RU2265645C2 - Способ холодной прокатки металлов - Google Patents

Способ холодной прокатки металлов Download PDF

Info

Publication number
RU2265645C2
RU2265645C2 RU2003127020/04A RU2003127020A RU2265645C2 RU 2265645 C2 RU2265645 C2 RU 2265645C2 RU 2003127020/04 A RU2003127020/04 A RU 2003127020/04A RU 2003127020 A RU2003127020 A RU 2003127020A RU 2265645 C2 RU2265645 C2 RU 2265645C2
Authority
RU
Russia
Prior art keywords
mixture
metal
carbon atoms
waxes
different
Prior art date
Application number
RU2003127020/04A
Other languages
English (en)
Other versions
RU2003127020A (ru
Inventor
ЭЛЛОКО Жан-Ги ЛЕ (FR)
ЭЛЛОКО Жан-Ги ЛЕ
Доминик РЕЗОН (FR)
Доминик РЕЗОН
Original Assignee
Родиа Шими
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Родиа Шими filed Critical Родиа Шими
Publication of RU2003127020A publication Critical patent/RU2003127020A/ru
Application granted granted Critical
Publication of RU2265645C2 publication Critical patent/RU2265645C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/18Ammonia
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/18Natural waxes, e.g. ceresin, ozocerite, bees wax, carnauba; Degras
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/127Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/16Groups 8, 9, or 10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/243Cold working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/246Iron or steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/247Stainless steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Использование: для холодной прокатки металлов. Сущность: в способе используют водную смазку, содержащую (1) по меньшей мере одну смесь на основе по меньшей мере одной кислоты, выбираемой из насыщенных или ненасыщенных монокарбоновых кислот, содержащих от 5 до 40 атомов углерода, по меньшей мере одного сложного эфира фосфорной кислоты формулы [R(OA)y]x-P(=O)(OH)x', в которой R, одинаковые или разные, обозначают углеводородный радикал, содержащий от 1 до 30 атомов углерода, А, одинаковые или разные, обозначают линейный или разветвленный алкиленовый радикал, содержащий от 2 до 4 атомов углерода, среднее значение величины y составляет от 0 до 100, x и x' равны 1 или 2 при условии, что x+x'=3; причем карбоновая кислота и/или сложный эфир фосфорной кислоты могут быть нейтрализованы органическим или неорганическим основанием; и (2) по меньшей мере один натуральный или синтетический воск, обладающий температурой плавления, большей или равной 50°С, и имеющий средний размер частиц в пределах от 0,5 до 10 мкм. Предпочтительно, смесь (1) содержит по меньшей мере один металл в форме поливалентного иона, при этом вся система находится в форме пластинчатых кристаллитов с длиной от 0,1 до 100 мкм, шириной от 0,5 до 30 мкм и толщиной от 5 до 200 нм, содержащих наслоение органических фаз (О) и водных растворов (В) в виде последовательности О/[В/О]n, где n представляет собой целое число, отличное от 0 и такое, что наслоение имеет толщину от 5 до 200 нм, а органические фазы содержат смесь (1) и указанный металл. Технический результат - повышение производительности процесса по меньшей мере на 15% по сравнению с процессом, в котором используется традиционная смазка. 12 з.п. ф-лы.

Description

Предметом настоящего изобретения является способ холодной прокатки металлов с использованием водной смазки, содержащей смесь на основе по меньшей мере одной карбоновой кислоты, по меньшей мере одного сложного эфира фосфорной кислоты и содержащей по меньшей мере один воск.
При операциях деформации металлов, таких, в частности, как холодная прокатка, использование смазок является необходимым. Действительно, эти операции происходят при применении весьма значительных скоростей, давлений и усилий, непосредственным следствием чего является возникновение чрезвычайно высокого коэффициента трения. Столь высокие значения коэффициентов трения ограничивают производительность машин, так как при этом быстро достигаются их максимальные возможности.
Существуют различные типы смазок, такие, например, как цельные масла и водные смазки.
В конкретном случае операций холодной прокатки наиболее распространенными в промышленности смазками являются цельные масла, хотя в литературе и упоминается использование водных смазок. Однако применение цельных масел ограничено, и они не позволяют в существенной степени повысить производительность процесса. Действительно, для уменьшения толщины металлического листа необходимо, например, произвести несколько проходов через прокатный стан. В то же время, чтобы повысить производительность, нужно найти возможность ограничить число проходов через прокатный стан, что подразумевает повышение степени обжатия металлического листа в каждом проходе. Чтобы добиться такого результата, необходимо увеличить механические усилия. Но в результате этого, в частности, происходит разрушение состояния поверхности прокатанного листа металла (появляются царапины) и/или выход за пределы максимального обжатия инструмента.
Применение добавок, называемых «добавками предельного давления», позволяет отдалить возникновение этих явлений. Так, свойства «добавок предельного давления» в смазке позволяют увеличить деформацию металла (обжатие), оставаясь при этом ниже предельного усилия обжатия машины, благодаря ограничению микросварок между шероховатостями поверхностей металла и инструмента.
Существуют различные типы добавок предельного давление для различных областей применения, зависящие, в числе прочего, от температур в точках контакта инструмента с обрабатываемым металлом. Действительно, начиная с определенной температуры, эти добавки выделяют определенного рода соединение, которое взаимодействует с металлической поверхностью с целью создания своего рода защиты для всей системы. Напротив, область применения обсуждаемой добавки будет ограничиваться температурой, при которой созданная защита разрушается. Таким образом, когда в качестве добавки предельного давления используются хлорсодержащие соединения, на поверхности металла в результате реакции выделяющегося хлора с названной поверхностью при подходящей температуре создается слой из хлорида металла. Другие используемые добавки имеют в своей основе серу (серосодержащие сложные эфиры, осерненные масла) или фосфор (сложные эфиры фосфорной кислоты) или их смеси. Их применение приводит к образованию сульфида металла или фосфата металла.
Однако применение таких добавок не всегда приносит удовлетворительное решение задачи повышения производительности.
Что касается применения водной смазки при холодной прокатке, то особого преимущества она не дает, за исключением того, что она делает более эффективным охлаждение металла и инструмента. Наряду с этим имеется возможность повышать степень обжатия металлического листа за один проход, вводя традиционные добавки предельного давления. К сожалению, водные смазки очень далеки от того, чтобы дать удовлетворительное решение желаемого увеличения производительности. Кроме того, при их применении отмечают появление неустранимого явления, состоящего в необратимом ухудшении поверхности металла (окраска, шероховатость).
Таким образом, можно утверждать, что в случае холодной прокатки до сих пор не существует смазок, делающих возможным уменьшение числа проходов через прокатный стан и позволяющих при этом повысить производительность этого процесса без значительного ухудшения состояния поверхности прокатанного металла.
Задачей настоящего изобретения является создание способа холодной прокатки металлов, не обладающего недостатками обычных способов. В частности, способ по изобретению позволяет работать в очень жестких условиях, которые возникают при высокой производительности, предохраняя при этом поверхность деформируемого металла от деградации (окраска, блеск).
Эти и другие задачи решаются с помощью настоящего изобретения, предметом которого, таким образом, является способ холодной прокатки металлов с использованием водной смазки, содержащей (1) по меньшей мере одну смесь на основе по меньшей мере одной кислоты, выбранной из насыщенных или ненасыщенных моно- или поликарбоновых кислот, содержащих от 5 до 40 атомов углерода, по меньшей мере одного сложного эфира фосфорной кислоты формулы (RO)x-P(=O)(OH)x', в которой R обозначает углеводородный, возможно, полиалкоксилированный, радикал, а x и x' равны 1 или 2 при условии, что сумма x и x' равна 3, причем карбоновая кислота и/или эфир фосфорной кислоты могут быть при необходимости нейтрализованы органическим или неорганическим основанием; и (2) по меньшей мере один натуральный или синтетический воск, обладающий температурой плавления, большей или равной 50°С, и имеющий средний размер частиц в пределах от 0,5 до 10 мкм.
Если не оговорено особо, измерения размеров производятся либо с помощью метода лазерной дифракции, либо с помощью рассеяния (пропускания) света. Специалист без труда сделает выбор из этих двух методов в зависимости от размеров частиц.
Под традиционной смазкой подразумевается либо цельное масло, содержащее одну или несколько добавок предельного давления, либо водная смазка, также содержащая одну или несколько добавок предельного давления. Следует уточнить, что традиционные добавки предельного давления представляют собой соединения, содержащие фосфор (как, например, фосфаты) или серу (как, в частности, сульфонаты).
Применение водной смазки по изобретению совершенно неожиданным образом позволило существенно улучшить производительность операций холодной прокатки. Так, использование этой смазки позволяет увеличить степень обжатия прокатанного металлического листа по меньшей мере на 15%, преимущественно - по меньшей мере на 20%, а наиболее предпочтительно - по меньшей мере на 30% по сравнению с максимально достижимой степенью обжатия с помощью прокатного стана при использовании традиционной смазки, вне зависимости от того, является ли последняя цельным маслом, содержащим одну или несколько добавок предельного давления, или водной смазкой, содержащей одну или несколько добавок предельного давления.
Вместе с тем такие результаты достигаются при сохранении состояния поверхности прокатанного металла, отвечающего техническим требованиям, в частности, в том, что касается окраски поверхности и связанным с ней блеском.
Наконец, смазки в рамках настоящего изобретения не оставляют на металле твердых остатков после термического разложения, осуществляемого после завершения прокатки.
Другие преимущества и признаки настоящего изобретения станут яснее при прочтении приведенных ниже описания и примеров.
Как было указано выше, водная смазка содержит одну смесь на основе по меньшей мере одной кислоты, выбираемой из насыщенных или ненасыщенных моно- или поликарбоновых кислот, содержащих от 5 до 40 атомов углерода, по меньшей мере одного сложного эфира фосфорной кислоты формулы (RO)x-P(=O)(OH)x', в которой R означает углеводородный, возможно, полиалкоксилированный, радикал, а x и x' равны 1 или 2 при условии, что сумма x и x' равна 3, причем карбоновая кислота и/или эфир фосфорной кислоты могут быть при необходимости нейтрализованы органическим или неорганическим основанием.
Отметим, что смесь (1) может быть водным раствором или водной дисперсией. Термин «дисперсия» означает дисперсию в водной среде везикул, капелек или же мицелл.
Прежде всего, используемая карбоновая кислота имеет одну или несколько (множество) карбоксильных функциональных групп, по меньшей мере один радикал, содержащий от 5 до 40 атомов углерода, линейный или разветвленный алкил или алкенил, имеющий одну или несколько этиленовых ненасыщенностей (двойных углерод-углеродных связей), при необходимости замещенный одним или несколькими гидроксильными радикалами.
Согласно одному из предпочтительных вариантов осуществления изобретения кислота имеет одну или несколько карбоксильных функциональных групп и радикал, содержащий от 7 до 30 атомов углерода, при необходимости замещенный одним или несколькими гидроксильными радикалами и при необходимости имеющий одну или несколько этиленовых ненасыщенностей.
Предпочтительно, чтобы указанная кислота имела одну или, реже, две карбоксильные функциональные группы. В случае присутствия этой второй функциональной группы она может находиться на конце цепи или в другом месте.
Предпочтительно, чтобы карбоновая кислота была насыщенной или ненасыщенной жирной кислотой, содержащей, предпочтительно, только одну карбоксильную функциональную группу, или смесью нескольких жирных кислот.
В качестве примеров насыщенных жирных кислот можно упомянуть капроновую, каприловую, каприновую, лауриловую, миристиновую, стеариновую, изостеариновую, пальмитиновую, бегениловую и лигноцериновую кислоты.
В качестве примеров ненасыщенных жирных кислот можно назвать ненасыщенные жирные кислоты, имеющие только одну этиленовую ненасыщенность, такие как линдериновая, миристолеиновая, пальмитолеиновая, олеиновая, эруковая кислоты; ненасыщенные жирные кислоты, имеющие две этиленовые ненасыщенности, такие как линолевая кислота; ненасыщенные жирные кислоты, имеющие три этиленовые ненасыщенности, такие как линоленовая кислота; ненасыщенные жирные кислоты с гидроксильной группой, такие как рицинолевая кислота, а также их смеси.
Предпочтительно использование пальмитиновой, бегениловой, стеариновой, изостеариновой, пальмитолеиновой, олеиновой, эруковой, линолевой, линоленовой, рицинолевой кислоты или их смесей.
Что касается кислых сложных эфиров фосфорной кислоты, то они соответствуют следующей формуле: (RO)x-P(=O)(OH)x', в которой R, одинаковые или разные, обозначают углеводородный, возможно полиалкоксилированный, радикал в то время, как x и x' равны 1 или 2 при условии, что сумма x и x' равна 3.
Предпочтительно, чтобы кислый сложный эфир фосфорной кислоты соответствовал следующей формуле: [R(OA)y]x-P(=O)(OH)x', в которой R, одинаковые или разные, обозначают углеводородный радикал, содержащий от 1 до 30 атомов углерода, А, одинаковые или разные, обозначают линейный или разветвленный алкиленовый радикал, содержащий от 2 до 4 атомов углерода, y, который является средней величиной, составляет от 0 до 100, x и x' равны 1 или 2 при условии, что x+x'=3.
Более конкретно, R является алифатическим, циклоалифатическим, причем насыщенным или ненасыщенным, или ароматическим углеводородным радикалом, содержащим от 1 до 30 атомов углерода. Радикалы R, одинаковые или разные, являются преимущественно линейными или разветвленными алкильными или алкенильными радикалами, содержащими одну или несколько этиленовых ненасыщенностей и содержащими от 8 до 26 атомов углерода. В качестве примера таких радикалов можно, в частности, упомянуть стеариловый, олеиловый, линолеиловый и линолениловый радикалы. Кроме того, радикалы R, одинаковые или разные, могут быть ароматическими радикалами, имеющими алкильный, арилалкильный или алкиларильный заместители и содержащими от 6 до 30 атомов углерода. В качестве примеров таких радикалов можно, наряду с другими, назвать радикалы нонилфенил, моно-, ди- и тристирилфенил.
Более конкретно, группы OA, одинаковые или разные, соответствуют оксиэтиленовому, оксипропиленовому, оксибутиленовому радикалу или их смесям. Предпочтительно, чтобы эта группа соответствовала оксиэтиленовому и/или оксипропиленовому радикалу.
Что касается среднего значения величины y, то она находится преимущественно в пределах от 0 до 80.
Кислый сложный эфир фосфорной кислоты, входящий в состав смеси (1), может представлять собой комбинацию нескольких таких эфиров.
Кроме того, карбоновая кислота и/или кислый эфир фосфорной кислоты могут находится в форме, нейтрализованной неорганическим или органическим основанием.
Следует отметить, что используемые основания являются преимущественно водорастворимыми. Под водорастворимыми подразумеваются соединения, растворяющиеся в водной среде при 20°С до концентрации от 3 до 7 мас.%.
В качестве не ограничивающих изобретения примеров таких соединений можно, таким образом, назвать гидроксиды, гидроксикарбонаты, карбонаты и бикарбонаты щелочных металлов и аммония.
Используемые основания являются преимущественно органическими основаниями, выбираемыми из первичных, вторичных или третичных аминов или полиаминов, содержащих по меньшей мере один линейный, разветвленный или циклический углеводородный радикал с 1-40 атомами углерода, при необходимости замещенный одним или несколькими гидроксильными радикалами и/или одной или несколькими алкоксильными группами. Эти алкоксильные группы являются преимущественно этоксильными звеньями. Кроме того, число этоксильных звеньев, в случае их присутствия, ниже или равно 100.
Согласно одному из предпочтительных вариантов осуществления изобретения, когда амины содержат по меньшей мере две аминные функциональные группы, эти функциональные группы отделены одна от другой углеводородными атомами в количестве от 2 до 5.
В качестве подходящих аминов можно упомянуть моноэтаноламин, диэтаноламин, этилендиамин, аминоэтилэтаноламин, аминометилпропаноламин. В качестве органического основания могут быть также использованы полиалкоксилированные жирные амины, такие, например, как амины, поставляемые в продажу фирмой Rhodia Chimie под названием Rhodameen® CS20.
Предпочтительно, чтобы указанная по меньшей мере одна карбоновая кислота была нейтрализована органическим основанием, причем количество последнего должно быть таким, чтобы общее число молей аминных функциональных групп было по меньшей мере равным общему числу молей кислотных карбоксильных функциональных групп, а предпочтительно - было бы вдвое больше.
Смесь (1) может в некоторых случаях содержать, кроме прочего, по меньшей мере одно неионогенное поверхностно-активное вещество (ПАВ). Использование такого рода соединения может быть желательным в том случае, когда смесь (1) находится в виде дисперсии.
Из подходящих ПАВ этого типа можно, в числе прочих, назвать следующие:
- полиалкоксилированные алкилфенолы, в частности, те, которые имеют в качестве алкильного заместителя С612-алкил;
- полиалкоксилированные моно-, ди- или три(алкиларил)фенолы, преимущественно выбранные из тех, которые имеют в качестве алкильного заместителя С16-алкил;
- полиалкоксилированные алифатические спирты, в частности, с 8-22 атомами углерода;
- полиалкоксилированные триглицериды;
- полиалкоксилированные жирные кислоты;
- полиалкоксилированные сложные эфиры сорбитана;
- амиды жирных кислот, преимущественно с 8-20 атомами углерода, при необходимости полиалкоксилированные.
Число полиалкоксильных звеньев, если таковые имеются, в этих неионогенных ПАВ обычно варьируется от 2 до 100. Следует уточнить, что под полиалкоксильными звеньями предполагаются этоксильные, пропоксильные звенья или их смеси.
Содержание ПАВ в том случае, если таковое имеется, обычно варьируется от 1 до 30% от общей массы смеси (1).
Содержания в смеси (1) карбоновой кислоты, сложного эфира фосфорной кислоты, при необходимости основания, преимущественно органического, и при необходимости неионогенного ПАВ таковы, что сухой экстракт водной среды составляет по меньшей мере 10 мас.%. Чаще, сухой экстракт составляет от 10 до 70 мас.%. Преимущественно, сухой экстракт составляет от 10 до 40 мас.%.
Величина рН смеси (1) находится преимущественно в пределах от 7 до 9. Этот интервал рН может быть, в частности, достигнут добавлением к названной смеси буферного агента.
Согласно одному из вариантов осуществления изобретения указанную смесь (1) объединяют (химически связывают) с по меньшей мере одним металлом в форме поливалентного иона. Более конкретно, этот металл может быть в форме двухвалентного иона или же в форме трехвалентного иона. При этом не исключается использование нескольких металлов в одной и той же или разных степенях окисления.
Согласно одному из конкретных вариантов осуществления изобретения названный металл выбирают из групп IIA, VIII, IB, IIB, VIB (Периодической таблицы), за исключением кобальта и никеля.
Более конкретно, металлы выбирают из кальция, магния, меди, цинка, железа, алюминия и хрома, причем индивидуально или в виде смесей.
В случае использования этого варианта смесь (1), объединенная с металлом, имеет преимущественно форму дисперсии, содержащей пластинчатые кристаллиты с длиной от 0,1 до 100 мкм, шириной от 0,5 до 30 мкм и толщиной от 5 до 200 нм.
Эти кристаллиты содержат наслоение (набор, упаковку) органических фаз (О) и водных растворов (В) в виде последовательности О/[В/О]n, где n представляет собой целое число, отличное от 0 и такое, что наслоение имеет толщину от 5 до 200 нм. Преимущественно, n находится в пределах от 1 до 20.
Что касается размеров кристаллитов, то их длина преимущественно составляет от 0,5 до 20 мкм. Предпочтительная ширина пластинчатых кристаллитов составляет от 0,5 до 10 мкм. Наконец, толщина пластинчатых кристаллитов, предпочтительно, составляет от 10 до 100 нм. Указанные здесь размеры пластинчатых кристаллитов относятся к средним значениям. Иными словами, имеется некоторое распределение размеров пластинчатых кристаллитов, среднее значение которых находится в указанных выше интервалах. Измерения размеров пластинчатых кристаллитов производились с помощью просвечивающего электронного микроскопа на криогенно остеклованных образцах (Cryo-MET - см. O. Aguerre-Charioi, M. Deruelle, T. Boukhnikachvili, M. In, N, Shahidzadeh "Cryo-MET на остеклованных образцах: принципы, применение на эмульсиях и дисперсиях поверхностно-активных веществ", Труды Международного Конгресса по эмульсиям, Бордо, Франция (1997)).
В рамках указанного варианта кристаллиты используют преимущественно в присутствии по меньшей мере одного неионогенного ПАВ.
Кристаллиты могут быть получены приведением раствора или дисперсии, содержащей карбоновую кислоту (при необходимости нейтрализованную) и кислый сложный эфир фосфорной кислоты, в контакт с металлом в ионной и/или металлической форме.
Что касается металла, то последний может находиться либо в своей металлической форме, либо в форме поливалентного катиона. Сам этот катион находится в виде твердого вещества, раствора или дисперсии.
В том случае, когда металл используют в виде раствора, преимущественно водного, могут быть, например, использованы соли неорганических кислот, такие как галогениды (например, хлориды) и нитраты, а также соли органических кислот, такие, в частности, как формиат и ацетат.
Допустимо также использование металла в форме оксида, гидроксида, карбоната или просто металла.
Предпочтительно осуществлять контакт в присутствии по меньшей мере одного соединения, обладающего свойством буфера. Более конкретно, одно или несколько соединений подбирают таким образом, чтобы рН среды был в пределах от 7 до 9.
Контакт осуществляют при перемешивании. При этом преимущественным образом металл в выбранной форме вводят в смесь (1), в которой карбоновая кислота преимущественно нейтрализована органическим основанием.
Операцию преимущественно проводят при температуре ниже 100°С, предпочтительно, при температуре от 20 до 60°С.
Используемая в процессе холодной прокатки по изобретению водная смазка содержит также натуральный или синтетический воск с температурой плавления, большей или равной 50°С, и средним размером частиц в пределах от 0,5 до 10 мкм.
Воск или воски находятся в смеси в виде стабильной гомогенной дисперсии.
Более конкретно, воски выбирают из натуральных восков типа парафиновых восков или из синтетических восков, содержащих сложноэфирные и/или амидные функциональные группы.
Предпочтительно, чтобы используемыми восками были такие, которые содержат амидные функциональные группы. Такие воски могут быть получены, например, реакцией конденсации, а более конкретно - реакцией сложноэфирной или кислотной функциональной группы с аминной функциональной группой. Предпочтительно, чтобы воски имели степень полимеризации не более 10, а более предпочтительно - не более 3.
Согласно одному из предпочтительных вариантов осуществления изобретения указанные выше воски имеют следующую формулу: R'-CO-А-(CR"2)n-A-CO-R', в которой R', одинаковые или разные, обозначают алифатический радикал, насыщенный или содержащий одну или несколько сопряженных или несопряженных двойных углерод-углеродных связей, содержащий от 5 до 33 атомов углерода; R", одинаковые или разные, обозначают атом водорода или радикал алкил, содержащий от 1 до 4 атомов углерода; n представляет собой целое число от 2 до 12; и A, одинаковые или разные, обозначают -O- или -NH-. Следует отметить, что радикалы A имеют преимущественно одну и ту же природу (одинаковы).
В качестве примеров таких восков можно, в частности, назвать бис(амидные) воски, такие как этиленбис(алкиламид) или этиленбис(алкениламид).
Температура плавления восков преимущественно превышает или равна 80°С.
Содержание воска в водной смазке при ее применении составляет от 0,05 до 10 мас.% смазки, преимущественно от 0,05 до 5 мас.% смазки.
Введение воска в смесь может быть произведено инкорпорированием в упомянутую смесь частиц воска, размер которых находится в названных выше пределах. Можно вводить воск, добавляя его к смеси в расплавленном виде, а также осаждая его в смеси, причем эта операция преимущественно выполняется с применением измельчения, позволяющего получать требуемый размер частиц.
Водная смазка по изобретению может также содержать традиционные в данной области добавки, такие как консерванты, антикоррозийные агенты, противовспенивающие агенты, стабилизаторы.
Не выходя за рамки настоящего изобретения, к используемой водной смазке можно добавлять традиционные смазывающие присадки. В качестве не ограничивающего изобретения примера таких присадок можно назвать минеральные или растительные масла, жирные спирты, жирные кислоты и их сложноэфирные и амидные производные. Содержание этих соединений, в случае их присутствия в водной смазке при ее применении, обычно не превосходит 10% от массы применяемой водной смазки.
Описанные выше смазки являются особенно подходящими при смазывании в процессе холодной прокатки металлов.
Металлами, которые могут быть объектом такой обработки, являются, в частности и главным образом, стали, нержавеющие стали, алюминий, медь, цинк, олово, сплавы на основе меди (бронза, латунь) и т.д.
Настоящее изобретение в особенности применимо для холодной прокатки нержавеющей стали.
Далее будет представлен конкретный, но не ограничивающий изобретение пример.
ПРИМЕР
Композиция по изобретению
Используя перемешивание, приготавливают следующую смесь в воде, мас.%:
Олеиновая кислота 9
Воск(*) 10
Rhodafac PA35(**) 5
Н3РО4/диэтаноламин достаточное количество для рН=7-9
(буфер)
(*) этиленбис(стеариламид), размер в пределах от 0,5 до 10 мкм.
(**) полиэтоксилированный сложный эфир фосфорной кислоты (на основе смеси жирных спиртов со средним числом атомов углерода приблизительно 17 и приблизительно 5 этоксильными звеньями; поставляемый в продажу фирмой Rhodia Chimie).
Полученную таким образом смесь затем разбавляют в 10 раз.
Испытания
Испытания проводили на прокатном стане с двумя валками диаметром 10 см.
Прокатываемым металлом является рулонная нержавеющая сталь шириной 10 мм и толщиной приблизительно 0,4 мм.
Прилагаемое к валкам усилие варьируется в пределах от 200 т/м до 1200 т/м таким образом, чтобы степень обжатия полосы (листа) была в пределах от 20 до 55%.
Во время испытаний смазку используют при 80°С.
Результаты
Смазка по изобретению позволяет получать степени обжатия по меньшей мере 55%, не достигая предела сжатия прокатного стана при линейной скорости валков 5 м/с.
Такие же испытания, проведенные со смазкой типа цельного масла, содержащего добавку предельного давления, показали, что максимальная степень обжатия, достигаемая до предела сжатия прокатного стана, составляет 45%.
Следует отметить, что увеличение линейной скорости (до скорости 12 м/с) подтвердило превосходство характеристик смазки по изобретению по сравнению с цельными маслами и другими водными смазками.

Claims (13)

1. Способ холодной прокатки металлов с использованием водной смазки, содержащей (1) по меньшей мере одну смесь на основе по меньшей мере одной кислоты, выбранной из насыщенных или ненасыщенных монокарбоновых кислот, содержащих от 5 до 40 атомов углерода; по меньшей мере одного сложного эфира фосфорной кислоты формулы [R(OA)y]x-P(=O)(OH)x', в которой R, одинаковые или разные, обозначают углеводородный радикал, содержащий от 1 до 30 атомов углерода, А, одинаковые или разные, обозначают линейный или разветвленный алкиленовый радикал, содержащий от 2 до 4 атомов углерода, среднее значение величины y составляет от 0 до 100, x и x' равны 1 или 2 при условии, что x+x'=3; причем карбоновая кислота и/или сложный эфир фосфорной кислоты при необходимости нейтрализованы органическим или неорганическим основанием; и (2) по меньшей мере один натуральный или синтетический воск, обладающий температурой плавления, большей или равной 50°С, и имеющий средний размер частиц в пределах от 0,5 до 10 мкм.
2. Способ по п.1, отличающийся тем, что карбоновая кислота смеси (1) содержит одну карбоксильную функциональную группу, по меньшей мере один алкил, линейный или разветвленный алкенил, имеющий одну или несколько этиленовых ненасыщенностей, при необходимости замещенный одним или несколькими гидроксильными радикалами.
3. Способ по п.1 или 2, отличающийся тем, что неорганическое основание выбирают из основных соединений, образованных одновалентными частицами, выбранными из гидроксидов, гидроксикарбонатов, карбонатов и бикарбонатов, щелочным металлом и аммонием.
4. Способ по любому из пп.1-3, отличающийся тем, что органическое основание выбирают из первичных, вторичных или третичных аминов или полиаминов, содержащих по меньшей мере один линейный, разветвленный или циклический углеводородный радикал с 1-40 атомами углерода, при необходимости замещенный одним или несколькими гидроксильными радикалами и/или одной или несколькими оксиалкиленовыми группами.
5. Способ по любому из пп.1-4, отличающийся тем, что восками являются натуральные воски, выбранные из парафиновых восков, или синтетические воски, содержащие сложноэфирные и/или амидные функциональные группы.
6. Способ по п.5, отличающийся тем, что синтетические воски имеют следующую формулу: R'-CO-А-(CR"2)n-A-CO-R', в которой R', одинаковые или разные, обозначают алифатический радикал, насыщенный или содержащий одну или несколько сопряженных или несопряженных двойных углерод-углеродных связей, содержащий от 5 до 22 атомов углерода; R", одинаковые или разные, обозначают атом водорода или алкил, содержащий от 1 до 4 атомов углерода; n представляет собой целое число от 2 до 12 и A, одинаковые или разные, обозначают -O- или -NH-.
7. Способ по п.5 или 6, отличающийся тем, что воски имеют температуру плавления, большую или равную 80°С.
8. Способ по любому из пп.1-7, отличающийся тем, что смесь (1) содержит по меньшей мере один металл в форме поливалентного иона, при этом вся система находится в форме пластинчатых кристаллитов с длиной от 0,1 до 100 мкм, шириной от 0,5 до 30 мкм и толщиной от 5 до 200 нм, содержащих наслоение органических фаз (О) и водных растворов (В) в виде последовательности О/[В/О]n, где n представляет собой целое число, отличное от 0 и такое, что наслоение имеет толщину от 5 до 200 нм, а органические фазы содержат смесь (1) и указанный металл.
9. Способ по п.8, отличающийся тем, что длина пластинчатых кристаллитов составляет от 0,5 до 20 мкм, ширина пластинчатых кристаллитов составляет от 0,5 до 10 мкм и толщина пластинчатых кристаллитов составляет от 10 до 100 нм.
10. Способ по п.9, отличающийся тем, что металл находится в форме поливалентного катиона, выбранного из групп IIA, VIII, IB, IIB, VIB, за исключением кобальта и никеля, индивидуально или в виде смесей.
11. Способ по любому из пп.1-10, отличающийся тем, что общее содержание компонентов (1) и (2) в водной смазке при ее применении составляет от 0,05 до 10% от массы смазки, преимущественно от 0,05 до 5% от массы смазки.
12. Способ по любому из пп.1-11, отличающийся тем, что он применим для холодной прокатки таких металлов, как стали, нержавеющие стали, медь, цинк, олово и сплавы на основе меди (бронза, латунь).
13. Способ по п.12, отличающийся тем, что он применим для холодной прокатки нержавеющей стали.
RU2003127020/04A 2001-02-05 2002-02-05 Способ холодной прокатки металлов RU2265645C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0101566 2001-02-05
FR0101566A FR2820431B1 (fr) 2001-02-06 2001-02-06 Procede de deformation de metaux mettant en oeuvre un lubrifiant aqueux additive permettant d'augmenter la productivite

Publications (2)

Publication Number Publication Date
RU2003127020A RU2003127020A (ru) 2005-02-27
RU2265645C2 true RU2265645C2 (ru) 2005-12-10

Family

ID=8859662

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003127020/04A RU2265645C2 (ru) 2001-02-05 2002-02-05 Способ холодной прокатки металлов

Country Status (12)

Country Link
US (2) US20040072702A1 (ru)
EP (1) EP1358305A1 (ru)
JP (1) JP4017523B2 (ru)
KR (1) KR100512088B1 (ru)
CN (1) CN1272416C (ru)
AU (1) AU2002235983B2 (ru)
BR (1) BR0206983A (ru)
CA (1) CA2437601C (ru)
FR (1) FR2820431B1 (ru)
MX (1) MXPA03006878A (ru)
RU (1) RU2265645C2 (ru)
WO (1) WO2002062931A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791753C1 (ru) * 2019-07-31 2023-03-13 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали и способ его изготовления

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913355B1 (fr) * 2007-03-08 2009-08-21 Michelin Soc Tech Procece de trefilage humide de fils d'acier destines au renforcement de bandages pneumatiques
FR2913356B1 (fr) * 2007-03-08 2009-08-14 Rhodia Recherches & Tech Lubrification par des dispersions dans des procedes de deformation des metaux
CN102574178B (zh) * 2009-05-08 2016-04-06 奎克化学(中国)有限公司 用于钢冷轧的水溶液润滑剂
JP5968428B2 (ja) * 2011-05-06 2016-08-10 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH アミンを含まずvocを含まない金属加工液
JP5890152B2 (ja) * 2011-11-17 2016-03-22 出光興産株式会社 水溶性金属加工油剤、金属加工液、及び金属加工方法
KR102075213B1 (ko) * 2017-12-21 2020-02-07 주식회사 포스코 열연강판 냉각용 조성물 및 이를 이용한 열연 강판의 냉각 방법
CN113462448A (zh) * 2021-06-08 2021-10-01 青岛华瑞泰格工贸有限公司 一种可生物降解的低发烟型金属挤压攻丝油

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB358202A (en) * 1930-08-14 1931-10-08 Chem Ind Basel Manufacture of disperse systems
GB361860A (en) * 1930-08-19 1931-11-19 Wilfred William Groves Manufacture of disperse systems
NL80211C (ru) * 1950-05-24
US3522177A (en) * 1967-12-26 1970-07-28 Standard Pressed Steel Co Aqueous lubricant composition
US3637498A (en) * 1968-04-29 1972-01-25 Aluminum Co Of America Extrusion lubricant
US3551335A (en) * 1969-02-14 1970-12-29 Pennwalt Corp Metal working lubricants
DE2046727B2 (de) * 1970-09-22 1973-04-19 Dow Corning GmbH, 8000 München Hochtemperaturschmiermittel fuer die spanlose metallumformung
FR2130981A5 (ru) * 1971-03-29 1972-11-10 Rhone Poulenc Sa
US3928401A (en) * 1974-01-31 1975-12-23 Emery Industries Inc Water soluble triglyceride compositions and method for their preparation
GB1528576A (en) * 1974-11-04 1978-10-11 Alcan Res & Dev Lubricants for cold working of aluminium
US4474669A (en) * 1980-06-02 1984-10-02 United States Steel Corporation Can-making lubricant
US4462920A (en) * 1983-06-06 1984-07-31 The Dow Chemical Company Water-based hydraulic fluids
US4481038A (en) * 1983-06-29 1984-11-06 Glyco Inc. Water dispersible fatty acid bis-amides
DE3482123D1 (de) * 1983-09-28 1990-06-07 Hitachi Ltd Schmiermittel fuer das fassonieren von metall und verfahren zum metallfassonieren.
JPS62192496A (ja) * 1986-02-19 1987-08-24 Kao Corp アルミ用冷間圧延油組成物
US4743388A (en) * 1986-07-21 1988-05-10 Westvaco Corporation Complex amide carboxylate lubricant rust inhibitor additive for metal working fluids
US4758359A (en) * 1987-03-16 1988-07-19 Reynolds Metals Company Aqueous metal working lubricant containing a complex phosphate ester
JPH07112564B2 (ja) * 1987-09-28 1995-12-06 日新製鋼株式会社 ステンレス鋼の熱間圧延用潤滑剤
US5211861A (en) * 1988-09-19 1993-05-18 Ausimont S.R.L. Liquid aqueous compositions comprising perfluoropolyethereal compounds suitable as lubricants in the plastic processing of metals
GB8926885D0 (en) * 1989-11-28 1990-01-17 Albright & Wilson Drilling fluids
US5076339B1 (en) * 1990-02-08 1998-06-09 J & S Chemical Corp Solid lubricant for die-casting process
TW296990B (ru) * 1994-03-25 1997-02-01 Nissin Seiko Kk
CA2263554A1 (en) * 1996-08-30 1998-03-05 Solutia Inc. Novel water soluble metal working fluids
FR2758561B1 (fr) * 1996-11-25 1999-04-23 Rhodia Chimie Sa Compositions d'orthophosphates soufres, leur procede de preparation et leur utilisation
US5837658A (en) * 1997-03-26 1998-11-17 Stork; David J. Metal forming lubricant with differential solid lubricants
DE19852203A1 (de) * 1998-11-12 2000-05-18 Henkel Kgaa Schmiermittel mit Feststoffpartikeln einer Teilchengröße unter 500 nm
FR2800091B1 (fr) * 1999-10-21 2005-01-28 Rhodia Chimie Sa Utilisation de micro-lamelles en tant qu'additifs extreme-pression dans des lubrifiants aqueux, micro-lamelles et leur obtention
EP1123965A1 (en) * 2000-02-08 2001-08-16 Mobil Oil Francaise Steel and stainless steel cold rolling oil composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791753C1 (ru) * 2019-07-31 2023-03-13 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали и способ его изготовления

Also Published As

Publication number Publication date
MXPA03006878A (es) 2005-04-11
AU2002235983B2 (en) 2004-10-14
CN1494584A (zh) 2004-05-05
JP2004527598A (ja) 2004-09-09
US7776799B2 (en) 2010-08-17
FR2820431B1 (fr) 2007-04-27
AU2002235983B9 (en) 2002-08-19
JP4017523B2 (ja) 2007-12-05
KR20030082584A (ko) 2003-10-22
KR100512088B1 (ko) 2005-09-02
FR2820431A1 (fr) 2002-08-09
BR0206983A (pt) 2004-02-10
CA2437601C (fr) 2011-01-11
CA2437601A1 (fr) 2002-08-15
US20080028812A1 (en) 2008-02-07
WO2002062931A1 (fr) 2002-08-15
CN1272416C (zh) 2006-08-30
EP1358305A1 (fr) 2003-11-05
US20040072702A1 (en) 2004-04-15
RU2003127020A (ru) 2005-02-27

Similar Documents

Publication Publication Date Title
US7776799B2 (en) Cold rolling process for metals using an aqueous lubricant comprising at least one carboxylic acid, one phosphate ester and one wax
JP5968428B2 (ja) アミンを含まずvocを含まない金属加工液
JPS62288693A (ja) 冷却潤滑剤の存在下におけるアルミニウムおよびアルミニウム合金の機械加工方法ならびに冷却潤滑剤の濃縮物
MX2011002295A (es) Emulsionantes para fluidos de metalurgia.
CA2938598A1 (en) Polyalkanoic or polyalkenoic acid based high perormance, water-dilutable lubricity additive for multi-metal metalworking applications
JP2009287030A (ja) 水性潤滑剤における極圧添加剤としてのラメラ微結晶の使用、ラメラ微結晶及びその製造法
RU2542048C2 (ru) Смазка типа "масло в воде" с малым размером частиц
US4830768A (en) Metalworking lubricant composition containing propoxylated fatty alcohol
EP0029892B1 (de) Verwendung von Alkali- oder Aminsalzen eines Gemisches aus 2- und 3-Alkyladipinsäuren als Korrosionsinhibitor
US4585565A (en) Metalworking lubricant comprising mineral oil and alkoxyalkyl ester
US4618441A (en) Metalworking with a lubricant composition comprising mineral oil and alkoxyalkyl ester
JPS61115997A (ja) 防腐食グリ−ス
JP7441119B2 (ja) 金属加工油剤組成物及び金属加工方法
JP3370878B2 (ja) アルミニウム又はアルミニウム合金板の圧延方法
CN115948193A (zh) 一种超润滑水基切削液及其制备方法
KR20210098494A (ko) 수성 금속 가공 유체 및 이의 사용 방법
WO2020104248A1 (en) Lubricant additives for metal working
JPH04159397A (ja) 銅系金属加工用水溶性潤滑剤
JP2018177866A (ja) 水溶性金属加工油組成物、及び金属加工方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130206