RU2223548C2 - Способ и устройство формирования сигнала в зависимости от толщины жидкостной пленки на поверхности - Google Patents

Способ и устройство формирования сигнала в зависимости от толщины жидкостной пленки на поверхности Download PDF

Info

Publication number
RU2223548C2
RU2223548C2 RU2000109321/28A RU2000109321A RU2223548C2 RU 2223548 C2 RU2223548 C2 RU 2223548C2 RU 2000109321/28 A RU2000109321/28 A RU 2000109321/28A RU 2000109321 A RU2000109321 A RU 2000109321A RU 2223548 C2 RU2223548 C2 RU 2223548C2
Authority
RU
Russia
Prior art keywords
liquid film
heating
temperature
cooling
thickness
Prior art date
Application number
RU2000109321/28A
Other languages
English (en)
Other versions
RU2000109321A (ru
Inventor
Марсель младший БОШУНГ (CH)
Марсель Младший БОШУНГ
Этьенн БОРНАН (CH)
Этьенн БОРНАН
Original Assignee
Бошунг Мекатроник Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бошунг Мекатроник Аг filed Critical Бошунг Мекатроник Аг
Publication of RU2000109321A publication Critical patent/RU2000109321A/ru
Application granted granted Critical
Publication of RU2223548C2 publication Critical patent/RU2223548C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • G01B21/085Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/13Aquaplaning, hydroplaning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Formation Of Insulating Films (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Slot Machines And Peripheral Devices (AREA)

Abstract

Изобретение относится к методам и устройствам определения толщины водяной пленки на поверхности дорожного полотна. Способ формирования сигнала в зависимости от толщины жидкостной пленки на поверхности движения транспорта осуществляется с помощью нагревательного устройства или устройства охлаждения, имеющего соответственно поверхность нагрева или охлаждения, контактирующую с жидкостной пленкой, соответственно нагревают или охлаждают часть жидкостной пленки, далее с помощью устройств измерения температуры определяют соответственно увеличение или уменьшение температуры соответственно нагреваемой или охлаждаемой части жидкостной пленки и с помощью элемента управления и обработки данных значениям соответственно увеличения или уменьшения температуры части жидкостной пленки присваивают значение или диапазон значений толщины жидкостной пленки и выдают в форме сигнала. Данный способ реализует соответствующее устройство. Данное изобретение направлено на создание простого и сравнительно недорогого способа контроля состояния поверхности дорожного полотна. 2 с. и 9 з.п. ф-лы, 6 ил., 1 табл.

Description

Изобретение относится к способу формирования сигнала в зависимости от толщины жидкостной пленки на поверхности, в частности на поверхности движения транспорта. Далее изобретение относится к устройству формирования сигнала в зависимости от толщины жидкостной пленки на поверхности, в частности на поверхности движения транспорта, а также применения способа и соответственно устройства в установке для определения точки замерзания жидкости.
Известно, что желательно формирование сигнала, который несет информацию о толщине жидкостной пленки на поверхности движения транспорта, под которой понимаются, например, дороги (трассы), рулежные дорожки и взлетно-посадочные полосы для самолетов. Таким образом может быть получена информация об опасности так называемого аквапланирования шин (всплывания колес самолета на уже невытесняемой больше колесами части водяной пленки) и соответственно выдано предупреждение водителю. Уже известно, что опасность аквапланирования (гидропланирования) возрастает с увеличением толщины водяной пленки.
Из заявки на Европатент ЕР-А-0 432 360 известно, что по отражению микроволн можно достаточно точно измерить толщину водяной пленки. Однако этот способ очень трудоемкий. Из американской заявки US-A-4 897 597 известно, что толщину водяной пленки можно определить измерением проводимости, что, однако, не всегда приводит к удовлетворительным результатам. В немецкой заявке DE-A-31 18 997, в европейской заявке ЕР-А-0 045 106 и в европейском патенте 362 173 описаны способы определения точки замерзания жидкости, но не определения толщины водяной пленки. В японской публикации "Patent Abstracts of Japan, том 97, ном. 8, 29, август 1997 г., "описывается определение толщины пленки льда, причем последняя определяется монтажным расстоянием датчика температуры от подвергающегося обледенению трубопровода теплообменника.
Поэтому задача предлагаемого изобретения состоит в создании по возможности простого и сравнительно недорогого способа формирования сигнала, зависимого от толщины жидкостной пленки, а также устройства для формирования такого сигнала.
Эта задача согласно способу указанного выше типа решается признаками отличительной части пункта 1 формулы изобретения.
Было установлено, что при нагревании, соответственно охлаждении части жидкостной пленки и измерении увеличения, соответственно уменьшения температуры можно было с достаточной точностью сделать вывод о том, в каком диапазоне значений находится толщина жидкостной пленки. Как правило, вполне достаточно одного такого упорядочения значений толщины жидкостной пленки в диапазон значений толщины, соответственно класс для цели предупреждения аквапланирования шин колес. Этот способ обеспечивает определение абсолютной толщины пленки с достаточной точностью, если при оценке температурной характеристики используется увеличенный объем оценочных (обработанных) данных.
Поставленная задача согласно устройству вышеуказанного типа решается признаками отличительной части пункта 6 формулы изобретения.
Предпочтительно, когда такое устройство снабжено элементом Пельтье для нагрева жидкостной пленки. Такое устройство обеспечивает при реверсивном режиме работы элемента Пельтье также охлаждение жидкостной пленки. Таким образом данное устройство дополнительно может быть применено также для определения точки замерзания жидкости в соответствии со способом согласно европейской заявке ЕР-А-0 045 106 или согласно европейской заявке ЕР-А-0 362 173.
Ниже изобретение более подробно поясняется на примерах выполнения способа соответственно устройства со ссылкой на чертежи, на которых показано:
фиг. 1 - схематическое изображение блок-схемы устройства для осуществления способа согласно изобретению;
фиг. 2 - схематическое изображение конструкции устройства для осуществления способа согласно изобретению;
фиг.3 - аппроксимационная зависимость нагретого объема жидкости от толщины жидкостной пленки в устройстве согласно фиг.2;
фиг.4 - схематическое изображение повышения температуры жидкости;
фиг. 5 - схематическое изображение повышения температуры для трех различных значений толщины жидкостной пленки;
фиг. 6 - схематическое изображение снижения температуры для трех различных значений толщины жидкостной пленки.
На фиг. 1 и 2 в упрощенном виде схематически показано выполнение блок-схемы и конструкции устройства согласно изобретению. При этом для нагрева жидкостной пленки применяется элемент Пельтье. Этот элемент взят только в качестве примера, т. е. для нагрева пленки жидкости может быть применен в принципе любой другой источник тепла, например с резистивным нагревателем. Как уже было упомянуто, вместо нагрева может осуществляться также охлаждение жидкостной пленки, однако ниже в качестве примера приведен только нагрев упомянутой пленки. На фиг.1 элемент 1 Пельтье показан схематически в виде блока. Этот элемент электрически запитывается от схемы 2 питания, которая согласно данному примеру выполнения размещена внутри схемы 3 управления и обработки данных. Схема 2 питания включает в себя электрический источник, которым может быть, например, стабилизированный источник тока с постоянным током i, или источник тока с непостоянной, но известной характеристикой изменения тока. Количество тепла Qн, образующееся на теплой стороне элемента Пельтье, определяется по формуле Qн= Qс+U•i, причем Qс обозначает тепло, выделяемое холодной стороной упомянутого элемента, a U и i соответственно означают напряжение и ток на термоэлементе Пельтье. Температуры Тс и Тн - это температуры холодной и соответственно теплой сторон элемента Пельтье. При реверсивном направлении тока элемент Пельтье может использоваться также для охлаждения жидкостной пленки, так как тогда меняются холодная и теплая стороны.
На фиг.2 показан элемент Пельтье 1, зажатый между первым теплопроводным телом 10, например из меди, и вторым теплопроводным телом 11, например из алюминия. Вместе с корпусом 12, выполненным из плохо проводящего материала, элементы 1, 10 и 11 образуют устройство 13, которое в форме почвенного зонда может встраиваться под какую-либо поверхность, на которой может находиться водяная пленка. В показанном примере выполнения для этого выбрана трасса 14 с различными схематически показанными слоями, в которую встроен зонд 13, так что поверхность 18 зонда 13 оказывается в связке с поверхностью 19 полотна трассы 14. При этом тело 10 зонда уложено в землю соответственно в дорожный балласт, чтобы отводить тепло, применяемое для нагрева водяной пленки 17. Расположенное над элементом 1 Пельтье теплопроводное тело 11 своей поверхностью 15 образует поверхность нагрева для водяной пленки. В зонде 13 могут быть предусмотрены электроды 4, с помощью которых за счет измерения проводимости может быть установлено наличие водяной пленки. Для этой цели электроды 4 соединены с соответствующим измерительным устройством 6, которое в свою очередь соединено с элементом 8 управления и обработки данных, в частности с микропроцессором схемы 3 управления и обработки данных. Такого типа электроды могут быть предусмотрены также в других местах трассы, а не в зонде 13. Кроме того, в зонде размещен также измерительный резистор 5 температуры, контактирующий с водяной пленкой 17, с помощью которого может быть измерена температура жидкостной пленки. Этот измерительный резистор, как правило, уже известный Pt 100 - элемент или также термоэлемент, через соответствующую измерительную схему 7 также соединен с микропроцессором 8. Температура может быть измерена также элементом Пельтье, как это известно из европейской заявки ЕР-А-0 362 173.
Представленную конструкцию зонда 13 и его встроенное размещение нужно принимать только в качестве примера. Как уже было упомянуто, зонд может содержать также другой вид нагревательного элемента и он может быть размещен другим образом рядом с поверхностью или также над поверхностью, на которой, конечно, должна находиться водяная пленка, причем тогда нужно обратить внимание на то, что поверхность зонда расположена таким образом, что на ней, как правило, образуется водяная пленка такого же типа, что и на контролируемой поверхности. Схема обработки данных и схема управления могут также иметь другую конструкцию, например, состоящую из отдельных элементов, как это показано в примере выполнения. Как уже было сказано выше, также необязательно размещение электродов 4 в зонде.
В приведенном примере выполнения поверхность 18 зонда имеет углубление, которое образовано поверхностью 15 тела 11 и в данном примере образует округлую зону с диаметром А. Переход этой поверхности 15 к неопущенной поверхности 18 зонда 13 согласно данному примеру выполнения скошен под углом 45o. При нагреве водяной пленки 17 нагревательным устройством в грубом приближении можно исходить из того, что нагрев водяной пленки осуществляется в круговой зоне с диаметром В. Зона углубления в поверхности зонда 13 может, например, иметь глубину Ео - 0,5 мм. Диаметр А может составлять 14 мм, а диаметр В - 20 мм. Углубление дает нелинейную зависимость объема V водяной пленки от толщины Е водяной пленки, как это схематически показано на фиг.3. Углубление в зонде является предпочтительным для того, чтобы иметь определенное количество воды даже при очень незначительной толщине Е водяной пленки. В противном случае появляется опасность, что при очень незначительной толщине водяной пленки наступает момент испарения водяной пленки при ее нагреве, что делает невозможным проведение нужных измерений.
Для формирования сигнала, который зависит от толщины водяной пленки и который показывает ее толщину, осуществляют следующее. Предпочтительно сначала электродами 4, поскольку это предусмотрено, посредством измерения сопротивления установить, имеется вообще вода на измерительном зонде 13. При этом очень высокое соответственно бесконечное значение сопротивления свидетельствует о том, что поверхность зонда сухая. В этом случае не осуществляется нагрев элементом Пельтье, а выходной сигнал зонда 13 или его блока управления и обработки данных указывает на то, что никакой пленки нет. Если с другой стороны при измерении сопротивления выдается конечное значение, показывающее наличие жидкости, запускается нагревательное устройство 1, 10, 11.
Подводимая к воде энергия следует из удельного количества теплоты воды, котороесоставляет 4,185•103 Дж кг-1К-1. Причем в этом случае нужно исходить из того, что вначале нагрева вода находится в жидкой фазе. Если же это не тот случай, то тогда должно приниматься во внимание удельное количество теплоты льда и теплоты плавления. Для известного значения объема соответственно следующей из него толщины водяной пленки можно исходить в первом приближении из экспоненциальной характеристики температур Т в функции от времени, которая может быть выражена следующим уравнением
Figure 00000002

где То - начальная температура, ТА - асимптотическая температура и τ - - константа времени нагрева.
На фиг.4 схематически показана соответствующая температурная характеристика. Согласно аспекту данного изобретения, толщина водяной пленки не указывается точным количественным значением, а приводится качественно в виде диапазона значений толщины водяной пленки, в котором находится фактическое значение толщины водяной пленки. По этой причине нет необходимости в проведении точного расчета динамической характеристики нагрева водяной пленки. Такого рода расчет можно производить в том случае, если должно быть точно указано значение толщины водяной пленки. Для такого расчета необходимо знать теплопроводность водяной пленки (температурный градиент), теплообмен между воздухом и водой вследствие конвенции, излучения и испарения воды, тепловые потери в зонде, характеристику элемента Пельтье и алюминиевой детали 11, причем кроме того должны быть приняты во внимание различия в термических характеристиках между чистой водой и солевым раствором и т.д.
Но, как правило, оказывается вполне достаточным указать толщину водяной пленки через сигнал зонда, что позволяет разделить значения толщины водяной пленки по разным классам. Эти значения могут быть сведены в следующую таблицу (см. в конце описания).
При этом предусмотрено 5 классов значений толщины Е водяной пленки, причем в классе 1 указана сухость полотна дороги, в классе 2 указана только влажность поверхности движения транспорта, а в классах с 3 по 5 указаны разные диапазоны мокрого полотна дороги. Такого рода распределения по классам, как правило, вполне достаточно для необходимого предупреждения аквапланирования.
На фиг.4 показан, как уже было упомянуто, ход температуры подогреваемой части пленки жидкости и тем самым также рост температуры водяной пленки.
Это увеличение прогрессивно снижается, стремясь к нулю, если температура достигает асимптотического значения ТА. В этот момент система находится в динамическом равновесии и отдаваемая энергия равна подводимой от нагревательного устройства энергии. Характеристика роста температуры характерна теперь для объема жидкости соответственно толщины водяной пленки,
На фиг. 5 показаны три примера для различного вида толщины водяной пленки, причем характеристика кривой 1 представляет незначительную толщину водяной пленки, кривая 2 - среднюю величину толщины пленки, а кривая 3 - большую толщину пленки. Причем тарировка на фиг.5 для времени и температуры выбрана в произвольных единицах, а не в секундах и oС. Теперь из характеристики кривой через блок обработки данных делают вывод, в какой класс диапазона значений толщины водяной пленки должно быть включено фактическое значение толщины пленки, которая обуславливает ту или иную характеристику кривой при нагреве пленки. Таким образом, естественно в зависимости от конкретной тарировки на фиг.5, которая не указана, ту толщину водяной пленки, которая приводит к появлению характеристики кривой 1, нужно было бы отнести к классу 2 или 3, толщину водяной пленки, обусловленную характеристикой кривой 2, к классу 3 или 4, и наконец толщину водяной пленки, которая обуславливает появление кривой 3, в класс 4 или 5. На фиг. 6 показаны соответствующие характеристики кривых при охлаждении водяной пленки. Естественно, что кривые роста температуры представлены в блоке 3 обработки данных не в виде графиков, а в виде последовательности запомненных, измеренных значений температуры датчика 5 температуры, которые занесены в файл запоминающего устройства (ЗУ) микропроцессора 8. Естественно, что характер кривой может быть выражен меньшим или большим числом измеренных значений температуры. Предпочтительно, что первое измеренное значение температуры То образуется до начала или как раз в начале нагрева и показывает начальную температуру водяной пленки. В последующем в различные временные интервалы могут быть получены еще измеренные значения температуры, причем очевидно, что характер кривой может быть определен тем точнее, чем больше будет запомнено измеренных значений в интервале между Т0 и моментом достижения асимптотической температуры ТА. Для оценки запомненных, измеренных значений температуры могут быть применены уже известные методы обработки информации для блока 3 обработки данных соответственно микропроцессора. Сначала может быть проведена аппроксимация измеренных значений в соответствии с формулой (1) и тем самым может быть выведена на значения ТА и τ, которые в свою очередь являются функцией толщины Е водяной пленки (при заданном объеме подлежащей нагреву воды, который задан введенным радиусом В подогреваемой зоны воды). Альтернативно методу аппроксимации может быть измерено увеличение температуры ΔТ при фиксированном интервале времени t* после начала нагрева. Это ΔТ* может быть выражено уравнением:
Figure 00000003

и из него опять через значения ТА и τ можно выйти на толщину водяной пленки.
Для точного измерения толщины водяной пленки значения толщины пленки могут быть запомнены произвольно более точно в виде таблицы. Тогда за счет оценкихарактеристики кривой выходят на соответствующее значение в таблице.
В качестве следующего варианта с момента начала нагрева при времени t=0 может быть измерено время tx, которое необходимо до момента заранее определенного повышения температуры ΔТx. Тогда из уравнения 2 и нижеследующих уравнений 5 и 6 может быть опять определена толщина Е водяной пленки по значениям ТA и τ.:
Figure 00000004

Figure 00000005

Благодаря названным методам обработки данных может быть осуществлена классификация толщины водяной пленки по желаемым классам, а блоком обработки данных может быть выдан соответствующий сигнал.
Как уже было упомянуто выше, из европейских заявок ЕР-А-0 045 106 и ЕР-А-0 362 173 известен способ определения точки замерзания жидкости. Такие способы могут быть осуществлены также с описанным выше зондом, так что одним единственным зондом в полотне дороги может быть сформирован сигнал предупреждения как о гололеде, так и об аквапланировании.
Если на зонде имеется лед, то последний сначала может быть расплавлен для определения толщины водяной пленки. Затем он может быть снова охлажден для определения точки замерзания. Кроме того, также можно определить точку плавления при таянии, благодаря чему известна также температура точки замерзания. Но могут быть предусмотрены и отдельные зонды соответственно для определения толщины водяной пленки и точки замерзания. В этом случае устройство для определения толщины водяной пленки применяется предпочтительно в устройстве для определения точки замерзания. Знание толщины водяной пленки очень важно для определения точки замерзания, так как из этого - при известном количестве нанесенного на единицу поверхности средства для расстаивания льда - можно сделать вывод о концентрации средства для расстаивания в жидкости.

Claims (11)

1. Способ формирования сигнала в зависимости от толщины жидкостной пленки (17) на поверхности (18, 19), в частности, поверхности движения транспорта, отличающийся тем, что с помощью нагревательного устройства или устройства охлаждения (1, 10, 11), имеющего соответственно поверхность (15) нагрева или охлаждения, контактирующую с жидкостной пленкой, соответственно нагревают или охлаждают часть жидкостной пленки (17), далее с помощью устройств (5, 7, 8) измерения температуры определяют соответственно увеличение или уменьшение температуры соответственно нагреваемой или охлаждаемой части жидкостной пленки и с помощью элемента (8) управления и обработки данных значениям соответственно увеличения или уменьшения температуры части жидкостной пленки присваивают значение или диапазон значений толщины жидкостной пленки и выдают в форме сигнала.
2. Способ по п.1, отличающийся тем, что для устройства нагрева или устройства охлаждения предусмотрена опущенная по отношению к поверхности (18, 19) зона, в которой проводят нагрев жидкости.
3. Способ по п. 1 или 2, отличающийся тем, что мощность нагрева или охлаждения поддерживают постоянной соответственно при нагреве или при охлаждении жидкостной пленки.
4. Способ по любому из пп.1-3, отличающийся тем, что перед или к началу нагрева или охлаждения определяют начальную температуру Т жидкостной пленки.
5. Способ по любому из пп.1-4, отличающийся тем, что перед началом нагрева или охлаждения осуществляют проверку наличия жидкости на поверхности и соответственно устройство нагрева или устройство охлаждения запускают только тогда, когда устанавливают наличие жидкости на поверхности.
6. Способ по п.1, отличающийся тем, что устройством (5, 7, 8) для измерения температуры измеряют температуру жидкостной пленки (17) с помощью измерительного резистора (5), контактирующего с жидкостной пленкой (17).
7. Устройство для формирования сигнала в зависимости от жидкостной пленки (17) на поверхности (18, 19) движения транспорта, отличающееся тем, что оно содержит устройство нагрева или устройство охлаждения (1, 2, 10, 11) соответственно с поверхностью нагрева или поверхностью охлаждения (15) для контакта с жидкостной пленкой, соответственно для нагревания или охлаждения части жидкостной пленки (17), на поверхности (18, 19) движения транспорта, устройство (5, 7, 8) измерения температуры для определения температуры, соответственно нагреваемой или охлаждаемой соответственно нагревательным устройством или устройством охлаждения части жидкостной пленки (17) и блок управления и обработки данных (3) для управления соответственно нагревательным устройством или устройством охлаждения и устройством измерения температуры с последующим присвоением измеренным значениям соответственно увеличения или уменьшения температуры части жидкостной пленки толщины или диапазона значений толщины жидкостной пленки и последующей выдачей в форме сигнала.
8. Устройство по п.7, отличающееся тем, что оно содержит средство (4, 6), в частности электродное устройство, для определения наличия жидкости в зоне соответственно нагревательного устройства или устройства охлаждения.
9. Устройство по любому из п.7 или 8, отличающееся тем, что соответственно нагревательное устройство или устройство охлаждения содержит элемент Пельтье (1), работающий с постоянной мощностью.
10. Устройство по любому из пп.7-9, отличающееся тем, что оно имеет поверхность (18), выполненную с возможностью выравниваться в связке с поверхностью полотна дороги, при этом поверхность полотна (19) и поверхность (18) устройства равномерно покрываются жидкостной пленкой (17), а в зоне размещения нагревательного устройства или устройства охлаждения в поверхности (18) предусмотрено углубление.
11. Устройство по п.7, отличающееся тем, что устройство (5, 7, 8) измерения температуры содержит измерительный резистор (5), выполненный с возможностью при наличии жидкостной пленки (17) контактировать с ней.
RU2000109321/28A 1997-09-09 1998-09-09 Способ и устройство формирования сигнала в зависимости от толщины жидкостной пленки на поверхности RU2223548C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP97115582.5 1997-09-09
EP97115582A EP0902252B1 (de) 1997-09-09 1997-09-09 Verfahren und Vorrichtung zur Erzeugung eines Signals in Abhängigkeit eines Flüssigkeitsfilmes auf einer Fläche

Publications (2)

Publication Number Publication Date
RU2000109321A RU2000109321A (ru) 2002-03-10
RU2223548C2 true RU2223548C2 (ru) 2004-02-10

Family

ID=8227331

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000109321/28A RU2223548C2 (ru) 1997-09-09 1998-09-09 Способ и устройство формирования сигнала в зависимости от толщины жидкостной пленки на поверхности

Country Status (15)

Country Link
US (1) US6511220B1 (ru)
EP (1) EP0902252B1 (ru)
JP (1) JP2001516043A (ru)
KR (1) KR100527024B1 (ru)
AT (1) ATE215217T1 (ru)
AU (1) AU8819298A (ru)
CA (1) CA2301731C (ru)
CZ (1) CZ297502B6 (ru)
DE (1) DE59706774D1 (ru)
DK (1) DK0902252T3 (ru)
ES (1) ES2171797T3 (ru)
NO (1) NO314858B1 (ru)
PL (1) PL187807B1 (ru)
RU (1) RU2223548C2 (ru)
WO (1) WO1999013295A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747834C2 (ru) * 2016-09-12 2021-05-14 ЭКОЛАБ ЮЭсЭй ИНК. Осуществление контроля за отложением
US11953458B2 (en) 2019-03-14 2024-04-09 Ecolab Usa Inc. Systems and methods utilizing sensor surface functionalization

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695469B2 (en) * 2001-11-19 2004-02-24 Energy Absorption Systems, Inc. Roadway freezing point monitoring system and method
US20060113401A1 (en) * 2004-11-29 2006-06-01 Energy Absorption Systems, Inc. Anti-icing spray system
FI120521B (fi) * 2008-05-14 2009-11-13 Vaisala Oyj Menetelmä ja laitteisto vesiliirtoriskin määrittämiseksi
DE102010002249A1 (de) 2010-02-23 2011-08-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Verfahren und Vorrichtung zur Kontrolle des Auftrags einer eine flüchtige Verbindung enthaltenden Flüssigkeit auf eine Oberfläche
CN103616316B (zh) * 2013-12-09 2015-11-11 吉林大学 微结构表面垂直降液膜流动及蒸发换热性能测试装置
WO2017138846A1 (ru) * 2016-02-10 2017-08-17 Геннадий Гюсамович ГРОМОВ Термоэлектрический датчик обледенения
AT16572U1 (de) * 2019-03-13 2020-01-15 Johann Trummer Vorrichtung und Verfahren zur Überwachung von Oberflächenzustandsdaten eines Verkehrsweges
CN111157572B (zh) * 2020-01-07 2022-05-31 西安石油大学 一种浸没燃烧式气化器传热管冰层预测与测量方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2972882A (en) * 1952-08-12 1961-02-28 Gen Motors Corp Apparatus for measuring coating thicknesses
US3413474A (en) * 1965-02-03 1968-11-26 Industrial Nucleonics Corp Coating thickness determination by means of measuring black-body radiation resultant from infrared irradiation
US3434347A (en) 1966-06-23 1969-03-25 Holley Carburetor Co Ice condition detecting device
US3535522A (en) * 1966-12-22 1970-10-20 Glass Container Ind Research Process and apparatus for monitoring thickness of shaped transparent items
GB1364845A (en) 1970-12-05 1974-08-29 Rotax Ltd Ice detector
DE2228507A1 (de) * 1972-06-12 1974-01-10 Weisser Hubert Kg Verfahren und vorrichtung zur fruehzeitigen ermittlung der voraussetzung zur bildung von frostglaette auf strassenfahrbahnen
US3869984A (en) * 1973-08-06 1975-03-11 Addressograph Multigraph Fluid film thickness sensor and control system for utilizing same
US3973122A (en) * 1974-06-17 1976-08-03 Ixcon Inc. Measuring apparatus
DE2928208C2 (de) 1979-07-12 1983-10-20 Apparatebau Gauting Gmbh, 8035 Gauting Verfahren zur Erkennung einer Vereisungsgefahr sowie Eiswarnsensor zur Durchführung dieses Verfahrens
CH646791A5 (de) 1980-07-14 1984-12-14 Boschung Mecatronic Ag Einrichtung zum bestimmen des gefrierpunktes einer auf der fahrbahn einer strasse befindlichen oder von der fahrbahn entnommenen fluessigkeit.
DE3118997A1 (de) * 1981-05-13 1983-01-20 Apparatebau Gauting Gmbh, 8035 Gauting Verfahren zum erkennen einer vereisungsgefahr auf verkehrswegen und eiswarnsensor zur ausfuehrung dieses verfahrens
US4513384A (en) * 1982-06-18 1985-04-23 Therma-Wave, Inc. Thin film thickness measurements and depth profiling utilizing a thermal wave detection system
JPS61155804A (ja) 1984-12-28 1986-07-15 Toshiba Electron Syst Kk 光学式水膜厚計
US4842410A (en) * 1986-10-24 1989-06-27 Geo-Centers, Inc. Apparatus and method utilizing interference fringes to determine the thermal stability of a liquid
SE464595B (sv) 1988-09-29 1991-05-13 Ffv Aerotech Ab Saett att med ett peltier-element med tvaa ytor bestaemma den ena eller baada ytornas temperatur
US4897597A (en) 1988-12-08 1990-01-30 Surface Systems, Inc. Apparatus and methods for detecting wet and icy conditions
DE3940710A1 (de) 1989-12-09 1991-06-13 Tzn Forschung & Entwicklung Vorrichtung zur ermittlung der mittleren wasserfilmdicke auf strassenoberflaechen
DE4008280A1 (de) 1990-03-15 1991-09-19 Tzn Forschung & Entwicklung Verfahren zur ermittlung des fahrbahnoberflaechenzustandes
US5258824A (en) * 1990-08-09 1993-11-02 Applied Materials, Inc. In-situ measurement of a thin film deposited on a wafer
DE4032734C1 (ru) * 1990-10-15 1992-01-30 Tekmar Angewandte Elektronik Gmbh, 4300 Essen, De
JPH0812162B2 (ja) 1992-04-20 1996-02-07 川崎重工業株式会社 ハニカム構造体中の水分検出方法
US5600073A (en) * 1994-11-02 1997-02-04 Foster-Miller, Inc. Method and system for analyzing a two phase flow
FI108084B (fi) 1995-09-08 2001-11-15 Vaisala Oyj Menetelmä ja laite tien pinnan ominaisuuksien mittaamiseksi
JPH0989546A (ja) * 1995-09-28 1997-04-04 Mitsubishi Materials Corp 氷厚測定装置
US5590560A (en) * 1995-11-22 1997-01-07 Eastman Kodak Company Apparatus for measuring viscosity or thickness, surface tension and surface dilational elasticity
US6128081A (en) * 1996-11-22 2000-10-03 Perceptron, Inc. Method and system for measuring a physical parameter of at least one layer of a multilayer article without damaging the article and sensor head for use therein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747834C2 (ru) * 2016-09-12 2021-05-14 ЭКОЛАБ ЮЭсЭй ИНК. Осуществление контроля за отложением
US11953458B2 (en) 2019-03-14 2024-04-09 Ecolab Usa Inc. Systems and methods utilizing sensor surface functionalization

Also Published As

Publication number Publication date
AU8819298A (en) 1999-03-29
NO20001081D0 (no) 2000-03-02
PL187807B1 (pl) 2004-10-29
ES2171797T3 (es) 2002-09-16
EP0902252B1 (de) 2002-03-27
CA2301731A1 (en) 1999-03-18
NO314858B1 (no) 2003-06-02
CA2301731C (en) 2007-05-15
KR100527024B1 (ko) 2005-11-09
WO1999013295A1 (de) 1999-03-18
DK0902252T3 (da) 2002-07-08
NO20001081L (no) 2000-03-02
CZ2000565A3 (cs) 2000-06-14
DE59706774D1 (de) 2002-05-02
KR20010023765A (ko) 2001-03-26
US6511220B1 (en) 2003-01-28
ATE215217T1 (de) 2002-04-15
CZ297502B6 (cs) 2007-01-03
EP0902252A1 (de) 1999-03-17
PL338806A1 (en) 2000-11-20
JP2001516043A (ja) 2001-09-25

Similar Documents

Publication Publication Date Title
RU2223548C2 (ru) Способ и устройство формирования сигнала в зависимости от толщины жидкостной пленки на поверхности
EP0347571B1 (en) Method of determining the thermal conduction coefficient of a material, and instrument for the measurement of same
CA1337304C (en) Method to measure a temperature with a peltier element
DK150416B (da) Apparat til frembringelse af et afvarselssignal, naar der er risiko for isdannelse paa en kaerebane
US6695469B2 (en) Roadway freezing point monitoring system and method
JP2717424B2 (ja) 車両用ウィンドシールドの着霜防止装置
EP3470829A1 (en) Dew point measuring method and dew point measuring device
JP2962695B2 (ja) 流体検知装置
US9851316B2 (en) System and method for determining a spatial thermal property profile of a sample
RU2000109321A (ru) Способ и устройство формирования сигнала в зависимости от толщины жидкостной пленки на поверхности
RU2169105C1 (ru) Устройство для определения интенсивности обледенения
JPH09264655A (ja) 結霜結氷センサおよび結霜結氷の検出方法
JPH11326539A (ja) 路面状態測定装置
US6192697B1 (en) System and method for determining heat transfer in an environment
JPH1096668A (ja) 路面状況検知センサ
SU1122954A1 (ru) Устройство дл определени теплофизических параметров веществ
JPH10160596A (ja) 路面の凍結検知方法
JP2570478B2 (ja) 薄膜熱伝導率測定方法
JPH05323047A (ja) 降雪量計測装置及びその方法
JPH07111042B2 (ja) ロードヒーティング制御方法
JPH10293111A (ja) 道路表面の凍結検知方法ならびに装置
WO2022235154A1 (en) Thermal sensor, measurement system, and method of estimating an air temperature and/or a convective heat transfer coefficient
SU415563A1 (ru)
RU2181199C2 (ru) Способ неразрушающего контроля теплофизических характеристик материалов
Harrison et al. A calorimeter to detect freezing in supercooled water droplets

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090910