RU2216102C2 - Способ и система для определения местоположения сотового подвижного терминала - Google Patents

Способ и система для определения местоположения сотового подвижного терминала Download PDF

Info

Publication number
RU2216102C2
RU2216102C2 RU2000110118/09A RU2000110118A RU2216102C2 RU 2216102 C2 RU2216102 C2 RU 2216102C2 RU 2000110118/09 A RU2000110118/09 A RU 2000110118/09A RU 2000110118 A RU2000110118 A RU 2000110118A RU 2216102 C2 RU2216102 C2 RU 2216102C2
Authority
RU
Russia
Prior art keywords
signal
radio station
local
mobile
time
Prior art date
Application number
RU2000110118/09A
Other languages
English (en)
Other versions
RU2000110118A (ru
Inventor
Матс СЕДЕРВАЛЛЬ
Патрик ЛУНДКВИСТ
Original Assignee
Телефонактиеболагет Лм Эрикссон (Пабл)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Телефонактиеболагет Лм Эрикссон (Пабл) filed Critical Телефонактиеболагет Лм Эрикссон (Пабл)
Publication of RU2000110118A publication Critical patent/RU2000110118A/ru
Application granted granted Critical
Publication of RU2216102C2 publication Critical patent/RU2216102C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Abstract

Предложены способ и система, с помощью которых вычисление продолжительности прохождения сигнала в прямом и обратном направлениях используется для определения расстояния между подвижной радиостанцией (ПС) и базовой радиостанцией (БС) (БСО, БС1, БС2) с использованием истинных значений продолжительности прохождения сигнала по восходящей и нисходящей линиям связи (например, Т-вверх и Т-вниз). При этом не требуется абсолютной опорной синхронизации. ПС и БС передают сообщения в служебный узел (203), расположенный в подвижной сети о значениях местного времени отправления и поступления с помощью сигналов, передаваемых по восходящей и нисходящей линиям связи, и вычисляют истинные продолжительности прохождения сигнала, Т-восходящую и Т-нисходящую. Расстояние D между ПС и БС можно вычислить по формуле D=с(Т-вверх+Т-вниз)/2, где с - скорость света. В алгоритме триангуляции для определения местоположения ПС можно использовать расстояния D1, D2 и D3 по меньшей мере для трех базовых станций, чье расположение известно. Технический результат заключается в обеспечении способа и системы определения местоположения подвижного терминала, работающего в диалоговом режиме на цифровом или аналоговом канале информационного обмена системы подвижной радиосвязи. 5 с. и 20 з.п.ф-лы, 3 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к области подвижной радиосвязи, и более конкретно - к усовершенствованным способу и системе для определения местоположения подвижного радиотерминала.
Уровень техники
В области сотовой связи все более актуальной становится задача определения местоположения подвижных радиотерминалов. Кроме того, в настоящее время уполномоченные ответственные за определение технических условий систем подвижной радиосвязи и стандартов включаются в процесс определения точности, необходимой при определении местоположения подвижного терминала. Наиболее успешные методы, используемые до сих пор для определения местоположения подвижных терминалов, основаны на измерениях значений времени прохождения сигнала, которые, в свою очередь, в дальнейшем используются для вычисления расстояний. Эти измерения времени прохождения сигнала проводят по восходящей линии связи (измерения в базовой станции передач из подвижного терминала) или по нисходящей линии связи (измерения в подвижном терминале передач из базовой станции).
Например, в международной заявке на имя Гош (Ghosh) и другие ("Гош") WO 96/35958 раскрыты способ и система для определения местоположения подвижного терминала в системе связи множественного доступа с кодовым разделением каналов (МДРК) (например, в соответствии со стандартом IS-95). В этой заявке предложен способ, с помощью которого измерения абсолютного времени поступления (ВП) сигнала, переданного подвижным терминалом, проводят по меньшей мере двумя базовыми станциями. Эти измерения ВП преобразовывают в значения расстояния. Метод триангуляции используется для того, чтобы определить местоположение подвижного терминала. Однако недостатком раскрытого способа ВП определения местоположения является необходимость использования высокоточной или "точной" опорной синхронизации (например, как в Глобальной Системе Определения Местоположения ГСОМ (GPS).
Ландвист (Lundqvist) и другие ("Ландвист") в заявке на РСТ PCT/SE97/00219 (и соответствующая заявка на выдачу патента США 08/799039) раскрыли способ и устройство для определения местоположения подвижного терминала в несинхронизированной среде (например, без использования "точной" опорной синхронизации. Вместо этого для измерений времени прохождения по нисходящей линии связи используется множество неподвижно расположенных "опорных" радиотерминалов, местоположения которых известны. Относительный сдвиг времени передачи между базовыми станциями определяется и используется для вычисления местоположения подвижного терминала.
Берквист (Bergkvist) и другие ("Берквист") в заявке на РСТ PCT/SE96/03561-3 (и соответствующая заявка на выдачу патента США 60/028345) раскрыли способ и устройство для определения местоположения подвижного терминала в сотовой системе подвижной радиосвязи, такой как Глобальная система Подвижной Связи (ГСПС (GSM)). Подвижному терминалу выдают команду на выполнение последовательности перераспределения каналов связи в нескольких целевых базовых станциях. Подвижный терминал также передает пакет доступа в целевую базовую станцию. Однако эта целевая базовая станция не передает сообщение с подтверждением о получении пакета доступа. Подвижный терминал затем возвращается к своей служебной базовой станции. Эта целевая базовая станция использует полученный пакет доступа для измерения продолжительности прохождения в прямом и обратном направлениях (базовая станция - подвижный терминал - базовая станция). Следовательно, для вычисления местоположения подвижного терминала не нужен опорный синхронизирующий сигнал.
Недостаток способа, раскрытого в вышеупомянутой заявке Гоша, заключается в том, что для использования глобальной опорной синхронизации по времени, такой как сигнал ГСОМ, и точного определения местоположения подвижного терминала требуются базовые станции. Аналогично, в способе, раскрытом в заявке Ландвиста, хотя и избегается использование глобальной опорной синхронизации по времени, вместо этого используется сложная система "опорных" радиотерминалов, местоположения которых известны, для того, чтобы получить значения относительных сдвигов при синхронизации базовых станций. Недостатком заявки Бергквист является то, что в ней используются измерения задержек по времени при прохождении сигнала в прямом и обратном направлениях от выполнения последовательности прерванных передач обслуживания. В этом способе затрачивается значительное количество времени для завершения, и он создает существенные помехи вследствие передачи отдельных пакетов доступа в некоторые базовые станции. Однако эти пакеты доступа вырабатываются только с целью определения местоположения подвижного терминала.
Таким образом, существует потребность в определении местоположения подвижного терминала без использования сложных опорных синхронизаций, "опорных" подвижных терминалов и "возмущения" прерванных передач обслуживания с использованием основных функций сотовой системы подвижной радиосвязи. Как описано ниже, настоящее изобретение позволяет удовлетворить эту потребность и устранить вышеописанные недостатки.
Сущность изобретения
Одна проблема, к которой обращено настоящее изобретение, заключается в том, как измерить расстояние между базовой станцией и подвижной станцией без необходимости использования глобальной опорной синхронизации по времени.
Другая проблема, к которой обращено настоящее изобретение, заключается в том, как определить географическое местоположение подвижного терминала в несинхронизированной системе подвижной радиосвязи (без глобальной опорной синхронизации по времени) при устранении необходимости в дополнительном оборудовании для определения местоположения (например, "опорных" радиотерминалов для определения сдвигов во времени между базовыми станциями).
Другая проблема, к которой обращено настоящее изобретение, заключается в том, как определить географическое местоположение подвижных радиотерминалов без создания ненужных "помех" (например, пакетов доступа, которые передаются в прерванной передаче обслуживания).
Поэтому задача настоящего изобретения состоит в обеспечении способа и системы для определения местоположения подвижного терминала, работающего в диалоговом режиме непосредственно на цифровом или аналоговом (но способном переносить цифровую информацию) канале информационного обмена системы подвижной радиосвязи.
Другой задачей настоящего изобретения является обеспечение способа и системы, которые решают вышеописанную задачу, и в которых система подвижной радиосвязи представляет собой, например, МДКР (CDMA), широкополосную МДКР (ШПМДКР (WCDMA)) или систему множественного доступа с разделением по времени (МДРВ (TDMA)).
Другая задача настоящего изобретения заключается в обеспечении способа и системы, которые решают вышеописанную задачу, и в которых функция определения местоположения реализована с помощью системы, которая передает и проводит измерения по заранее известным информационным признакам (то есть, не требующим передачи переменной информации).
Другая задача настоящего изобретения заключается в обеспечении способа и системы, которые решают вышеописанные задачи и в которых относительные сдвиги во времени, возникающие при передачах из базовых радиостанций, можно определить с использованием одного подвижного терминала и в дальнейшем применять для определения местоположения других подвижных терминалов.
Согласно настоящему изобретению, вышеуказанные и другие задачи решены с помощью новых способа и системы для определения местоположения подвижных терминалов в сотовой системе подвижной радиосвязи. Проводя аналогии с областью воздушного движения, например, при обращении к расписанию воздушного движения, можно заметить, что время вылета и прилета самолета указывается по местному времени. При рассмотрении расписания воздушного движения Восток-Запад между двумя городами (например, Далласом и Стокгольмом), местное время в этих городах может отличаться на несколько часов. Следовательно, истинная продолжительность прохождения по маршруту, необходимая для перелета из одного города в другой (например, из Далласа в Стокгольм) отличается от истинной продолжительности прохождения по маршруту, необходимой для перелета по этому маршруту в противоположном направлении (например, из Стокгольма в Даллас), если значения местного времени используются для подсчета времени прилета в расписании. Однако относительно просто вычислить реальное время прохождения по маршруту для пассажира путем сложения истинной продолжительности прохождения по маршруту при перелете в направлении Восток-Запад (например, из Далласа в Стокгольм) с истинной продолжительностью прохождения по маршруту для обратного перелета (например, из Стокгольма в Даллас) и деления полученного результата на два. По существу, используя этот метод вычисления времени полета "туда и обратно" или в прямом и обратном направлениях, время, которое "теряется" при перелете в прямом направлениях, равно времени, которое "добавляется" при перелете в обратном направлении, и результат является независимым от местного времени. В конечном счете, для определения расстояния между двумя городами, вычисленное реальное время можно умножить на скорость самолета, который совершает перелет.
Аналогичным образом, согласно настоящему изобретению, способ вычисления времени прохождения в прямом и обратном направлениях используется для того, чтобы определить расстояние между подвижной радиостанцией (ПС) и базовой радиостанцией (БС) с использованием истинных времен прохождения сигнала по восходящей линии связи и по нисходящей линии связи (например, Т-восходящей и Т-нисходящей). В этом случае не требуется абсолютной опорной синхронизации по времени. ПС и БС передают сообщения в служебный узел, расположенный в сети подвижной связи значения местного времени отправления и поступления сигналов восходящей и нисходящей линиям связи, и вычисляют истинные продолжительности прохождения сигнала при прохождении сигналов Т-восходящей и Т-нисходящей. Расстояние D между ПС и БС можно вычислить как:
D=c(T-вверх+Т-вниз)/2,
где с - скорость света.
Согласно первому варианту осуществления настоящего изобретения расстояние между ПС и конкретной базовой радиостанцией (БС1) можно определить с помощью следующего нового способа определения продолжительности прохождения сигнала в прямом и обратном направлениях. Команду на первое измерение посылают с помощью контроллера сети (например, с помощью коммутационного центра услуг подвижной радиосвязи или КЦУПР) в БС1, который выдает команду БС1 на измерение времени поступления по местному времени (L-TOA-U) первого сигнала (например, известной обучающей последовательности), который будут передавать (по восходящей линии связи вверх) с помощью ПС в пределах определенного временного окна. В отношении передачи по нисходящей линии связи, БС1 обычно периодически передает второй сигнал по нисходящей линии связи (например, пилот-сигнал в системе ШМДКР) по местному времени (L-TOT-D) передачи. Эти вторые сигналы можно принимать с помощью всех ПС, которые делают это необязательным для сетевого контроллера, который выдает команду БС1 посылать закрепленный сигнал по нисходящей линии связи в определенное время. Сетевой контроллер посылает вторую команду на измерение в ПС через свою служебную БС (БСО), которая выдает команду ПС на передачу первого сигнала (по восходящей линии связи) внутри специфического определенного окна и сообщает свое точное местное время (L-TOT-U) передачи. Вторая команда на измерение также выдает команду ПС на измерение и сообщение местного времени (L-TOA-D) поступления второго сигнала (по каналу вниз), который передается с помощью БС1. Кроме того, первая и вторая команды идентифицируют нисходящие и восходящие линии связи, которые будут использованы для вышеописанных передач и измерений. ПС и БС1 передают сообщение о соответствующих измерениях L-TOA-D и L-TOA-U в сетевой контроллер, который посылает дальше эту информацию вместе с идентификацией ПС в процессор, расположенный в сетевом служебном узле. Процессор вычисляет расстояние между ПС и БС1 с использованием выражения (1).
Согласно второму варианту осуществления настоящего изобретения (например, в системе МДКР или ШМДКР) время передачи из ПС в служебную ВС (БСО) можно определить с помощью нового способа, который устанавливает соединение (например, вызов) между БСО и ПС. Для определения задержки прохождения сигнала в прямом и обратном направлениях в течение соединения можно использовать известную технику согласованного фильтра. Значение результирующей задержки прохождения сигнала в прямом и обратном направлениях делят на 2 и результат умножают на скорость света, получая в результате расстояние между ПС и БСО. Тот же самый способ можно использовать для определения расстояния между ПС и двумя соседними БС (БС1 и БС2). Известный алгоритм триангуляции используется в дальнейшем для определения местоположения ПС.
Согласно третьему варианту осуществления настоящего изобретения (например, в системе МДРВ), время прохождения сигнала от ПС в служебную БС (БСО) определяют с помощью известного метода Опережения Синхронизации (ОС). Как и во втором варианте осуществления, для определения задержки прохождения сигнала в прямом и обратном направлениях можно использовать известный метод согласованной фильтрации.
Расстояние между ПС и БСО вычисляют с помощью деления значения задержки прохождения сигнала в прямом и обратном направлениях на два и умножения полученного результата на скорость света. В этом случае для определения расстояния между ПС и двумя соседними БС (БС1, БС2) снова можно использовать тот же самый способ. В дальнейшем для определения местоположения ПС используется известный алгоритм триангуляции.
Согласно четвертому варианту осуществления настоящего изобретения местоположение, полученное для одной ПС (ПС1), и полученные расстояния от этой ПС1 до соседних базовых станций (например, БС1, БС2 и так далее) используются сетевым служебным узлом определения сдвигов во времени (передачи) этих соседних БС относительно служебных БС (БСО) ПС1. Местоположение второй ПС (ПС2) затем определяют в соответствии с известным способом ВП по восходящей линии связи или по нисходящей линии связи. Следует обратить внимание, в качестве конкретного примера, что местоположение, полученное для ПС1 необходимо определять несколько раньше измерений ПС2, так как сигналы тактовых импульсов БС могут дрейфовать. Соседние БС передают сообщение АВП по местному времени в служебный узел через сетевой контроллер (например, КЦУПР). Служебный узел уже знает о сдвигах во времени соседних БС.
Согласно пятому варианту осуществления настоящего изобретения радио-БС предусмотрена для определения местоположения ПС с использованием метода определения местоположения по прохождению сигнала в прямом и обратном направлениях. БС включает в себя блок управления, имеющий местную синхронизацию. Блок управления в ответ на получение команды на передачу сообщения, передает сообщение о местном времени передачи по нисходящей линии связи (L-TOT-D) и о местном времени поступления по восходящей линии связи (L-TOA-U) с синхронизирующей последовательностью, по восходящей и по нисходящей линиям связи между БС и ПС. БС также включает в себя передатчик, который передает сообщение в блок управления на момент времени, когда сигнал передается по нисходящей линии связи (L-TOT-D). В БС также входит приемник, в котором используется согласованный фильтр или коррелятор с перестраиваемым опорным сигналом для определения момента времени поступления сигнала восходящей линии связи (L-TOA-U). Приемник передает сообщение с этой информацией в блок управления.
Согласно шестому варианту осуществления настоящего изобретения радио-ПС предусмотрена для определения своего собственного местоположения с использованием метода определения местоположения по прохождению сигнала в прямом и обратном направлениях, так как это используется в пятом варианте осуществления для БС. Радио-ПС включает в себя блок управления, имеющий местную синхронизацию. Блок управления в ответ на получение команды на передачу сообщения сообщает местное время (L-TOT-U) передачи по восходящей линии связи и местное время (L-TOA-D) линии связи синхронизирующей последовательности нисходящей линии связи и восходящей линии связи между ПС и радио-БС. ПС также включает в себя передатчик, который передает сообщение в блок управления на момент времени передачи сигнала по восходящей линии (L-TOT-U) связи. В ПС также входит приемник, в котором используется согласованный фильтр или коррелятор с перестраиваемым опорным сигналом для определения момента времени поступления сигнала по нисходящей линии (L-TOA-D) связи. Приемник передает сообщение с этой информацией о времени в блок управления.
Важным техническим преимуществом настоящего изобретения является то, что используемый способ определения местоположения не требует БС, синхронизированных по времени, опорной синхронизации или "опорных" терминалов с известным местоположением. Настоящее изобретение также позволяет избежать образования ненужных "возмущений" пакета доступа.
Другим важным техническим преимуществом настоящего изобретения является то, что его можно использовать в любой системе подвижной связи, включая, например, МДКР, ШМДКР, МДРВ и множественный доступ с разделением по частоте (МДРЧ (FDMA)) или аналогичную систему, при условии, что такая система позволяет передавать цифровую информацию по восходящей линии связи и по нисходящей линии связи, и БС, и ПС позволяют измерять значения местного времени передачи и приема.
Другим важным техническим преимуществом настоящего изобретения является то, что оно позволяет использовать опорный синхронизирующий сигнал (например, опорный сигнал ГСОМ) в ВС, который делает ненужным проведение измерений по восходящей линии связи или по нисходящей линии связи.
Еще одним важным техническим преимуществом настоящего изобретения является то, что оно обеспечивает возможность использования ПС, местоположение которой было определено, в качестве "опорного" терминала с целью определения сдвигов синхронизации соседних БС. Следовательно, настоящее изобретение преимущественно уменьшает число измерений, необходимых для определения местоположения других ПС.
Перечень фигур чертежей
Сущность изобретения иллюстрируется ссылкой на сопровождающие чертежи, на которых:
фиг. 1 - схема сотовой системы подвижной радиосвязи, которую можно использовать для осуществления способа определения местоположения подвижной радиостанции (без требования использования опорного синхронизирующего сигнала), согласно предпочтительному варианту осуществления настоящего изобретения;
фиг. 2 - схема базовой радиостанции и подвижной радиостанции, которые имеют структуру, согласно предпочтительным вариантам осуществления настоящего изобретения; и
фиг. 3 - последовательность операций, в соответствии с которой реализуют способ определения местоположения подвижной радиостанции, осуществляемый вариантами по фиг.1 и 2.
Подробное описание чертежей
Предпочтительный вариант осуществления настоящего изобретения и его преимущества раскрыты со ссылкой на фиг.1-3, на которых одинаковые позиции используются для обозначения одинаковых и соответствующих частей, изображенных на различных чертежах.
На фиг. 1 представлена схема сотовой системы 200 подвижной радиосвязи, которую можно использовать для осуществления способа определения местоположения подвижной радиостанции (без требования использования опорного синхронизирующего сигнала), согласно предпочтительному варианту осуществления настоящего изобретения. Система 200 включает в себя множество базовых радиостанций. Для простоты показаны только три базовые станции из этого множества базовых радиостанций: БСО (служебная базовая станция для подвижной радиостанции, местоположение которой необходимо определить) и две соседние базовые станции БС1 и БС2. Предпочтительно, БСО, БС1 и БС2 расположены на различных участках и определяют различные ячейки, причем все они подсоединены к проводной сети (например, наземной подвижной сети общего пользования или НПСОП) через каналы 201 связи. Для представленного в качестве примера варианта осуществления, эта сеть включает в себя сетевой контроллер, такой как, например, коммутационный центр услуг подвижной радиосвязи (КЦОПР) 202, который подсоединяется через коммутируемую телефонную сеть общего пользования или КТСОП (для упрощения не показано) к центру подвижного позиционирования служебного узла ЦППСУ 203, КЦОПР 202 включает в себя область памяти с таблицей 204 поиска, которая связывает специфические радиоканалы со специфическими подвижными радиостанциями (например, ПС 208). Функция таблицы 204 поиска позволяет КЦОПР 202 передавать сообщение в служебный узел ЦППСУ о передаче сигнала по восходящей линии связи и по нисходящей линии связи и значения времени поступления и связывать эти времена с подвижной станцией(ями) (например, ПС 208). Каждый ПС поддерживает связь с БС через беспроводный радиоинтерфейс (например, беспроводный интерфейс 211, расположенный между БСО и ПС 208).
В этом варианте осуществления, служебный узел ЦППСУ 203 включает в себя процессор 203а, который дополнительно включает в себя приемный блок 203b, блок 203с памяти, блок 203d отправления и первый и второй блоки 203е и 203f вычисления, соответственно. Процессор 203а поддерживает информацию о географическом местоположении для каждой БС в блоке 203с памяти. Блоки 203е и 203f вычисления используются для вычисления местоположения о включенной ПС (например, ПС 208) с использованием сохраненной информации о местоположении БС и сообщенных значений о местном времени передачи или времени поступления (из КЦОПР 202) для сигналов нисходящей линии связи и восходящей линии связи.
Например, первый блок 203е вычисления можно использовать для вычисления расстояния D прохождения сигнала в прямом и обратном направлениях между ПС (например, ПС 208) и БС (например, БС1) следующим образом:
D=c(Т-вверх + Т-вниз)/2, (2)
из сообщенных значений местного времени передачи (L-TOT-U, L-TOT-D), и местного времени поступления (L-TOA-U, L-TOA-D), где
Т-вверх=(L-TOA-U-L-TOT-U), и (3)
Т-вниз=(L-TOA-D-L-TOT-D). (4)
Второй блок 203f вычисления можно использовать для вычисления местоположения ПС с учетом (например, ПС 208) использования информации о расстоянии D прохождения сигнала в прямом и обратном направлениях между этой ПС и по меньшей мере тремя базовыми радиостанциями (например, БСО, БС1, БС2).
В дополнение второй блок 203f вычисления может также использовать любую сообщенную информацию о направлении прихода (НПХ), если она поступает из антенных решеток для определения местоположения ПС. В этом случае местоположение ПС можно легко определить из расстояния D прохождения сигнала в прямом и обратном направлениях и из информации НП по отношению к одной БС. Эта ПС также располагается на определенном азимуте (НП) и расстоянии от задействованной БС.
Блок 203с памяти поддерживает известные местоположения базовых радиостанций сети (например, БСО, БС1, БС2). Блок 203b приема и блок 203d отправления обеспечивают средство для служебного узла ЦППСУ 203 для того, чтобы поддерживать связь с сетевым контроллером (КЦОПР 202), а также с абонентами, запрашивающими/получающими информацию о местоположении ПС (например, с использованием услуги коротких сообщений или УКС-услуги).
Во время работы предполагается, что ПС 208 является ПС, местоположение которой необходимо определить. Показанная двунаправленная линия 211 связи представляет собой соединение сигнала (например, вызов) между ПС 208 и своей служебной БСО. КЦОПР 204 посылает командное сообщение через соединение 211 к ПС 208 и выдает команду ПС 208 на выполнение функций определения местоположения. ПС 208 передает через соединение 211 свою сообщенную передачу с местным сигналом и значения времени поступления, которые принимает БСО и передает в КЦОПР 202. Каждое из соединений 212 и 213 сигналов по восходящей линии связи (к БС1 и БС2, соответственно) представляет собой последовательность определения местоположения, которая передается по восходящей линии связи и принимается БС1 и БС2. Для этого приведенного в качестве примера варианта осуществления информация о последовательности определения местоположения должна представлять собой только заранее определенную временную метку. Аналогичным образом, каждое из соединений 214 и 215 сигнала по нисходящей линии связи (из БС1 и БС2, соответственно) представляет собой последовательность определения местоположения, которая передается по нисходящей линии связи с помощью БС1 и БС2 и принимается ПС 208. Для этого варианта осуществления эта информация о последовательности определения местоположения должна представлять собой только заранее определенную временную метку. Однако для другого варианта осуществления эти предопределенные временные метки можно выполнить в виде пилот-сигналов, которые передают с помощью БС1 и БС2 в системе МДРК или ШМДРК.
Расстояние от соседних базовых станций (БС1, БС2) до ПС (208) можно определить с помощью вышеописанного способа определения местоположения по прохождению сигнала в прямом и обратном направлениях. Расстояние от служебной базовой станции (БСО) до ПС (208) можно определить стандартным способом измерения расстояния с опережением синхронизации (например, в системе МДРВ) или стандартным способом измерения расстояния согласованным фильтром (например, в системе МДКР или ШМДКР). Эти расстояния между ПС (208) и базовыми станциями (БСО, БС1, БС2), наряду с известной информацией о месторасположении БС, затем используются в алгоритме триангуляции для определения местоположения ПС.
На фиг.2 представлена схема базовой радиостанции и подвижной радиостанции, которые имеют структуру, выполненную в соответствии с предпочтительным вариантом осуществления настоящего изобретения. Для этого варианта осуществления, базовая радиостанция БС1, (или БС2, ..., БСn) и подвижная станция ПС 208 являются частью системы ШМДКР. БС1 включает в себя передающую антенну 301 и две приемные антенны 302. Пара приемных антенн 301, преимущественно, обеспечивает разнесение по пространству для радиообмена информацией, а также для измерений по восходящей линии связи, в соответствии с настоящим изобретением. БС1 также включает в себя часть 303 передатчика, часть 304 приемника и согласованный фильтр 305, предпочтительно выполненный в виде фильтра с конечной импульсной характеристикой (КНХ). В фильтре 305 КИХ (подсоединенном к части 304 приемника) используется известный метод синхронизации для определения момента поступления сигнала 309 по восходящей линии связи в БС1, который использован в настоящем способе определения местоположения ПС 208. Блок 306 управления считывает из местного синхронизатора 308 (через соединение 307 из фильтра 305 КИХ в сообщенный момент времени) местное время (L-TOA-U) поступления восходящей линии связи, и передает эту информацию наряду с соответствующей информацией идентичности радиоканала, в КЦОПР 202.
ПС 208 имеет структуру, необходимую для осуществления способа определения местоположения ПС, согласно изобретению, и выполненную соответствующим путем, как и БС1. В этом варианте осуществления, ПС 208 включает в себя приемопередающую антенну 321, которая подсоединена к части 324 приемника, части 323 передатчика и части 323 передатчика/приемника. Согласованный фильтр 325 (выполнен также, как и фильтр КИХ) подсоединяется к части 324 приемника. В фильтре 325 КИХ используется известный метод синхронизации для определения момента поступления сигнала 310 нисходящей линии связи, в ПС 208, который необходимо использовать для настоящего способа определения местоположения ПС 208. Блок 326 управления считывает из местного синхронизатора 328 (через соединение 327 из фильтра 325 КИХ в сообщенный момент времени) местное время (L-TOA-D) поступления по нисходящей линии связи и передает эту информацию наряду с соответствующей информацией идентичности радиоканала в КЦОПР 202 через сигнальный тракт 329, часть 330 передатчика/приемника, антенну 321, беспроводный интерфейс 331 и служебную базовую радиостанцию БСО.
Блок 326 управления также вырабатывает сигнал 309 восходящей линии связи, который передается с помощью ПС 208 через часть 323 передатчика и антенну 321. Сигнал 309 восходящей линии связи, который принимают с помощью входящей в состав базовой станции (например, БС1), используется при реализации настоящего способа определения местоположения ПС. Блок 326 управления дополнительно считывает из местного синхронизатора 328 местное время (L-TOT-U) передачи для сигнала 309 восходящей линии связи и передает эту информацию наряду с соответствующей идентичностью радиоканала в КЦОПР 202. КЦОПР 202 обращается к поисковой таблице 204 (фиг.1) для определения идентичности подвижной станции, местоположение которой необходимо определить (например, ПС 208). Поисковая таблица также поддерживает, в дополнение к известной информации о местоположении БС, ассоциированные радиоканалы, пропускающие соответствующие сигналы 211, 212, 213, 214 и 215. Эти сигналы сохраняются в поисковой таблице, когда устанавливается вызов между служебной базовой станцией БСО и входящей в состав ПС (208), и командное сообщение посылают для инициализации настоящего способа определения местоположения ПС.
На фиг.3 представлена последовательность операций, которая представляет способ 500 определения местоположения подвижной радиостанции, который можно реализовать по вариантам осуществления настоящего изобретения (фиг.1 и 2). В этих вариантах осуществления система 200 является системой подвижной радиосвязи МДРК. На этапе 501 запрос для определения местоположения подвижной радиостанции (например, ПС 208) принимают в служебном узле ЦППСУ 203. Например, такой запрос может входить в ЦППСУ 203 в виде короткого текстового сообщения от абонента. В ответ на получение такого запроса, на этапе 502 ЦППСУ 203 посылает командное сообщение через КЦОПР 202 и служебную БСО в ПС 208, которая выдает команду ПС 208 на инициализацию функции определения местоположения для самой себя. Определение местоположения проводится с использованием данных о местоположении служебной БСО и соседних базовых станций БС1 и БС2, которые входят в известный алгоритм триангуляции. На этапе 503 БСО определяет расстояние между собой и ПС 208 с помощью вычисления временной задержки прохождения сигнала в прямом и обратном направлениях (БСО-ПС-БСО), используя известный способ согласованной фильтрации/корреляции, и передает сообщение с информацией об определенном расстоянии через КЦОПР 202 в ЦППСУ 203.
На этапе 504 ПС 208 измеряют моменты поступления по местному времени, L-TOA-D1 и L-TOA-D2, пилот-сигналов, которые передают из БС1 и БС2, соответственно, и передают эти значения времени поступления по местному времени через БСО и КЦОПР 202 в ПЦПСУ 203. На этапе 505 ПЦПСУ 203 посылает командное сообщение через КЦОПР 202 в БС1 и БС2, который выдает команду БС1 и БС2 на "прослушивание" для данных о местоположении, которые необходимо передать по восходящей линии связи из ПС 208 в течение специфического интервала. На этапе 506 ПЦПСУ 203 посылает командное сообщение в ПС 208 через КЦОПР 202 и БСО, которая выдает команду ПС 208 на передачу данных о местоположении в течение специфического интервала, и передает сообщение о точном времени передачи (L-TOT-U) через БСО и КЦОПР 202 в ПЦПСУ 203.
На этапе 507 БС1 и БС2 измеряют соответствующие моменты поступления по местному времени, L-TOA-U1 и L-TOA-U2, данных о местоположении, которые передают в течение специфического интервала, с использованием известного способа корреляции. На этапе 508 БС1 и БС2 передают сообщение о соответствующих значениях местного времени L-TOT-D1 и L-TOT-D2 базовой станции для переданных сигналов и местного времени L-TOA-U1 и L-TOA-U2 поступления сигналов базовой станции для принятых сигналов в ЦППСУ 203 через КЦОПР 202. На этапе 509 ЦППСУ 203 вычисляет местоположение ПС 208 с использованием местоположений известных БС и сообщенные значения местного времени в соответствии с вышеприведенными выражениями (2)-(4).
Следует отметить, что согласно настоящему изобретению, сигналы восходящей линии связи от ПС 208 можно передавать в любое соответствующее время, если местное время передачи сообщается из ПС 208. Однако в способах, известных из уровня техники, сигналы, которые передают по восходящей линии связи из подвижной станции, местоположение которой необходимо определить, передают в известные абсолютные моменты времени, связанные с синхронизацией служебной базовой станции и расстоянием между служебной базовой станцией и этой подвижной станцией. Следовательно, в качестве альтернативы способам, известным из уровня техники, расстояние между служебной базовой станцией и подвижной станцией можно определить, используя настоящий способ (фиг.3 для определения расстояний между БС1 и ПС 208, и БС2 и ПС 208, с помощью выполнения этапов 504-508, а не так, как было раскрыто для этапа 503.
Хотя был раскрыт и представлен на чертежах только предпочтительный вариант осуществления способа и устройства по настоящему изобретению, очевидным является, что изобретение не ограничено раскрытым вариантом осуществления и в отношении него могут быть выполнены многочисленные модификации и замены без изменения сущности изобретения, как она раскрыта выше и охарактеризована в нижеследующей формуле изобретения.

Claims (25)

1. Способ определения продолжительности прохождения сигнала в прямом и обратном направлении между подвижной радиостанцией и первой базовой радиостанцией, содержащий этапы, в соответствии с которыми передают сигнал из каждой подвижной радиостанции по восходящей линии связи и определяют местное время передачи упомянутого сигнала, а из первой базовой радиостанции передают сигнал по нисходящей линии связи и определяют местное время передачи упомянутого сигнала, и передают упомянутую информацию о местных временах передачи в служебный узел сети подвижной связи, в каждой подвижной радиостанции принимают сигнал нисходящей линии связи и определяют местное время приема упомянутого сигнала, а в первой базовой радиостанции принимают сигнал восходящей линии связи и определяют местное время приема упомянутого сигнала восходящей линии связи, соответственно, и передают указанную информацию о местных временах приема в служебный узел сети подвижной связи, вычисляют в служебном узле сети подвижной связи истинную продолжительность прохождения сигнала по восходящей линии связи, исходя из информации о местном времени передачи из подвижной радиостанции сигнала восходящей линии связи и информации о местном времени приема в первой базовой станции сигнала восходящей линии связи, вычисляют в служебном узле сети подвижной связи истинную продолжительность прохождения сигнала по нисходящей линии связи, исходя из информации о местном времени передачи из первой базовой станции сигнала по нисходящей линии связи и информации о местном времени приема в подвижной радиостанции сигнала нисходящей линии связи, и складывают в служебном узле сети подвижной связи истинную продолжительность прохождения сигнала по восходящей линии связи и истинную продолжительность прохождения сигнала по нисходящей линии связи для получения информации о времени продолжительности прохождения сигнала в прямом и обратном направлении.
2. Способ по п. 1, дополнительно содержащий этап определения в служебном узле сети подвижной связи расстояния между подвижной радиостанцией и первой базовой радиостанцией путем умножения продолжительности прохождения сигнала в прямом и обратном направлении на скорость света, деленную на два.
3. Способ по п. 1, дополнительно содержащий этап определения продолжительности прохождения сигнала в прямом и обратном направлении между подвижной радиостанцией и второй базовой радиостанцией посредством повторного выполнения этапов по п. 1 для подвижной радиостанции и второй базовой радиостанции.
4. Способ по п. 3, дополнительно содержащей этапы определения местоположения подвижной радиостанции, в соответствии с которыми определяют первое радиальное расстояние между первой базовой радиостанцией и подвижной радиостанцией и второе радиальное расстояние между второй базовой радиостанцией и подвижной радиостанцией путем умножения каждой продолжительности прохождения сигнала в прямом и обратном направлении на скорость света, деленную на два, определяют множество пересечений первого радиального расстояния и второго радиального расстояния и выбирают местоположение из множества пересечений.
5. Способ по п. 2, дополнительно содержащий этапы определения местоположения подвижной радиостанции, в соответствии с которыми определяют расстояние между подвижной радиостанцией и второй и третьей базовыми радиостанциями путем повторного выполнения этапов по пп. 1 и 2 для второй и третьей базовых радиостанций, и выполняют триангуляцию по расстоянию между подвижной радиостанцией и первой базовой радиостанцией, подвижной радиостанцией и второй базовой радиостанцией и подвижной радиостанцией и третьей базовой радиостанцией.
6. Способ по п. 2, дополнительно содержащий этапы определения местоположения подвижной радиостанции с использованием алгоритма времени поступления с более чем тремя базовыми радиостанциями.
7. Способ по п. 2, дополнительно содержащий этапы, в соответствии с которыми получают по меньшей мере одно направление сигнала поступления для подвижной радиостанции и по меньшей мере одной базовой радиостанции и определяют местоположение подвижной радиостанции из направления сигнала поступления и расстояния между подвижной радиостанцией и первой базовой радиостанцией.
8. Способ по п. 1, по которому истинная продолжительность прохождения сигнала по восходящей линии связи равна местному времени поступления для сигнала восходящей линии связи минус местное время передачи для сигнала восходящей линии связи, а истинная продолжительность прохождения сигнала по нисходящей линии связи равна местному времени поступления для сигнала нисходящей линии связи минус местное время передачи для сигнала восходящей линии связи.
9. Способ определения расстояния между подвижной радиостанцией и первой базовой радиостанцией, содержащий этапы, в соответствии с которым передают сигнал из каждой подвижной радиостанции по восходящей линии связи и определяют местное время передачи упомянутого сигнала, а из первой базовой радиостанции передают сигнал по нисходящей линии связи и определяют местное время передачи упомянутого сигнала, и передают упомянутую информацию о местных временах передачи в служебный узел сети подвижной связи, в каждой подвижной радиостанции принимают сигнал нисходящей линии связи и определяют местное время приема сигнала нисходящей линии связи, а в первой базовой радиостанции принимают сигнал восходящей линии связи и определяют местное время приема упомянутого сигнала, и передают упомянутую информацию о местных временах приема в служебный узел сети подвижной связи, вычисляют в служебном узле сети подвижной связи истинную продолжительность прохождения сигнала по восходящей линии связи, исходя из информации о местном времени передачи сигнала восходящей линии связи и о местном времени приема сигнала восходящей линии связи, вычисляют в служебном узле сети подвижной связи истинную продолжительность прохождения сигнала по нисходящей линии связи, исходя из информации о местном времени передачи сигнала нисходящей линии связи и информации о местном времени приема сигнала нисходящей линии связи, складывают в служебном узле сети подвижной связи истинную продолжительность прохождения сигнала по восходящей линии связи и истинную продолжительность прохождения сигнала по нисходящей линии связи для получения времени прохождения сигнала в прямом и обратном направлении, и умножают в служебном узле сети подвижной связи продолжительность прохождения сигнала в прямом и обратном направлении на скорость света, деленную на два.
10. Способ определения расстояния до подвижной радиостанции в системе подвижной связи, содержащий этапы, в соответствии с которыми устанавливают соединение между подвижной радиостанцией и первой базовой радиостанцией в системе подвижной связи, вычисляют истинную продолжительность прохождения сигнала по восходящей линии связи и истинную продолжительность прохождения сигнала по нисходящей линии связи для соединения между подвижной радиостанцией и первой базовой радиостанцией, с использованием местного времени передачи и местного времени приема, измеренных от соответствующей местной синхронизации в подвижной радиостанции и первой базовой радиостанции, и передают упомянутую информацию о местных временах передачи и приема в служебный узел сети подвижной связи, складывают в служебном узле сети подвижной связи истинную продолжительность прохождения сигнала по восходящей линии связи и истинную продолжительность прохождения сигнала по нисходящей линии связи для соединения с тем, чтобы получить продолжительность прохождения сигнала в прямом и обратном направлении, и определяют в служебном узле сети подвижной связи расстояние для соединения путем умножения продолжительности прохождения сигнала в прямом и обратном направлении для соединения на скорость света, деленную на два.
11. Способ по п. 10, дополнительно содержащий этапы определения местоположения подвижной радиостанции, в соответствии с которыми определяют первое радиальное расстояние между первой базовой радиостанцией и подвижной радиостанцией, и второе радиальное расстояние между второй базовой радиостанцией и подвижной радиостанцией путем умножения соответствующей продолжительности прохождения сигнала в прямом и обратном направлении для первой и второй базовой радиостанции на скорость света, деленную на два, определяют множество пересечений первого радиального расстояния и второго радиального расстояния и выбирают местоположение из множества пересечений.
12. Способ по п. 10, дополнительно содержащий этапы определения местоположения подвижной радиостанции, в соответствии с которыми определяют расстояние между подвижной радиостанцией и второй и третьей базовыми радиостанциями путем повторного выполнения этапов по п. 10 для второй и третьей базовых радиостанций и выполняют триангуляцию местоположения подвижной станции по расстоянию между подвижной радиостанцией первой базовой радиостанцией, подвижной радиостанцией и второй базовой радиостанцией и подвижной радиостанцией и третьей базовой радиостанцией.
13. Способ по п. 10, дополнительно содержащий этапы определения местоположения подвижной радиостанции с использованием алгоритма времени поступления с более чем тремя базовыми радиостанциями, поддерживающими соединение с подвижной радиостанцией.
14. Способ по п. 10, по которому истинная продолжительность прохождения сигнала по восходящей линии связи для каждого соединения равна местному времени поступления для соответствующего сигнала восходящей линии связи минус местное время передачи для соответствующего сигнала восходящей линии связи, а истинная продолжительность прохождения сигнала по нисходящей линии связи равна значению местного времени поступления для соответствующего сигнала нисходящей линии связи минус значение местного времени передачи для соответствующего сигнала нисходящей линии связи.
15. Способ по п. 10, дополнительно содержащий этапы определения местоположения подвижной радиостанции при использовании, по меньшей мере расстояния для соединения и измерения по меньшей мере одного другого расстояния.
16. Способ по п. 10, по которому соединение содержит вызов.
17. Способ по п. 10, по которому соединение содержит данные линии связи.
18. Способ по п. 10, дополнительно содержащий этапы определения местоположения подвижной радиостанции, в соответствии с которыми сигналы восходящей линии связи подвижной радиостанции синхронизированы с сигналами нисходящей линии связи первой базовой радиостанции, причем первая базовая радиостанция использует известную задержку времени прохождения сигнала в прямом и обратном направлении для соединения между первой базовой радиостанцией и подвижной радиостанцией.
19. Способ определения местоположения подвижной радиостанции, содержащий этапы, в соответствии с которыми измеряют задержку времени прохождения сигнала в прямом и обратном направлении между по меньшей мере одной служебной базовой радиостанцией и подвижной радиостанцией, по меньшей мере одна из служебных базовых радиостанций передает сообщение о задержке времени прохождения сигнала в прямом и обратном направлении на сетевой процессор, на подвижной радиостанции измеряют соответствующее местное время поступления сигнала от каждой из множества базовых радиостанций, сообщают соответствующее местное время поступления сигнала от каждой из множества базовых радиостанций в сетевой процессор, из подвижной радиостанции передают сигнал с данными, необходимыми для определения местоположения подвижной станции, и сообщают в сетевой процессор местное время передачи сигнала с данными, необходимыми для определения местоположения подвижной станции, на каждой из множества базовых радиостанций измеряют соответствующее местное время поступления для сигнала с данными, необходимыми для определения местоположения подвижной станции, из каждой из множества базовых радиостанций передают сообщение в сетевой процессор о соответствующем местном времени передачи для сигнала от каждой из множества базовых радиостанций, и об измеренном соответствующем местном времени поступления сигнала с данными, необходимыми для определения местоположения подвижной станции, и в сетевом процессоре вычисляют местоположение подвижной радиостанции по сообщенным местным времени поступления и сообщенным местным времени передачи сигнала с данными, необходимыми для определения местоположения подвижной станции, и сигнала от каждой из множества базовых радиостанций.
20. Способ по п. 19, по которому подвижная радиостанция передает сигнал с данными о местоположении в течение специфического интервала времени, и каждая из множества базовых радиостанций измеряет соответствующее местное время поступления для сигнала с данными о местоположении в течение интервала времени, включающего в себя по меньшей мере часть специфического интервала времени.
21. Способ по п. 19, по которому сетевой процессор вычисляет местоположение подвижной радиостанции с использованием алгоритма оценки времени поступления.
22. Система для определения расстояния между подвижной радиостанцией и первой базовой радиостанцией, содержащая средство для подвижной радиостанции для определения местного времени передачи сигнала по восходящей линии связи, и первой базовой радиостанции для определения местного времени передачи сигнала по нисходящей линии связи, и первой базовой радиостанции для определения местного времени поступления сигнала по восходящей линии связи, и подвижной радиостанции для определения местного времени поступления сигнала по нисходящей линии связи, и средство обработки для вычисления истинной продолжительности прохождения сигнала по восходящей линии связи из информации о местном времени передачи, принятой от средства определения местного времени передачи сигнала по восходящей линии связи и информации о местном времени приема, принятой от средства определения местного времени приема сигнала по восходящей линии связи, вычисления истинной продолжительности прохождения сигнала по нисходящей линии связи, исходя из информации о местном времени передачи по нисходящей линии связи и информации о местном времени приема по нисходящей линии связи, сложения истинной продолжительности прохождения сигнала по восходящей линии связи и истинной продолжительности прохождения сигнала по нисходящей линии связи для того, чтобы получить продолжительность прохождения сигнала в прямом и обратном направлении и умножения продолжительности прохождения сигнала в прямом и обратном направлении на скорость света, деленную на два.
23. Система по п. 22, в которой средство обработки содержит центр подвижного позиционирования.
24. Система по п. 22, в которой сигнал нисходящей линии связи содержит пилот-сигнал в системе МДКР.
25. Система по п. 22, в которой средство для каждой подвижной радиостанции и первой базовой радиостанции для определения местного времени передачи сигнала восходящей линии связи и местного времени приема сигнала нисходящей линии связи содержит блок управления и местную синхронизацию.
RU2000110118/09A 1997-09-23 1998-09-11 Способ и система для определения местоположения сотового подвижного терминала RU2216102C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/935,421 US6011974A (en) 1997-09-23 1997-09-23 Method and system for determining position of a cellular mobile terminal
US08/935,421 1997-09-23

Publications (2)

Publication Number Publication Date
RU2000110118A RU2000110118A (ru) 2002-03-20
RU2216102C2 true RU2216102C2 (ru) 2003-11-10

Family

ID=25467092

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000110118/09A RU2216102C2 (ru) 1997-09-23 1998-09-11 Способ и система для определения местоположения сотового подвижного терминала

Country Status (15)

Country Link
US (1) US6011974A (ru)
EP (1) EP1018032B1 (ru)
JP (1) JP2001517801A (ru)
KR (1) KR100564053B1 (ru)
CN (1) CN1262844C (ru)
AR (1) AR017135A1 (ru)
AU (1) AU754974B2 (ru)
BR (1) BR9812373A (ru)
CA (1) CA2303264C (ru)
DE (1) DE69837673T2 (ru)
MY (1) MY121692A (ru)
RU (1) RU2216102C2 (ru)
TW (1) TW495621B (ru)
WO (1) WO1999015911A1 (ru)
ZA (1) ZA988736B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012166015A2 (ru) * 2011-05-24 2012-12-06 Эртээл - Сервис Лимитед Способ локации радиоузла и средства локации радиоузла
RU2534740C2 (ru) * 2010-04-28 2014-12-10 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство для определения состояния мобильности терминала

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480600B1 (en) 1997-02-10 2002-11-12 Genesys Telecommunications Laboratories, Inc. Call and data correspondence in a call-in center employing virtual restructuring for computer telephony integrated functionality
US7031442B1 (en) 1997-02-10 2006-04-18 Genesys Telecommunications Laboratories, Inc. Methods and apparatus for personal routing in computer-simulated telephony
US6104802A (en) 1997-02-10 2000-08-15 Genesys Telecommunications Laboratories, Inc. In-band signaling for routing
EP0865223B1 (en) * 1997-03-14 2004-05-26 Ntt Mobile Communications Network Inc. Mobile station position estimation for cellular mobile communication system
US6985943B2 (en) 1998-09-11 2006-01-10 Genesys Telecommunications Laboratories, Inc. Method and apparatus for extended management of state and interaction of a remote knowledge worker from a contact center
US6711611B2 (en) 1998-09-11 2004-03-23 Genesis Telecommunications Laboratories, Inc. Method and apparatus for data-linking a mobile knowledge worker to home communication-center infrastructure
US6233257B1 (en) * 1997-10-03 2001-05-15 Vlsi Technology, Inc. Wireless local loop automatic delay setting
US6154657A (en) * 1997-10-21 2000-11-28 Telefonaktiebolaget Lm Ericsson Smart subdivision of base station candidates for position location accuracy
USRE46528E1 (en) 1997-11-14 2017-08-29 Genesys Telecommunications Laboratories, Inc. Implementation of call-center outbound dialing capability at a telephony network level
US6212391B1 (en) * 1997-12-01 2001-04-03 Motorola, Inc. Method for positioning gsm mobile station
US6243587B1 (en) * 1997-12-10 2001-06-05 Ericsson Inc. Method and system for determining position of a mobile transmitter
US7907598B2 (en) 1998-02-17 2011-03-15 Genesys Telecommunication Laboratories, Inc. Method for implementing and executing communication center routing strategies represented in extensible markup language
US6332154B2 (en) 1998-09-11 2001-12-18 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing media-independent self-help modules within a multimedia communication-center customer interface
US6226317B1 (en) * 1998-03-30 2001-05-01 Motorola, Inc. Method and system for aiding in the location of a subscriber unit in a spread spectrum communication system
FI980725A (fi) * 1998-03-31 1999-10-01 Nokia Networks Oy Menetelmä parantaa radioyhteyden laatua solukkoradioverkossa
US6154727A (en) * 1998-04-15 2000-11-28 Cyberhealth, Inc. Visit verification
US6134447A (en) * 1998-05-29 2000-10-17 Ericsson Inc. System and method for monitoring and barring location applications
FR2782226B1 (fr) * 1998-08-04 2000-09-08 Sagem Procede de localisation d'un telephone mobile
USRE46153E1 (en) 1998-09-11 2016-09-20 Genesys Telecommunications Laboratories, Inc. Method and apparatus enabling voice-based management of state and interaction of a remote knowledge worker in a contact center environment
US7346120B2 (en) 1998-12-11 2008-03-18 Freescale Semiconductor Inc. Method and system for performing distance measuring and direction finding using ultrawide bandwidth transmissions
US7058414B1 (en) * 2000-05-26 2006-06-06 Freescale Semiconductor, Inc. Method and system for enabling device functions based on distance information
US7215967B1 (en) * 1998-12-22 2007-05-08 Telefonaktiebolaget Lm Ericsson (Publ) System and method for fast cold start of a GPS receiver in a telecommunications environment
US6397071B1 (en) 1999-01-08 2002-05-28 Ericsson Inc. System and method for configuring generic equipment measurement units with a mobile services switching center
FR2790098B1 (fr) * 1999-02-23 2001-05-11 Thomson Csf Procede de localisation de radios mobiles terrestres a partir d'un aeronef
US6496702B1 (en) * 1999-08-06 2002-12-17 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing enhanced communication capability for mobile devices on a virtual private network (VPN)
JP3595738B2 (ja) * 1999-08-30 2004-12-02 松下電器産業株式会社 距離検出方法、位置検出方法及びその装置
US6490456B1 (en) * 1999-10-12 2002-12-03 Lucent Technologies Inc. Locating a mobile unit in a wireless time division multiple access system
US7929978B2 (en) 1999-12-01 2011-04-19 Genesys Telecommunications Laboratories, Inc. Method and apparatus for providing enhanced communication capability for mobile devices on a virtual private network
US6597679B1 (en) * 1999-12-01 2003-07-22 Telefonaktiebolat Lm Ericsson Control of compressed mode transmission in WCDMA
US6647246B1 (en) * 2000-01-10 2003-11-11 Industrial Technology Research Institute Apparatus and method of synchronization using delay measurements
US6603978B1 (en) * 2000-03-24 2003-08-05 Ericsson Inc. Accurate GPS time estimate based on information from a wireless communications system
KR100359213B1 (ko) 2000-03-30 2002-11-07 주식회사 하이닉스반도체 기지국 시스템의 메시지를 이용한 단말기 위치파악 방법
US6681099B1 (en) * 2000-05-15 2004-01-20 Nokia Networks Oy Method to calculate true round trip propagation delay and user equipment location in WCDMA/UTRAN
US7254118B1 (en) 2000-05-22 2007-08-07 Qualcomm Incorporated Method and apparatus in a CDMA communication system
JP3512090B2 (ja) * 2000-05-31 2004-03-29 日本電気株式会社 携帯端末の受信基地局切替システム及び方法
JP3673700B2 (ja) * 2000-06-27 2005-07-20 株式会社日立製作所 スペクトル拡散信号を用いた測距及び位置測定方法、その方法を行う装置
WO2002015614A1 (en) * 2000-08-15 2002-02-21 University Of Maryland, College Park Method, system, and computer program product for positioning and synchronizing wireless communications nodes
US6697629B1 (en) * 2000-10-11 2004-02-24 Qualcomm, Incorporated Method and apparatus for measuring timing of signals received from multiple base stations in a CDMA communication system
US7110774B1 (en) * 2000-10-27 2006-09-19 Intel Corporation Dual mode uplink/downlink location measurement and multi-protocol location measurement
US6963588B1 (en) * 2000-11-21 2005-11-08 Cellco Partnership System and methodology for automatically setting a clock
KR100383860B1 (ko) * 2000-11-23 2003-05-14 주식회사 카서 극성교번 펄스폭 코드 분할 다중 접속 방식 및 이를이용한 통화 장비간의 거리 측정 방법
US6519464B1 (en) * 2000-12-14 2003-02-11 Pulse-Link, Inc. Use of third party ultra wideband devices to establish geo-positional data
US7254401B2 (en) * 2000-12-19 2007-08-07 Nokia Corporation Network-based method and system for determining a location of user equipment in CDMA networks
US20020160787A1 (en) * 2001-03-13 2002-10-31 Lucent Technologies Inc. Communications system and related method for determining a position of a mobile station
US6888805B2 (en) * 2001-03-23 2005-05-03 Qualcomm Incorporated Time multiplexed transmission scheme for a spread spectrum communication system
JP2003078947A (ja) * 2001-06-18 2003-03-14 Nec Corp 移動局位置検出方式
US8041330B1 (en) * 2001-09-19 2011-10-18 Sirf Technology Inc. Wireless device capable of producing an emergency beacon
US7027819B2 (en) * 2001-11-19 2006-04-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining a location of a mobile radio
KR100403180B1 (ko) * 2001-11-22 2003-10-23 서두인칩 주식회사 이동단말기 위치확인 시스템 및 방법
KR100450371B1 (ko) * 2002-03-25 2004-09-30 넥스원퓨처 주식회사 신호원 추출 방법
KR100469416B1 (ko) * 2002-03-27 2005-02-02 엘지전자 주식회사 이동 단말기의 위치 추적 장치 및 방법
US7136660B2 (en) * 2002-06-21 2006-11-14 Siemens Aktiengesellschaft Positional determination of a user in a mobile communications system with emission diversity
FI20021252A0 (fi) * 2002-06-26 2002-06-26 Nokia Corp Menetelmä absoluuttiaikaeron laskemiseksi radiojärjestelmässä ja radiojärjestelmä
US20040203877A1 (en) * 2002-10-17 2004-10-14 Golden Stuart A. Two-way ranging techniques
GB0227503D0 (en) * 2002-11-26 2002-12-31 Koninkl Philips Electronics Nv Devices,systems and methods for obtaining timing information and ranging
JP4015963B2 (ja) * 2003-03-24 2007-11-28 株式会社日立製作所 位置計算方法、受信装置及び位置計算装置
JP2004350088A (ja) * 2003-05-23 2004-12-09 Nec Corp 無線局の位置推定システム
US6954643B2 (en) * 2003-06-25 2005-10-11 Arraycomm Llc Criteria for base station selection, including handover, in a wireless communication system
US20050270228A1 (en) * 2003-07-03 2005-12-08 Stephens Scott A Radar system for local positioning
US7450080B2 (en) * 2003-07-03 2008-11-11 Navcom Technology, Inc. Decoherence plate for use in a communications system
US7315275B2 (en) * 2003-07-03 2008-01-01 Navcom Technology, Inc. Positioning system with intentional multi-path signal
US7250901B2 (en) * 2003-07-03 2007-07-31 Navcom Technology Inc. Synthetic aperture radar system and method for local positioning
US7286624B2 (en) * 2003-07-03 2007-10-23 Navcom Technology Inc. Two-way RF ranging system and method for local positioning
US7466262B2 (en) * 2003-07-03 2008-12-16 Navcom Technology, Inc. Positioning system with a sparse antenna array
US7427945B2 (en) * 2003-07-03 2008-09-23 Navcom Technology, Inc. Positioning system with co-polarized and cross-polarized mapping
US7203500B2 (en) * 2003-08-01 2007-04-10 Intel Corporation Apparatus and associated methods for precision ranging measurements in a wireless communication environment
US6943729B2 (en) * 2003-10-01 2005-09-13 S5 Wireless, Inc. Method and system for time difference of arrival (TDOA) location services
CN1883210B (zh) * 2003-11-21 2012-05-16 高通股份有限公司 估算无线移动装置相对于一个或一个以上基站的位置
CN1914939B (zh) 2003-12-10 2010-08-11 日本电气株式会社 传输时间差测量方法和系统
FR2870414B1 (fr) * 2004-05-17 2006-08-18 Alcatel Sa Determination par un terminal de communication du temps de propagation d'un signal de reference provenant d'un equipement de gestion de communications
US7460872B2 (en) * 2004-07-06 2008-12-02 International Business Machines Corporation Method and application for automatic tracking of mobile devices for computer network processor systems
US7702338B2 (en) 2004-09-29 2010-04-20 Qualcomm Incorporated Method for finding the location of a mobile terminal in a cellular radio system
US20060253570A1 (en) * 2005-01-25 2006-11-09 Pratik Biswas Self-organizing sensor node network
US7026992B1 (en) 2005-03-31 2006-04-11 Deere & Company Method for configuring a local positioning system
US7720598B2 (en) * 2005-03-31 2010-05-18 Deere & Company System and method for determining a position of a vehicle with compensation for noise or measurement error
US7593811B2 (en) * 2005-03-31 2009-09-22 Deere & Company Method and system for following a lead vehicle
US7647177B2 (en) * 2005-03-31 2010-01-12 Deere & Company System and method for determining a position of a vehicle
US7479922B2 (en) * 2005-03-31 2009-01-20 Deere & Company Method and system for determining the location of a vehicle
US7653483B2 (en) * 2005-03-31 2010-01-26 Deere & Company System and method for determining a position of a vehicle
EP1897399B1 (en) * 2005-06-27 2011-10-05 Cambridge Positioning Systems Limited Method and apparatus for determining whether a mobile terminal has moved outside a given locale
WO2007003046A1 (en) * 2005-07-06 2007-01-11 1138037 Ontario Ltd. ('alirt') A method of distinguishing, from a moving platform, stationary objects from moving objects
US7062381B1 (en) 2005-08-30 2006-06-13 Deere & Company Method and system for determining relative position of mobile vehicles
US20070076674A1 (en) * 2005-09-30 2007-04-05 Golden Stuart A Apparatus and method locating a mobile communication unit
US9008075B2 (en) 2005-12-22 2015-04-14 Genesys Telecommunications Laboratories, Inc. System and methods for improving interaction routing performance
US7583654B2 (en) * 2005-12-28 2009-09-01 Honeywell International Inc. Sub-frame synchronized multiplexing
WO2007117186A1 (en) * 2006-04-07 2007-10-18 Telefonaktiebolaget Lm Ericsson (Publ) Method, user equipment and radio base station for random access in a cellular telecommunications system
US7719994B2 (en) * 2006-04-26 2010-05-18 Honeywell International Inc. Sub-frame synchronized ranging
US7688747B2 (en) * 2006-08-30 2010-03-30 Honeywell International Inc. Sub-frame synchronized residual ranging
KR100789914B1 (ko) * 2006-09-29 2008-01-02 한국전자통신연구원 장애 요인이 적은 이웃 노드를 선택적으로 이용하는 위치 인식 방법 및 노드 장치
FR2908260A1 (fr) * 2006-11-07 2008-05-09 France Telecom Procede d'estimation de la distance entre deux equipements radio
US8102825B2 (en) * 2006-11-30 2012-01-24 Kyocera Corporation Detection of a multi-mode portable communication device at a mesh network
US9532399B2 (en) * 2006-11-30 2016-12-27 Kyocera Corporation Apparatus, system and method for managing wireless local area network service to a multi-mode portable communication device
US7978667B2 (en) * 2006-11-30 2011-07-12 Kyocera Corporation Management of WLAN and WWAN communication services to a multi-mode wireless communication device
US7969930B2 (en) * 2006-11-30 2011-06-28 Kyocera Corporation Apparatus, system and method for managing wireless local area network service based on a location of a multi-mode portable communication device
US7515092B2 (en) * 2007-01-17 2009-04-07 Honeywell International Inc. Sub-frame synchronized residual radar
CN101247627B (zh) * 2007-02-15 2011-05-11 广达电脑股份有限公司 用以计算飞行时间的无线通讯系统
US20080214213A1 (en) * 2007-03-02 2008-09-04 Kamran Etemad Determining locations of mobile stations in wireless networks
US8103285B2 (en) * 2007-04-19 2012-01-24 Kyocera Corporation Apparatus, system and method for determining a geographical location of a portable communication device
US8170585B2 (en) * 2007-11-14 2012-05-01 Andrew, Llc Ranging in UMTS networks
US20090215400A1 (en) * 2008-02-26 2009-08-27 Henry Chang Pilot signal transmission management
US8233433B2 (en) * 2008-02-26 2012-07-31 Kyocera Corporation Apparatus, system and method for initiating WLAN service using beacon signals
US7733945B2 (en) * 2008-03-18 2010-06-08 On-Ramp Wireless, Inc. Spread spectrum with doppler optimization
US20100195553A1 (en) * 2008-03-18 2010-08-05 Myers Theodore J Controlling power in a spread spectrum system
US8477830B2 (en) 2008-03-18 2013-07-02 On-Ramp Wireless, Inc. Light monitoring system using a random phase multiple access system
US8958460B2 (en) 2008-03-18 2015-02-17 On-Ramp Wireless, Inc. Forward error correction media access control system
US7526013B1 (en) * 2008-03-18 2009-04-28 On-Ramp Wireless, Inc. Tag communications with access point
US7773664B2 (en) * 2008-03-18 2010-08-10 On-Ramp Wireless, Inc. Random phase multiple access system with meshing
US20090239550A1 (en) * 2008-03-18 2009-09-24 Myers Theodore J Random phase multiple access system with location tracking
US8520721B2 (en) 2008-03-18 2013-08-27 On-Ramp Wireless, Inc. RSSI measurement mechanism in the presence of pulsed jammers
US8103287B2 (en) 2008-09-30 2012-01-24 Apple Inc. Methods and apparatus for resolving wireless signal components
US8073463B2 (en) 2008-10-06 2011-12-06 Andrew, Llc System and method of UMTS UE location using uplink dedicated physical control channel and downlink synchronization channel
US8160609B2 (en) * 2008-11-26 2012-04-17 Andrew Llc System and method for multiple range estimation location
US8249622B2 (en) * 2008-11-26 2012-08-21 Andrew, Llc System and method for multiple range estimation location
JP5285497B2 (ja) * 2009-03-12 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
US8165577B2 (en) * 2009-03-19 2012-04-24 Kyocera Corporation Pilot signal transmission management
US7639726B1 (en) 2009-03-20 2009-12-29 On-Ramp Wireless, Inc. Downlink communication
US8363699B2 (en) 2009-03-20 2013-01-29 On-Ramp Wireless, Inc. Random timing offset determination
US7702290B1 (en) 2009-04-08 2010-04-20 On-Ramp Wirless, Inc. Dynamic energy control
US8699409B2 (en) * 2009-04-08 2014-04-15 Qualcomm Incorporated Methods and apparatuses for providing peer-to-peer positioning in wireless networks
DE102009031181B4 (de) * 2009-06-29 2019-05-16 Atmel Corp. Schaltung eines Knotens, Verfahren zur Laufzeitmessung in einem Funknetz und Funknetz
US8787942B2 (en) 2009-08-05 2014-07-22 Andrew Llc System and method for hybrid location in an LTE network
US20110117926A1 (en) * 2009-11-17 2011-05-19 Mediatek Inc. Network-based positioning mechanism and reference signal design in OFDMA systems
CN101765200B (zh) * 2009-12-17 2012-05-02 北京北方烽火科技有限公司 一种cdma系统终端定位方法和系统
US8588808B2 (en) 2010-05-24 2013-11-19 Nice-Systems Ltd. Method and system for estimation of mobile station velocity in a cellular system based on geographical data
US8131312B2 (en) 2010-05-24 2012-03-06 Nice Systems Ltd. Method and system for construction of radio environment model
US8200244B2 (en) 2010-05-24 2012-06-12 Nice Systems Ltd. Method and system for mobile station location
WO2011153291A2 (en) * 2010-06-01 2011-12-08 Tensorcom Inc. Systems and methods for indoor positioning
US8391890B2 (en) * 2011-06-29 2013-03-05 Alcatel Lucent Method and apparatus for geo-locating mobile station
US9713117B2 (en) * 2014-09-25 2017-07-18 Intel Corporation Device-to-device assisted positioning in wireless cellular technologies
US9578504B2 (en) * 2014-12-12 2017-02-21 Intel Corporation Authentication and authorization in a wearable ensemble
WO2018082075A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种定位信息传输方法、相关设备以及系统
DE102017219643A1 (de) * 2017-11-06 2019-05-09 Siemens Mobility GmbH Schienenfahrzeugortung
WO2021079287A1 (en) * 2019-10-23 2021-04-29 Telefonaktiebolaget Lm Ericsson (Publ) A non-intrusive method for online quality of experience assessment in wireless synchrophasor networks

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646580A (en) * 1969-07-18 1972-02-29 Raytheon Co Surface vehicle fleet command and control system
GB2215932A (en) * 1988-03-26 1989-09-27 Gec Traffic Automation Radio position finding system
SE466376B (sv) * 1990-09-13 1992-02-03 Televerket Foerfarande foer lokalisering i mobilradiosystem
JPH04360328A (ja) * 1991-06-06 1992-12-14 Sony Corp 移動通信システム
JPH0567996A (ja) * 1991-09-09 1993-03-19 Nec Corp 自動車電話システム
US5515062A (en) * 1993-08-11 1996-05-07 Motorola, Inc. Location system and method with acquisition of accurate location parameters
DE4409178A1 (de) * 1994-03-17 1995-09-21 Siemens Ag Verfahren und Anordnung zum Ermitteln der Position von Mobilstationen in einem Mobilfunksystem
US5508708A (en) * 1995-05-08 1996-04-16 Motorola, Inc. Method and apparatus for location finding in a CDMA system
DE19528616A1 (de) * 1995-08-04 1997-02-06 Daimler Benz Aerospace Ag Verfahren zur Funkortung einer Mobilstation und Anordnung zur Durchführung des Verfahrens
EP0800319A1 (en) * 1996-04-02 1997-10-08 Hewlett-Packard Company Locating method for mobile radio systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2534740C2 (ru) * 2010-04-28 2014-12-10 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство для определения состояния мобильности терминала
WO2012166015A2 (ru) * 2011-05-24 2012-12-06 Эртээл - Сервис Лимитед Способ локации радиоузла и средства локации радиоузла
WO2012166015A3 (ru) * 2011-05-24 2013-03-28 Эртээл - Сервис Лимитед Способ локации радиоузла и средства локации радиоузла
EA024885B1 (ru) * 2011-05-24 2016-10-31 Эртээл - Сервис Лимитед Способ локации радиоузла и средства локации радиоузла

Also Published As

Publication number Publication date
BR9812373A (pt) 2000-09-19
MY121692A (en) 2006-02-28
ZA988736B (en) 1999-10-11
CN1262844C (zh) 2006-07-05
AR017135A1 (es) 2001-08-22
CN1271419A (zh) 2000-10-25
CA2303264C (en) 2008-08-19
CA2303264A1 (en) 1999-04-01
WO1999015911A1 (en) 1999-04-01
AU9286998A (en) 1999-04-12
EP1018032B1 (en) 2007-04-25
KR100564053B1 (ko) 2006-03-29
US6011974A (en) 2000-01-04
DE69837673T2 (de) 2007-12-27
DE69837673D1 (de) 2007-06-06
JP2001517801A (ja) 2001-10-09
EP1018032A1 (en) 2000-07-12
AU754974B2 (en) 2002-11-28
TW495621B (en) 2002-07-21
KR20010023841A (ko) 2001-03-26

Similar Documents

Publication Publication Date Title
RU2216102C2 (ru) Способ и система для определения местоположения сотового подвижного терминала
EP1008269B1 (en) A method for determining timing differences between radio transmitters, a radio network incorporating the same and corresponding mobile station
US7650155B2 (en) Transmission time difference measurement method and system
EP1093318B1 (en) Locating a mobile unit in a wireless time division multiple access system
KR100454309B1 (ko) Cdma 통신 시스템에서 이동 가입자의 위치 특정 방법 및 시스템
JP2019062553A (ja) 構造内カバレージ・システムでのユーザ位置決めをサポートする方法
KR101429031B1 (ko) 무선 통신 네트워크에서 통신하기 위한 방법
RU2000110118A (ru) Способ и система для определения местоположения сотового подвижного терминала
EP1101385B1 (en) Method for measuring the time of arrival of a radio signal, and apparatus therefor.
EP1215930B1 (en) Transceiver station and method for use in cellular radio communications
RU2220505C2 (ru) Способ, мобильная станция и базовая станция для частотной синхронизации для мобильной станции в системе радиосвязи
Dev et al. NRPos: A multi-RACH framework for 5G NR positioning
KR100842554B1 (ko) 이동통신 시스템에서 이동단말기의 위치를 측정하는 방법
EP2282580A1 (en) Redirecting calls between radio access technologies
MXPA00002602A (en) Method and system for determining position of a cellular mobile terminal
CN116233863B (zh) 针对高精度定位终端的基站部署方法及装置
KR20010056245A (ko) 무선통신시스템에서의 이동체 위치 추정 방법
JP3752515B6 (ja) 無線送信器とこれを組み込んだ無線ネットワークとの間のタイミング差を決定する方法

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20151229