для лечения также содержит оптическое навигационное устройство 20 для наведения терапевтического ультразвукового преобразователя 2 (документ US 5772594). Это оптическое навигационное устройство 20 содержит, по меньшей мере, одну диагностическую камеру 21, выполненную с возможностью получения на мониторе 24, по меньшей мере, одного снимка или изображения анатомической структуры 23 области 22 лечения. Диагностическая камера 21 может быть рентгеновской камерой 25, делающей два снимка анатомической структуры 23 области 22 лечения с различных направлений, предпочтительно с углом 90° между ними, и показывающей или отображающей их на мониторе 24. В оптическом навигационном устройстве 20 рентгеновская камера 25 используется совместно с оптическим аналого-цифровым преобразователем для получения или создания на мониторе 24 в реальном времени изображения или снимка положения и направления терапевтического ультразвукового преобразователя 2 (документы US 6021343, US 5834759, US 5383454).
Рентгеновская камера 25 содержит калибровочное устройство 26, например, калибровочный колпак, который располагается перед объективом рентгеновской камеры 25 и имеет маркеры 27, взаимные расстояния между которыми известны. Маркеры 27 могут быть круглыми и состоять, например, из тантала.
Оптическое навигационное устройство 20, кроме того, содержит опорное устройство 28, которое выполнено с возможностью его присоединения к остистому отростку 30 позвонка 29 или в соответствующем положении, так что оно занимает определенное или фиксированное положение относительно области 22 лечения. Опорное устройство 28 имеет несколько датчиков 31 положения, предпочтительно, по меньшей мере, три, которые могут состоять из металла, например, тантала.
Кроме того, оптическое навигационное устройство 20 содержит принимающий и/или посылающий сигналы блок 32. Он включает необходимое количество приемников 33, 34 сигнала для приема отраженных или других сигналов от датчиков 7 и 31 положения терапевтического ультразвукового преобразователя 2 и опорного устройства 28, соответственно. Принимающий и/или посылающий сигналы блок 32 может содержать по меньшей мере один передатчик 35 для посылки или передачи сигналов к указанным датчикам 7 и 31 положения, которые предусмотрены для приема этих сигналов.
Сигналы, передаваемые датчиками 7 и 31 положения, могут, например, быть в виде инфракрасного излучения, а приемники 33, 34 сигналов могут в таком случае быть приемниками инфракрасного излучения.
В устройство 1 для лечения может быть также включен калибровочный блок 37 для калибровки температурного эффекта температурного фокуса F терапевтического ультразвукового преобразователя 2. Калибровочный блок 37 имеет по меньшей мере один термоэлемент 38, посредством которого может быть измерен эффект температурного фокуса F для осуществления калибровки. Термоэлементы 38 присоединены к схематически показанному измерительному устройству 39.
До начала лечения диска 5, в предпочтительном случае студенистого ядра 6, опорное устройство 28 размещают на позвонке 29 пациента 4, и терапевтический ультразвуковой преобразователь 2 калибруют в калибровочном блоке 37.
Делают два рентгеновских снимка анатомической структуры 23 диска 5 пациента 4, и эти рентгеновские снимки воспроизводят на мониторе 24. Положение опорного устройства 28 относительно диска 5 может быть затем определено на этих рентгеновских снимках посредством маркеров 27 калибровочного устройства 26.
Во время лечения диска 5, в предпочтительном случае студенистого ядра 6, терапевтический ультразвуковой преобразователь 2 наводится посредством принимающего или посылающего сигналы блока 32, благодаря чему наведение представлено на рентгеновских снимках или изображениях на мониторе 24. Это происходит, пока датчики 7 положения терапевтического ультразвукового преобразователя 2 взаимодействуют через сигналы с передатчиками 33, 34 сигналов принимающего или посылающего сигналы блока 32. Посредством этой навигации терапевтический ультразвуковой преобразователь 2 может быть установлен так, что температурный фокус F его ультразвукового поля 3 будет лежать в диске 5, предпочтительно, в студенистом ядре 6. Температура в температурном фокусе F предпочтительно превышает 45°С.
Лечение может быть автоматически прервано, если пациент 4 займет неправильное положение относительно терапевтического ультразвукового преобразователя 2, или наоборот.
Изобретение не ограничивается вариантом, описанным выше, но может изменяться в пределах приведенной далее формулы изобретения. Так, диск 5, подлежащий лечению, может, например, быть любым диском в теле.
Диагностическая камера 21 может быть компьютеризированным томографическим сканером, который предназначен для создания изображений анатомической структуры 23, и эти изображения могут обрабатываться компьютерной программой или комплексом программ для получения трехмерного изображения на мониторе 24.
Терапевтический ультразвуковой преобразователь 2 может быть приспособлен для установки вручную или быть расположенным на позиционирующем устройстве 40 для установки его относительно диска 5, подлежащего лечению.

Claims (19)

1. Устройство для миниинвазивного ультразвукового лечения диска, содержащее, по меньшей мере, один терапевтический ультразвуковой преобразователь (2), установленный с возможностью образования температурного фокуса (F) ультразвукового поля в диске (5) и снабженный на дистальном конце (10) стенкой (13), внутри которой помещен, по меньшей мере, один ультразвуковой излучающий элемент (9), отличающееся тем, что указанная стенка (13) выполнена гибкой и установлена с возможностью прилегания к фиброзному кольцу (8) и имеется, по меньшей мере, один температурный датчик (14) для измерения температуры в диске (5).
2. Устройство по п.1, отличающееся тем, что оптическое навигационное устройство (20) содержит, по меньшей мере, одну диагностическую камеру (21), выполненную с возможностью создания, по меньшей мере, одного снимка или изображения анатомической структуры (23) области (22) лечения, в которой расположен подвергаемый лечению диск, оптическое навигационное устройство (20) дополнительно содержит, по меньшей мере, один принимающий или посылающий сигналы блок (32), который выполнен с возможностью посылки сигналов к датчикам (31, 7) положения и/или приема отраженных или других сигналов от этих датчиков (31, 7) на а) опорном устройстве (28), которое имеет неизменное положение относительно диска (5), и b) терапевтическом ультразвуковом преобразователе (2) так, что может быть определено его положение относительно области (22) лечения.
3. Устройство по п.1 или 2, отличающееся тем, что терапевтический ультразвуковой преобразователь (2) выполнен с возможностью введения через кожу пациента (4) и взаимодействия с диском (5).
4. Устройство по п.1 или 2, отличающееся тем, что между гибкой стенкой (13) и ультразвуковым излучающим элементом (9) расположена, по меньшей мере, одна охлаждающая камера (11) с охлаждающей жидкостью (12) для охлаждения ультразвукового излучающего элемента (9) и тканей, ближайших к терапевтическому ультразвуковому преобразователю (2).
5. Устройство по п.4, отличающееся тем, что охлаждающая жидкость (12) циркулирует через охлаждающую камеру (11).
6. Устройство по п.5, отличающееся тем, что охлаждающая жидкость (12) является водой.
7. Устройство по п.1 или 2, отличающееся тем, что температурный датчик (14) выполнен с возможностью измерения температуры на внутренней стороне гибкой стенки (13).
8. Устройство по п.7, отличающееся тем, что температурный датчик (14) присоединен к гибкой стенке (13) так, что он прилегает к гибкой стенке (13) во время ее деформации, когда стенка вступает в контакт с диском (5).
9. Устройство по п.2, отличающееся тем, что дополнительно содержит трубку (18), которая имеет внутреннюю часть, и может вставляться дорсолатерально в направлении к диску (5) и наводиться посредством оптического навигационного устройства (20), при этом внутренняя часть выполнена с возможностью замены ее на терапевтический ультразвуковой преобразователь (2).
10. Устройство по п.2, отличающееся тем, что диагностическая камера (21) является рентгеновской камерой (25).
11. Устройство по п.10, отличающееся тем, что рентгеновская камера (25) содержит калибровочное устройство (26) с маркерами (27), которые выполнены с возможностью определения положения анатомической структуры (23), отображенной на мониторе (24) и присутствующей в диске (5) пациента (4).
12. Устройство по п.11, отличающееся тем, что монитор (24) выполнен с возможностью отображения двух рентгеновских снимков анатомической структуры (23), сделанных рентгеновской камерой (25) из двух различных положений.
13. Устройство по п.2, отличающееся тем, что диагностическая камера (21) является компьютеризированным томографическим сканером, который выполнен с возможностью создания изображений анатомической структуры (23) в диске (5) пациента (4), которые обрабатываются компьютерной программой (комплексом программ) для получения трехмерного изображения на мониторе (24).
14. Устройство по п.2, отличающееся тем, что принимающий или посылающий сигналы блок (32) выполнен с возможностью приема или посылки сигналов в форме инфракрасного излучения, а датчики (7, 31) положения выполнены с возможностью посылки или приема сигналов в форме инфракрасного излучения.
15. Устройство по п.1 или 2, отличающееся тем, что температура в температурном фокусе (F) терапевтического ультразвукового преобразователя (2) превышает 45°С.
16. Устройство по п.1 или 2, отличающееся тем, что для калибровки температуры, обеспечиваемой терапевтическим ультразвуковым преобразователем (2) в температурном фокусе (F) терапевтического ультразвукового преобразователя (2), и/или положения температурного фокуса (F) относительно ультразвукового излучающего элемента (9) терапевтического ультразвукового преобразователя (2), применяется калибровочное устройство (26).
17. Устройство по п.2, отличающееся тем, что опорное устройство (28) прикрепляется к позвонку (29) в позвоночном столбе пациента, предпочтительно к остистому отростку 30 позвонка 29.
18. Устройство по п.2, отличающееся тем, что опорное устройство (28) содержит датчики (31) положения, состоящие из металлических шариков, предпочтительно шариков из тантала.
19. Устройство по п.18, отличающееся тем, что принимающий или посылающий сигналы блок (32) оптического навигационного устройства (20) состоит из, по меньшей мере, одного рентгеновского устройства.
RU2003101107/14A 2000-07-17 2001-07-16 Устройство для миниинвазивного ультразвукового лечения болезни диска RU2270707C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0002678A SE518764C2 (sv) 2000-07-17 2000-07-17 Anordning för mini-invasiv ultraljudsbehandling av disksjukdom
SE0002678-1 2000-07-17

Publications (2)

Publication Number Publication Date
RU2003101107A RU2003101107A (ru) 2004-07-20
RU2270707C2 true RU2270707C2 (ru) 2006-02-27

Family

ID=20280511

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003101107/14A RU2270707C2 (ru) 2000-07-17 2001-07-16 Устройство для миниинвазивного ультразвукового лечения болезни диска

Country Status (19)

Country Link
US (1) US7883481B2 (ru)
EP (1) EP1301244B1 (ru)
JP (1) JP2004503345A (ru)
KR (1) KR100867311B1 (ru)
CN (1) CN1283330C (ru)
AT (1) ATE304393T1 (ru)
AU (2) AU2001271208B2 (ru)
CA (1) CA2415828A1 (ru)
DE (1) DE60113424T2 (ru)
DK (1) DK1301244T3 (ru)
ES (1) ES2249453T3 (ru)
HU (1) HU226333B1 (ru)
IL (2) IL153966A0 (ru)
MX (1) MXPA03000456A (ru)
NO (1) NO20030071L (ru)
PL (1) PL359363A1 (ru)
RU (1) RU2270707C2 (ru)
SE (1) SE518764C2 (ru)
WO (1) WO2002005897A1 (ru)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030069569A1 (en) * 2001-08-29 2003-04-10 Burdette Everette C. Ultrasound device for treatment of intervertebral disc tissue
SE520857C2 (sv) 2002-01-15 2003-09-02 Ultrazonix Dnt Ab Anordning med såväl terapeutiska som diagnostiska givare för mini-invasiv ultraljudsbehandling av ett objekt, där den terapeuti ska givaren är termiskt isolerad
AU2003209287A1 (en) 2002-01-15 2003-07-30 The Regents Of The University Of California System and method providing directional ultrasound therapy to skeletal joints
US7819826B2 (en) * 2002-01-23 2010-10-26 The Regents Of The University Of California Implantable thermal treatment method and apparatus
US7052463B2 (en) 2002-09-25 2006-05-30 Koninklijke Philips Electronics, N.V. Method and apparatus for cooling a contacting surface of an ultrasound probe
US8613744B2 (en) 2002-09-30 2013-12-24 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US6907884B2 (en) 2002-09-30 2005-06-21 Depay Acromed, Inc. Method of straddling an intraosseous nerve
US7258690B2 (en) 2003-03-28 2007-08-21 Relievant Medsystems, Inc. Windowed thermal ablation probe
US8808284B2 (en) 2008-09-26 2014-08-19 Relievant Medsystems, Inc. Systems for navigating an instrument through bone
US8361067B2 (en) 2002-09-30 2013-01-29 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
US7458977B2 (en) * 2003-02-04 2008-12-02 Zimmer Technology, Inc. Surgical navigation instrument useful in marking anatomical structures
US8734368B2 (en) 2003-09-04 2014-05-27 Simon Fraser University Percussion assisted angiogenesis
US8870796B2 (en) 2003-09-04 2014-10-28 Ahof Biophysical Systems Inc. Vibration method for clearing acute arterial thrombotic occlusions in the emergency treatment of heart attack and stroke
US8721573B2 (en) 2003-09-04 2014-05-13 Simon Fraser University Automatically adjusting contact node for multiple rib space engagement
CA2439667A1 (en) * 2003-09-04 2005-03-04 Andrew Kenneth Hoffmann Low frequency vibration assisted blood perfusion system and apparatus
WO2006010240A1 (en) * 2004-07-30 2006-02-02 Ahof Biophysical Systems Inc. Hand-held imaging probe for treatment of states of low blood perfusion
CN100477966C (zh) * 2004-09-24 2009-04-15 株式会社东芝 一种超声探头
WO2007136566A2 (en) 2006-05-19 2007-11-29 Prorhythm, Inc. Ablation device with optimized input power profile and method of using the same
US20090171253A1 (en) * 2006-09-06 2009-07-02 Cutera, Inc. System and method for dermatological treatment using ultrasound
US20080183110A1 (en) * 2006-09-06 2008-07-31 Davenport Scott A Ultrasound system and method for hair removal
US20080195000A1 (en) * 2006-09-06 2008-08-14 Spooner Gregory J R System and Method for Dermatological Treatment Using Ultrasound
FR2909885B1 (fr) * 2006-12-18 2009-02-06 Theraclion Soc Par Actions Sim Tete de traitement therapeutique, appareil de traitement therapeutique, procede de sequencement des phases d'activation de la tete et procede de determination indirecte de la temperature de la peau
US20080243036A1 (en) * 2007-03-27 2008-10-02 Dan Voic Spinal treatment method and associated apparatus
US10183183B2 (en) 2007-04-13 2019-01-22 Acoustic Medsystems, Inc. Acoustic applicators for controlled thermal modification of tissue
US20090082703A1 (en) * 2007-09-26 2009-03-26 Robert Muratore Method and apparatus for the treatment of tendon abnormalities
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
JP5688022B2 (ja) 2008-09-26 2015-03-25 リリーバント メドシステムズ、インコーポレイテッド 骨の内部を通って器具を誘導するためのシステムおよび方法
US11998266B2 (en) 2009-10-12 2024-06-04 Otsuka Medical Devices Co., Ltd Intravascular energy delivery
CN102327151B (zh) * 2010-07-13 2015-04-08 东莞宜安科技股份有限公司 一种体外粉碎医用可降解镁合金氧化膜系统
JP2013090809A (ja) * 2011-10-26 2013-05-16 Olympus Corp 脂肪除去装置
AU2012362524B2 (en) 2011-12-30 2018-12-13 Relievant Medsystems, Inc. Systems and methods for treating back pain
US20130172907A1 (en) * 2012-01-02 2013-07-04 Bernard Michael HARRIS System and method for spatial location and tracking
JP5963505B2 (ja) * 2012-04-02 2016-08-03 オリンパス株式会社 超音波治療装置
US20150209551A1 (en) 2012-08-15 2015-07-30 Everette C. Burdette Mri compatible ablation catheter system incorporating directional high-intensity ultrasound for treatment
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
WO2014071161A1 (en) 2012-11-05 2014-05-08 Relievant Medsystems, Inc. System and methods for creating curved paths through bone and modulating nerves within the bone
WO2014109418A1 (ko) * 2013-01-08 2014-07-17 알피니언메디칼시스템 주식회사 초음파 의료기기용 유체공급장치, 트리트먼트헤드 및 그를 포함한 초음파 의료기기
US10456605B2 (en) 2013-03-14 2019-10-29 Recor Medical, Inc. Ultrasound-based neuromodulation system
US9883882B2 (en) * 2013-04-24 2018-02-06 Medovex Corp. Minimally invasive methods for spinal facet therapy to alleviate pain and associated surgical tools, kits and instructional media
WO2014184219A1 (en) * 2013-05-15 2014-11-20 Koninklijke Philips N.V. High-intensity focused ultrasound therapy system with cooling
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US11179581B2 (en) 2015-03-09 2021-11-23 The Research Foundation For The State University Of New York Systems and methods for promoting cellular activities for tissue maintenance, repair, and regeneration
GB2569194A (en) * 2017-12-11 2019-06-12 Laser Lipo Ltd Ultrasound applicator device
AU2020346827A1 (en) 2019-09-12 2022-03-31 Relievant Medsystems, Inc. Systems and methods for tissue modulation
US12082876B1 (en) 2020-09-28 2024-09-10 Relievant Medsystems, Inc. Introducer drill
JP2024505335A (ja) 2020-12-22 2024-02-06 リリーバント メドシステムズ、インコーポレイテッド 脊椎神経調節の候補の予測

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150712A (en) 1983-12-14 1992-09-29 Edap International, S.A. Apparatus for examining and localizing tumors using ultra sounds, comprising a device for localized hyperthermia treatment
US5295483A (en) * 1990-05-11 1994-03-22 Christopher Nowacki Locating target in human body
JP3369504B2 (ja) * 1992-02-28 2003-01-20 株式会社東芝 超音波治療装置
JP3325300B2 (ja) * 1992-02-28 2002-09-17 株式会社東芝 超音波治療装置
US5433739A (en) * 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5526814A (en) * 1993-11-09 1996-06-18 General Electric Company Automatically positioned focussed energy system guided by medical imaging
US5471988A (en) * 1993-12-24 1995-12-05 Olympus Optical Co., Ltd. Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range
US5443068A (en) * 1994-09-26 1995-08-22 General Electric Company Mechanical positioner for magnetic resonance guided ultrasound therapy
JPH0938096A (ja) * 1995-07-31 1997-02-10 Toshiba Corp 超音波治療装置
US6095149A (en) * 1996-08-13 2000-08-01 Oratec Interventions, Inc. Method for treating intervertebral disc degeneration
FR2750340B1 (fr) 1996-06-28 1999-01-15 Technomed Medical Systems Sonde de therapie
US6126682A (en) * 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
JPH1075959A (ja) * 1996-09-03 1998-03-24 Toshiba Corp 超音波治療装置
US5769790A (en) * 1996-10-25 1998-06-23 General Electric Company Focused ultrasound surgery system guided by ultrasound imaging
JP4044182B2 (ja) * 1997-03-03 2008-02-06 株式会社東芝 超音波治療装置
SE518490C2 (sv) 1997-04-18 2002-10-15 Ultrazonix Dnt Ab Anordning för icke-invasiv behandling av biologisk vävnad
US6226548B1 (en) * 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6348058B1 (en) * 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
IL122839A0 (en) * 1997-12-31 1998-08-16 Ultra Guide Ltd Calibration method and apparatus for calibrating position sensors on scanning transducers
US6312452B1 (en) * 1998-01-23 2001-11-06 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6511444B2 (en) * 1998-02-17 2003-01-28 Brigham And Women's Hospital Transmyocardial revascularization using ultrasound
AU3104999A (en) * 1998-03-19 1999-10-11 Oratec Interventions, Inc. Catheter for delivery of energy to a surgical site
US6856826B2 (en) * 2000-04-28 2005-02-15 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US20030069569A1 (en) * 2001-08-29 2003-04-10 Burdette Everette C. Ultrasound device for treatment of intervertebral disc tissue

Also Published As

Publication number Publication date
SE0002678D0 (sv) 2000-07-17
MXPA03000456A (es) 2003-06-06
CN1283330C (zh) 2006-11-08
AU7120801A (en) 2002-01-30
ES2249453T3 (es) 2006-04-01
HU226333B1 (en) 2008-09-29
DE60113424T2 (de) 2006-06-22
IL153966A0 (en) 2003-07-31
NO20030071D0 (no) 2003-01-07
HUP0303687A2 (en) 2004-03-01
EP1301244A1 (en) 2003-04-16
CN1443084A (zh) 2003-09-17
AU2001271208B2 (en) 2006-03-30
US7883481B2 (en) 2011-02-08
KR100867311B1 (ko) 2008-11-06
PL359363A1 (en) 2004-08-23
SE0002678L (sv) 2002-01-18
WO2002005897A1 (en) 2002-01-24
KR20030016412A (ko) 2003-02-26
IL153966A (en) 2007-08-19
ATE304393T1 (de) 2005-09-15
US20030163067A1 (en) 2003-08-28
EP1301244B1 (en) 2005-09-14
NO20030071L (no) 2003-03-17
JP2004503345A (ja) 2004-02-05
CA2415828A1 (en) 2002-01-24
DK1301244T3 (da) 2006-01-30
DE60113424D1 (de) 2005-10-20
SE518764C2 (sv) 2002-11-19

Similar Documents

Publication Publication Date Title
RU2270707C2 (ru) Устройство для миниинвазивного ультразвукового лечения болезни диска
KR100970304B1 (ko) 열-절연 변환기에 의한 치료대상에 대한 미세-침습 초음파치료용 디바이스
US20050054955A1 (en) Device for non-invasive ultrasound treatment of an object
AU2001271208A1 (en) Device for mini-invasive ultrasound treatment of disc disease
RU2288756C2 (ru) Устройство для неинвазивного ультразвукового лечения болезни диска
AU2001271207A1 (en) Device for non-invasive ultrasound treatment of disc disease

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100717