WO2018082075A1 - 一种定位信息传输方法、相关设备以及系统 - Google Patents

一种定位信息传输方法、相关设备以及系统 Download PDF

Info

Publication number
WO2018082075A1
WO2018082075A1 PCT/CN2016/104791 CN2016104791W WO2018082075A1 WO 2018082075 A1 WO2018082075 A1 WO 2018082075A1 CN 2016104791 W CN2016104791 W CN 2016104791W WO 2018082075 A1 WO2018082075 A1 WO 2018082075A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement information
subframe
terminal device
uplink
base station
Prior art date
Application number
PCT/CN2016/104791
Other languages
English (en)
French (fr)
Inventor
薛剑韬
王凯隆
高原
韩静
王玥琪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019523546A priority Critical patent/JP6822724B2/ja
Priority to EP16920618.2A priority patent/EP3531759A1/en
Priority to CN201680090551.9A priority patent/CN109906642B/zh
Priority to PCT/CN2016/104791 priority patent/WO2018082075A1/zh
Publication of WO2018082075A1 publication Critical patent/WO2018082075A1/zh
Priority to US16/403,117 priority patent/US11234207B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0081Transmission between base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a positioning information transmission method, related device, and system.
  • the positioning service refers to acquiring the location information (latitude and longitude coordinates) of the terminal equipment (User Equipment, UE) through the network of the telecommunication mobile operator (such as an LTE network), for example, estimating the distance between the base station and the UE, according to the location information of the base station. And the distance between the base station and the UE, determining location information of the UE.
  • the distance between the base station and the UE may be obtained by using the difference between the uplink subframe carrying the uplink signal and the downlink subframe carrying the downlink signal, but when there is a case where the base station quickly schedules the uplink subframe or the downlink subframe, The difference between the uplink subframe of the uplink signal and the downlink subframe carrying the downlink signal is changed, and the conventional positioning method assumes that "the uplink subframe carrying the uplink signal and the downlink subframe carrying the downlink signal" The difference is known to the location server. The difference between the uplink subframe carrying the uplink signal and the downlink subframe carrying the downlink signal remains fixed in the location server, so that the location server cannot accurately calculate the UE and the base station. The distance between them reduces the positioning accuracy.
  • the embodiment of the invention provides a positioning information transmission method, a related device and a system, which can improve positioning accuracy.
  • a first aspect of the embodiments of the present invention provides a method for transmitting a positioning information, where a base station can determine an uplink subframe that carries an uplink signal, determine a downlink subframe that carries a downlink signal, determine first measurement information, and determine second measurement information, and The first measurement information and the second measurement information are sent to the positioning server for positioning the server to locate the terminal device.
  • the first measurement information includes a time between the receiving time of the uplink signal and the sending time of the downlink signal.
  • the difference, or the first measurement information includes a difference between a reception time of the downlink signal and a transmission time of the uplink signal.
  • the second measurement information is used to indicate a difference between the uplink subframe and the downlink subframe.
  • the difference between the uplink subframe and the downlink subframe is obtained by using a difference between the subframe identifier of the uplink subframe and the subframe identifier of the downlink subframe.
  • the second measurement information may include at least one of the following: an uplink subframe and a downlink subframe, a repetition number of the uplink subframe, a repetition duration of the downlink subframe, and a difference between the uplink subframe and the downlink subframe. Value; the ratio between the uplink subframe and the downlink subframe (UL/DL configuration).
  • the base station may send the identity information to the location server, and when receiving the measurement information acquisition request that is sent by the location server in response to the identity information, the base station sends the second measurement information to the location. server.
  • the identity information is used to indicate that the base station has the capability to send the second measurement information.
  • a second aspect of the embodiments of the present invention provides a method for transmitting a positioning information.
  • the base station may determine the third measurement information, and send the third measurement information to the positioning server, where the positioning server locates the terminal device.
  • the third measurement information is used to indicate the distance between the base station and the terminal device, or the third measurement information is used to indicate the transmission time of the uplink signal and/or the downlink signal.
  • the specific manner in which the base station determines the third measurement information may be: the base station receives the third measurement information sent by the terminal device.
  • the specific manner in which the base station determines the third measurement information may be: the base station determines the first measurement information, receives the second measurement information sent by the terminal device, and calculates the third measurement information according to the first measurement information and the second measurement information.
  • the first measurement information includes a difference between a reception time of the uplink signal and a transmission time of the downlink signal, or the first measurement information includes a difference between a reception time of the downlink signal and a transmission time of the uplink signal.
  • the second measurement information is used to indicate a difference between an uplink subframe carrying the uplink signal and a downlink subframe carrying the downlink signal.
  • the difference between the uplink subframe and the downlink subframe is obtained by using a difference between the subframe identifier of the uplink subframe and the subframe identifier of the downlink subframe.
  • the second measurement information may include at least one of the following: an uplink subframe and a downlink subframe, a repetition number of the uplink subframe, a repetition duration of the downlink subframe, and a difference between the uplink subframe and the downlink subframe. Value; the ratio between the uplink subframe and the downlink subframe (UL/DL configuration).
  • the base station may send the identity information to the location server.
  • the base station may send the third measurement information to the third measurement information. Locate the server.
  • the identity information is used to indicate that the base station has the capability of transmitting the third measurement information.
  • the third measurement information includes a sum of a transmission time of the uplink signal and a transmission time of the downlink signal, a transmission time of the uplink signal, a transmission time of the downlink signal, a round-trip distance between the base station and the terminal device, or a base station and a terminal device. One-way distance between.
  • a third aspect of the embodiments of the present invention provides a method for transmitting a positioning information, where the terminal device can determine the first measurement information, and send the first measurement information to a positioning server, where the positioning server locates the terminal device.
  • the first measurement information includes a difference between a reception time of the downlink signal and a transmission time of the uplink signal.
  • the terminal device may further determine an uplink subframe that carries the uplink signal, determine a downlink subframe that carries the downlink signal, and determine second measurement information, according to the first measurement information and the second measurement information.
  • the third measurement information is calculated, and the third measurement information is sent to the positioning server, where the positioning server locates the terminal device.
  • the second measurement information is used to indicate a difference between the uplink subframe and the downlink subframe.
  • the third measurement information is used to indicate a distance between the base station and the terminal device, or the third measurement information is used to indicate a transmission time of the uplink signal and/or the downlink signal.
  • the terminal device may further determine an uplink subframe that carries the uplink signal, determine a downlink subframe that carries the downlink signal, determine second measurement information, and send the second measurement information to the location server.
  • the second measurement information is used to indicate a difference between the uplink subframe and the downlink subframe.
  • the terminal device may further determine an uplink subframe that carries the uplink signal, determine a downlink subframe that carries the downlink signal, determine second measurement information, and send the second measurement information to the base station.
  • the second measurement information is used to indicate a difference between the uplink subframe and the downlink subframe.
  • the difference between the uplink subframe and the downlink subframe is obtained by using a difference between a subframe identifier of the uplink subframe and a subframe identifier of the downlink subframe.
  • the second measurement information includes at least one of the following: the uplink subframe and the downlink a subframe; a repetition number of the uplink subframe; a repetition number of the downlink subframe; a difference between the uplink subframe and the downlink subframe; the uplink subframe and the downlink subframe The ratio between frames (UL/DL configuration).
  • the terminal device may further send the identity information to the positioning server, and receive the measurement information that is received by the positioning server in response to the identity information.
  • the second measurement information is sent to the positioning server.
  • the identity information is used to indicate that the terminal device has the capability of sending the second measurement information.
  • the terminal device may further send identity information to the positioning server, and receive the measurement information that is received by the positioning server in response to the identity information.
  • the third measurement information is sent to the positioning server.
  • the identity information is used to indicate that the terminal device has the capability of sending third measurement information.
  • the third measurement information includes a sum of a transmission time of the uplink signal and a transmission time of the downlink signal, a transmission time of the uplink signal, a transmission time of the downlink signal, and the base station and the The round trip distance between the terminal devices or the one-way distance between the base station and the terminal device.
  • a fourth aspect of the embodiments of the present invention provides a positioning information transmission method, where the positioning server can receive the first measurement information and the second measurement information, and locate the terminal device according to the first measurement information and the second measurement information.
  • the first measurement information includes a difference between a receiving time of the uplink signal and a sending time of the downlink signal, or the first measurement information includes a receiving time of the downlink signal and the uplink signal. The difference between the sending times.
  • the second measurement information is used to indicate a difference between an uplink subframe carrying an uplink signal and a downlink subframe carrying a downlink signal.
  • the positioning server may further receive the third measurement information, and locate the terminal device according to the third measurement information.
  • the third measurement information is used to indicate a distance between the base station and the terminal device, or the third measurement information is used to indicate a transmission time of the uplink signal and/or the downlink signal.
  • the second measurement information includes at least one of the following: the uplink subframe and the downlink subframe, the number of repetitions of the uplink subframe, and the number of repetitions of the downlink subframe. a difference between the uplink subframe and the downlink subframe; a ratio between the uplink subframe and the downlink subframe (UL/DL configuration).
  • the third measurement information includes a sum of a transmission time of the uplink signal and a transmission time of the downlink signal, a transmission time of the uplink signal, a transmission time of the downlink signal, and the base station and the The round trip distance between the terminal devices or the one-way distance between the base station and the terminal device.
  • a fifth aspect of the embodiments of the present invention provides a computer storage medium, where the computer storage medium stores a program, and the program includes all or part of the steps of the positioning information transmission method provided by the first aspect of the embodiment of the present invention.
  • a sixth aspect of the embodiments of the present invention provides a computer storage medium, where the computer storage medium stores a program, and the program includes all or part of the steps of the positioning information transmission method provided by the second aspect of the embodiment of the present invention.
  • a seventh aspect of the embodiments of the present invention provides a computer storage medium, where the computer storage medium stores a program, and the program includes all or part of the steps of the positioning information transmission method provided by the third aspect of the embodiment of the present invention.
  • the eighth aspect of the embodiments of the present invention provides a computer storage medium, where the computer storage medium stores a program, and the program includes all or part of the steps of the positioning information transmission method provided by the fourth aspect of the embodiment of the present invention.
  • a ninth aspect of the embodiment of the present invention discloses a base station, where the base station includes a module for performing a positioning information transmission method disclosed in the first aspect of the embodiment of the present invention.
  • a tenth aspect of the embodiments of the present invention discloses a base station including a processor, a memory, a transmitter, and a receiver, wherein the memory stores a set of program codes, and the processor calls a program stored in the memory. Code to do the following:
  • An eleventh embodiment of the present invention discloses a base station, where the base station includes a module for performing a positioning information transmission method disclosed in the second aspect of the embodiment of the present invention.
  • a twelfth aspect of the embodiments of the present invention discloses a base station including a processor, a memory, a transmitter, and a receiver, wherein the memory stores a set of program codes, and the processor calls the stored in the memory.
  • Program code to do the following:
  • the third measurement information is used to indicate a distance between the base station and the terminal device, or the third measurement information is used to indicate a transmission time of the uplink signal and/or the downlink signal;
  • a thirteenth aspect of the embodiment of the present invention discloses a terminal device, where the terminal device includes a module for performing a positioning information transmission method disclosed in the third aspect of the embodiment of the present invention.
  • a fourteenth aspect of the embodiments of the present invention discloses a terminal device, which includes a processor, a memory, a transmitter, and a receiver, wherein the memory stores a set of program codes, and the processor calls the memory.
  • Stored program code to do the following:
  • the first measurement information includes a difference between a reception time of the downlink signal and a transmission time of the uplink signal
  • a fifteenth aspect of the embodiments of the present invention discloses a positioning server, where the positioning server includes a module for performing a positioning information transmission method disclosed in the fourth aspect of the embodiments of the present invention.
  • a sixteenth aspect of the embodiments of the present invention discloses a positioning server, which includes a processor, a memory, a transmitter, and a receiver, wherein the memory stores a set of program codes, and the processor calls the memory.
  • Stored program code to do the following:
  • first measurement information includes a difference between a reception time of the uplink signal and a transmission time of the downlink signal, or the first measurement information includes the a difference between a receiving time of the downlink signal and a sending time of the uplink signal, where the second measurement information is used to indicate a difference between an uplink subframe carrying the uplink signal and a downlink subframe carrying the downlink signal;
  • a seventeenth aspect of the embodiments of the present invention discloses a positioning information transmission system, which includes the base station disclosed in the tenth aspect of the embodiment of the present invention, the terminal device disclosed in the fourteenth aspect, and the positioning disclosed in the sixteenth aspect. server.
  • the eighteenth aspect of the present invention discloses a positioning information transmission system, which includes the base station disclosed in the twelfth aspect of the embodiment of the present invention, the terminal device disclosed in the fourteenth aspect, and the sixteenth aspect. Locate the server.
  • FIG. 1 is a schematic structural diagram of a positioning information transmission system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for transmitting positioning information according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for transmitting positioning information according to another embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for transmitting positioning information according to another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of a method for transmitting positioning information according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of a method for transmitting positioning information according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of a method for transmitting positioning information according to another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of a method for transmitting positioning information according to another embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a method for transmitting positioning information according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a positioning server according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a positioning information transmission system according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a positioning server according to another embodiment of the present invention.
  • the traditional Enhanced Cell ID positioning can use UE Rx-Tx measurement (the difference between the transmission time of the UE transmitting the uplink signal and the reception time of the UE receiving the downlink signal) or the eNB Rx.
  • -Tx measurement The difference between the transmission time of the signal and the reception time of the base station receiving the uplink signal determines the distance between the UE and the base station.
  • the distance between the UE and the base station (eNB Rx-Tx time difference-(the uplink subframe where the base station receives the uplink signal-the downlink subframe where the base station transmits the downlink signal))/(2* speed of light), but for the cellular-based Narrow Band Internet of Things (NB-IoT), HD-FDD, or Time Division Duplexing (TDD) mode, etc., where there are sub-frames in which the base station quickly schedules the uplink signal or the sub-frame in which the downlink signal is located.
  • NB-IoT Narrow Band Internet of Things
  • HD-FDD High-FDD
  • TDD Time Division Duplexing
  • the difference between the uplink subframe in which the base station receives the uplink signal and the downlink subframe in which the base station transmits the downlink signal changes, and the conventional enhanced cell ID positioning technology assumes that the base station receives the uplink subframe where the uplink signal is located.
  • the difference between the downlink subframe and the downlink subframe in which the base station transmits the downlink signal is known to the location server.
  • the difference between the uplink subframe in which the base station receives the uplink signal and the downlink subframe in which the base station transmits the downlink signal remains unchanged. Therefore, the positioning server cannot accurately calculate the distance between the UE and the base station, and reduces the positioning accuracy.
  • the “difference” in the present invention includes A minus B, or B minus A, without distinction.
  • the "subframe” in the present invention includes a frame concept in different communication systems such as a radio frame, a super frame, a super high frame, a subframe, and a frame.
  • the embodiment of the present invention provides a method for transmitting positioning information.
  • the base station may determine an uplink subframe that carries an uplink signal, and a downlink subframe that carries a downlink signal, and determine the first measurement information and the second measurement information, where the base station may be the first.
  • the measurement information and the second measurement information are sent to the positioning server, and the positioning server may calculate the distance between the base station and the terminal device according to the first measurement information and the second measurement information, and the positioning server may further calculate the obtained base station and the terminal device. The distance between the terminals is used to improve the positioning accuracy.
  • the architecture of the positioning information transmission system may include at least a base station 101, a terminal device 102, and a positioning server 103.
  • the communication interface between the location server 103 and the base station 101 may be 3GPP 36.455LPPa
  • the communication interface between the location server 103 and the terminal device 102 may be 3GPP 36.355LPP.
  • the data flow direction between the base station 101 and the terminal device 102 may be as follows: the terminal device 102 transmits an uplink signal to the base station 101, and the base station 101 transmits the downlink signal to the terminal device 102.
  • the terminal device 102 (or the base station 101) may obtain the first measurement information based on the sending time of the uplink signal sent by the terminal device 102, and the receiving time of the downlink signal received by the terminal device 102, where the first measurement information is obtained.
  • the quantity information includes a difference between the reception time of the downlink signal and the transmission time of the uplink signal; the terminal device 102 (or the base station 101) may further receive the downlink signal based on the uplink subframe in which the terminal device 102 transmits the uplink signal, and the terminal device 102 receives the downlink signal.
  • the second measurement information is used to indicate the difference between the downlink subframe and the uplink subframe, and the terminal device 102 (or the base station 101) uses the first measurement information and the second measurement information.
  • the positioning server 103 can send the distance between the base station 101 and the terminal device 102 based on the first measurement information and the second measurement information, and the location server 103 can also be based on the distance between the base station 101 and the terminal device 102.
  • the terminal device 102 performs positioning. Further, after the terminal device 102 (or the base station 101) obtains the first measurement information and the second measurement information, the third measurement information may be obtained based on the first measurement information and the second measurement information, where the third measurement information is used to indicate the base station.
  • the third measurement information may be used to indicate a transmission time or a transmission round-trip time of the uplink signal and/or the downlink signal, and after the terminal device 102 (or the base station 101) sends the third measurement information to the location server 103, the location server The distance between the base station 101 and the terminal device 102 can be obtained based on the third measurement information, and the location server 103 can also locate the terminal device 102 according to the distance between the base station 101 and the terminal device 102.
  • the data flow direction between the base station 101 and the terminal device 102 may be as follows: the base station 101 sends a downlink signal to the terminal device 102, and the terminal device 102 sends the uplink signal to the base station 101.
  • the base station 101 can obtain the first measurement information based on the sending time of the downlink signal sent by the base station 101 and the receiving time of the uplink signal received by the base station 101, where the first measurement information includes the difference between the receiving time of the uplink signal and the sending time of the downlink signal.
  • the value of the base station 101 may be based on the downlink subframe in which the base station 101 transmits the downlink signal, and the base station 101 receives the uplink subframe in which the uplink signal is located, to obtain the second measurement information, where the second measurement information is used to indicate the uplink subframe and the downlink subframe.
  • the difference between the base station 101 and the second measurement information is sent to the location server 103, and the location server 103 can obtain the distance between the base station 101 and the terminal device 102 based on the first measurement information and the second measurement information.
  • the round-trip distance, the location server 103 can also locate the terminal device 102 according to the distance between the base station 101 and the terminal device 102.
  • the third measurement may be obtained based on the first measurement information and the second measurement information.
  • the third measurement information is used to indicate the distance or the round trip distance between the base station 101 and the terminal device 102.
  • the base station 101 can send the third measurement information to the location server 103, and the location server 103 can use the third measurement information to the terminal device 102. Positioning. Further, the third measurement information may be used to indicate the transmission time or the transmission round-trip time of the uplink signal and/or the downlink signal.
  • the location server 103 may be based on the third measurement. The information is obtained by the distance between the base station 101 and the terminal device 102, and the location server 103 can also locate the terminal device 102 according to the distance between the base station 101 and the terminal device 102.
  • the base station may be a macro base station, an LMU, a micro base station, a pico base station, a pico remote radio unit (pRRU) and a remote radio head (RRH) belonging to the same macro base station, or belong to
  • the PRURU and the RRH of the different macro base stations, where the LMU is a logical entity, may be shared with the base station, or may be an independent network element device, used in the Uplink Time Difference of Arrival (UTDOA) technology.
  • UTDOA Uplink Time Difference of Arrival
  • the terminal device may also be referred to as a UE, a mobile station, an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a terminal, a wireless communication device, a user agent, or a user device, etc., which may specifically be Stations in the WLAN (Station, ST), cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistant (PDA) ), any of a handheld device having a wireless communication function, a computing device, other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a mobile station in a future 5G network, and a terminal device in a future evolved PLMN network One.
  • the Enhanced Serving Mobile Location Center refers to the logical entities responsible for
  • the signals transmitted between the UE and the base station can be divided into upper and lower signals and downlink signals, where the uplink signal refers to the signal sent by the UE to the base station, and the downlink signal refers to the signal sent by the base station to the UE.
  • the subframe in which the base station receives the uplink signal sent by the UE may be referred to as an uplink subframe that carries the uplink signal, and specifically The base station may receive the subframe number of the subframe in which the uplink signal sent by the UE is located, for example, system frame number (SFN) and subframe number information.
  • SFN system frame number
  • the subframe in which the downlink signal is transmitted by the base station may be referred to as a downlink subframe that carries the downlink signal.
  • the base station may acquire the subframe number of the subframe in which the downlink signal is transmitted to the UE, such as SFN and subframe number information.
  • the subframe in which the UE receives the downlink sent by the base station may be referred to as a downlink subframe that carries the downlink signal.
  • the UE may receive the subframe number of the subframe in which the downlink signal sent by the base station is located, such as SFN and subframe number information.
  • the subframe in which the UE sends the uplink signal may be referred to as an uplink subframe that carries the uplink signal.
  • the UE may acquire the subframe number of the subframe in which the uplink signal is sent to the base station, such as SFN and subframe number information.
  • the subframe in which the UE receives the downlink signal is the same as the subframe in which the base station transmits the downlink signal
  • the subframe in which the UE transmits the uplink signal is the same as the subframe in which the base station receives the uplink signal
  • a system radio frame may be composed of several subframes, and the sub-frame length used by the carrier may be 15 kHz*2 ⁇ n (2 ⁇ n is 2 n-th power), and the corresponding subframe length is 1/(2 ⁇ n) ) ms, which supports multiple transmission time units such as 0.5ms, 0.25ms, and 0.125ms. Where n is an integer.
  • Different subframes have different subframe identifiers, such as subframe numbers and the like. Since the naming manner and composition of frames in different communication systems are different, the "subframe" in the present invention includes frame concepts in different communication systems such as radio frames, super frames, super high frames, subframes, and frames.
  • the distance between the base station and the UE can be calculated by the following formula:
  • the distance between the UE and the base station (eNB Rx-Tx time difference - (subframe in which the base station receives the uplink signal - the subframe in which the base station transmits the downlink signal)) / (2 * speed of light)
  • the eNB Rx-Tx measurement refers to the difference between the transmission time of the downlink signal sent by the base station and the reception time of the uplink signal received by the base station, and the eNB Rx-Tx time difference- (the subframe where the base station receives the uplink signal and the base station transmits the downlink)
  • the subframe in which the signal is located refers to the sum of the transmission time of the uplink signal and the transmission time of the downlink signal
  • (eNB Rx-Tx time difference- subframe in which the base station receives the uplink signal - the subframe in which the base station transmits the downlink signal)
  • / 2 Refers to the transmission time of the uplink signal or the transmission time of the downlink signal
  • (eNB Rx-Tx time difference - (subframe in which the base station receives the uplink signal - the subframe in which the base station transmits the downlink signal)) / (2 * speed of light) refers to The one-way distance between the base station and the UE,
  • the distance between the base station and the UE can be calculated by using the following formula:
  • the distance between the UE and the base station (UE Rx-Tx time difference - (the subframe in which the UE receives the downlink signal - the subframe in which the UE transmits the uplink signal)) / (2 * speed of light)
  • the UE Rx-Tx measurement refers to the difference between the receiving time of the downlink signal received by the UE and the sending time of the uplink signal sent by the UE, and the UE Rx-Tx time difference- (the UE receives the downlink signal where the subframe is located - the UE sends the uplink
  • the subframe in which the signal is located refers to the sum of the transmission time of the uplink signal and the transmission time of the downlink signal, (UE Rx-Tx time difference- (the subframe in which the UE receives the downlink signal - the subframe in which the UE transmits the uplink signal)) / 2
  • (UE Rx-Tx time difference- (the subframe in which the UE receives the downlink signal - the subframe in which the UE transmits the uplink signal)) / (2* speed of light) refers to The one-way distance between the base station and the UE, (
  • FIG. 2 is a schematic flowchart of a positioning information transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a positioning information transmission method according to an embodiment of the present invention.
  • the information transmission method may include:
  • the base station sends a downlink signal to the terminal device.
  • the base station may send a downlink signal to the terminal device at a preset time interval, and receive an uplink signal that is provided by the terminal, and after determining the first measurement information and the second measurement information, the base station may use the first measurement information and the second The measurement information is sent to the positioning server for positioning the server to locate the terminal device.
  • the positioning server may configure the base station to perform measurement on the Rx-Tx time difference of the eNB, and the base station may send the downlink signal to the terminal device.
  • the location server may query whether the base station has the capability of reporting the second measurement information.
  • the location server may send the second measurement information acquisition request to the base station.
  • the base station may send a downlink signal to the terminal device in response to the second measurement information acquisition request.
  • the base station may also send the recently acquired second measurement information to the location server in response to the second measurement information acquisition request.
  • the terminal device generates an uplink signal, and sends the uplink signal to the base station.
  • the terminal device After receiving the downlink signal, the terminal device can process the downlink signal and generate an uplink signal. No., and then send the uplink signal to the base station.
  • the time period during which the terminal device receives the downlink signal to send the uplink signal may be the processing duration of the downlink signal by the terminal device, where the processing time may be between the subframe where the uplink signal is sent by the terminal device and the subframe where the terminal device receives the downlink signal.
  • the difference is obtained, for example, the subframe number of the subframe in which the terminal device receives the downlink signal is 2, and the subframe number of the subframe in which the terminal device sends the uplink signal is 4, when the subframe length of the first subframe is 0.125 ms,
  • the base station determines first measurement information, where the first measurement information includes a difference between a receiving time of the uplink signal and a sending time of the downlink signal.
  • the base station may determine the first measurement information, where the first measurement information may include a difference between a receiving time of the uplink signal and a sending time of the downlink signal, for example, the receiving time of the base station receiving the uplink signal is 10:30, and the base station sends the downlink signal.
  • the sending time is 10:10, and the base station can determine that the first measurement information is 20 min.
  • the base station determines a subframe in which the base station receives the uplink signal, and a subframe in which the base station sends the downlink signal.
  • the base station After the base station sends the downlink signal to the terminal device, it may determine the subframe in which the base station sends the downlink signal, for example, the subframe number of the subframe in which the base station transmits the downlink signal. In addition, after receiving the uplink signal sent by the terminal device, the base station may determine a subframe in which the base station receives the uplink signal, for example, a subframe number of the subframe in which the base station receives the uplink signal, and the like.
  • the embodiment of the present invention does not limit the sequence in which the base station determines the subframe in which the base station receives the uplink signal and the subframe in which the base station determines the base station to transmit the downlink signal.
  • the base station may determine that the base station receives the subframe in which the uplink signal is located, and then determines that the base station sends the subframe.
  • the subframe in which the downlink signal is located, and the base station may determine the subframe in which the base station transmits the downlink signal after determining the subframe in which the base station transmits the downlink signal, and if the base station can simultaneously determine the subframe in which the base station receives the uplink signal, and the subframe in which the base station transmits the downlink signal.
  • the frame is not limited by the embodiment of the present invention.
  • the base station determines second measurement information, where the second measurement information is used to indicate a difference between a subframe in which the base station receives the uplink signal and a subframe in which the base station transmits the downlink signal.
  • the base station determines the subframe in which the base station receives the uplink signal, and after the subframe in which the base station sends the downlink signal, the second measurement information may be determined, where the second measurement information is used to indicate that the base station receives the subframe where the uplink signal is located and the subframe where the base station transmits the downlink signal.
  • the difference between, for example, the second measurement information may include The subframe number of the subframe in which the base station receives the uplink signal and the subframe number of the subframe in which the base station transmits the downlink signal, and the second measurement information may include a subframe between the subframe in which the base station receives the uplink signal and the subframe in which the base station transmits the downlink signal.
  • the difference is, for example, the subframe number of the subframe in which the base station transmits the downlink signal is 2, the subframe number of the subframe in which the base station receives the uplink signal is 4, and when the subframe length of the first subframe is 0.125 ms, the base station
  • the sequence of executing steps S203 and S205 is not limited.
  • the base station may perform step S205, perform step S203, and the like.
  • the second measurement information may include at least one of the following: an uplink subframe and/or a downlink subframe; a repetition quantity that carries the uplink subframe; a repetition number that carries the downlink subframe; and between the uplink subframe and the downlink subframe.
  • the difference between the uplink subframe and the downlink subframe (UL/DL configuration); the configuration information of the uplink subframe and/or the downlink subframe, such as a bitmap; an uplink resource element and/or Configuration information of a downlink resource element, such as a bitmap; an uplink resource block and/or configuration information of a downlink resource block, such as a bitmap.
  • the base station sends the first measurement information and the second measurement information to the positioning server.
  • the first measurement information and the second measurement information may be sent to the positioning server by using a communication interface between the base station and the positioning server.
  • the positioning server locates the terminal device according to the first measurement information and the second measurement information.
  • the positioning server may adopt the formula: (eNB Rx-Tx time difference- (the base station receives the uplink signal where the base station is located - the base station transmits the downlink signal) The sub-frame))/(2* speed of light) obtains the distance between the terminal device and the base station, and locates the terminal device according to the distance between the terminal device and the base station.
  • the base station determines first measurement information, where the first measurement information includes a difference between a reception time of the uplink signal and a transmission time of the downlink signal, and determines the second measurement information, and second.
  • the measurement information is used to indicate the difference between the uplink subframe and the downlink subframe, and the base station sends the first measurement information and the second measurement information to the positioning server, so that the positioning server performs the terminal according to the first measurement information and the second measurement information.
  • the device is positioned to improve positioning accuracy.
  • FIG. 3 is a schematic flowchart of a method for transmitting positioning information according to another embodiment of the present invention, as shown in the embodiment of the present invention.
  • the positioning information transmission method may include:
  • the base station sends a downlink signal to the terminal device.
  • step S201 For details, refer to the description of step S201 in the foregoing, and details are not described herein again.
  • the terminal device generates an uplink signal, and sends the uplink signal to the base station.
  • step S202 For details, refer to the description of step S202 in the foregoing, and details are not described herein again.
  • the base station determines first measurement information, where the first measurement information includes a difference between a receiving time of the uplink signal and a sending time of the downlink signal.
  • step S203 For details, refer to the description of step S203 in the foregoing, and details are not described herein again.
  • the terminal device determines a subframe in which the terminal device sends the uplink signal, and the subframe in which the terminal device receives the downlink signal.
  • the terminal device After the terminal device sends the uplink signal to the base station, it may determine the subframe in which the terminal device sends the uplink signal, for example, the subframe number in which the terminal device sends the uplink signal. In addition, after receiving the downlink signal sent by the base station, the terminal device may determine the subframe in which the terminal device receives the downlink signal, for example, the subframe number in which the terminal device receives the downlink signal.
  • the terminal device determines the second measurement information, where the second measurement information is used to indicate a difference between a subframe in which the terminal device sends the uplink signal and a subframe in which the terminal device receives the downlink signal.
  • the terminal device determines the subframe in which the terminal device sends the uplink signal, and after the terminal device receives the subframe in which the downlink signal is located, the second measurement information may be determined, where the second measurement information is used to indicate that the terminal device sends the uplink signal and the terminal device receives the subframe.
  • the difference between the subframes in which the downlink signal is located, for example, the second measurement information may include a subframe number of a subframe in which the terminal device transmits the uplink signal, and a subframe number of the subframe in which the terminal device receives the downlink signal, and the second measurement information.
  • the difference between the subframe in which the terminal device sends the uplink signal and the subframe in which the terminal device receives the downlink signal may be included.
  • the subframe number of the subframe in which the terminal device receives the downlink signal is 2, and the terminal device sends the uplink signal.
  • the terminal device sends the second measurement information to the base station.
  • the second measurement information may be sent to the positioning server by using a communication interface between the terminal device and the positioning server, and after the base station determines the first measurement information, the base station and the positioning may be performed.
  • the communication interface between the servers sends the first measurement information to the positioning server, so that the positioning server locates the terminal device according to the first measurement information and the second measurement information.
  • the base station sends the first measurement information and the second measurement information to the positioning server.
  • the positioning server locates the terminal device according to the first measurement information and the second measurement information.
  • the base station determines first measurement information, where the first measurement information includes a difference between a reception time of the uplink signal and a transmission time of the downlink signal, and the terminal device determines the second measurement information, where The second measurement information is used to indicate the difference between the subframe in which the terminal device sends the uplink signal and the subframe in which the terminal device receives the downlink signal, and the terminal device sends the second measurement information to the base station, where the base station uses the first measurement information and the second measurement.
  • the information is sent to the positioning server for positioning the server to locate the terminal device.
  • FIG. 4 is a schematic flowchart of a method for transmitting positioning information according to another embodiment of the present invention, as shown in the embodiment of the present invention.
  • the positioning information transmission method may include:
  • the terminal device sends an uplink signal to the base station.
  • the terminal device may send an uplink signal to the base station every preset time interval, and receive the downlink signal of the base station, and after the base station determines the first measurement information and the second measurement information, the first measurement information and the second measurement information may be sent.
  • the positioning server is used to locate the server to locate the terminal device.
  • the positioning server may configure the base station to perform measurement on the Rx-Tx time difference of the eNB, where the base station may send a signal request to the terminal device, and the terminal device sends an uplink to the base station according to the signal request. signal.
  • the positioning server may query whether the base station has the capability of reporting the second measurement information.
  • the positioning server may The base station may send a second measurement information acquisition request to the base station, and the base station may send a signal acquisition request to the terminal device in response to the second measurement information acquisition request, so that the terminal device sends an uplink signal to the base station according to the signal request.
  • the base station may also ring.
  • the second measurement information acquisition request should be sent to the location server for the second measurement information that has been recently acquired.
  • the base station generates a downlink signal, and sends the downlink signal to the terminal device.
  • the base station may process the uplink signal and generate a downlink signal, and then send the downlink signal to the terminal device.
  • the time period during which the base station receives the uplink signal to the downlink signal may be the processing duration of the uplink signal by the base station, and the processing duration may be obtained by using a difference between the subframe where the downlink signal is transmitted by the base station and the subframe where the base station receives the uplink signal.
  • the subframe number of the subframe in which the base station receives the uplink signal is 2, and the subframe number of the subframe in which the base station transmits the downlink signal is 4, and when the subframe length of the first subframe is 0.125 ms, the base station can determine the uplink of the base station.
  • the base station determines first measurement information, where the first measurement information includes a difference between a transmission time of the downlink signal and a reception time of the uplink signal.
  • the base station may determine the first measurement information, where the first measurement information may include a difference between a transmission time of the downlink signal and a reception time of the uplink signal, for example, the transmission time of the downlink signal sent by the base station is 10:30, and the base station receives the uplink signal.
  • the receiving time is 10:10, and the base station can determine that the first measurement information is 20 min.
  • the base station determines a subframe in which the base station sends the downlink signal, and the subframe in which the base station receives the uplink signal.
  • the base station may determine the subframe in which the base station receives the uplink signal, for example, the subframe number of the subframe in which the base station receives the uplink signal.
  • the base station may determine the subframe in which the base station transmits the downlink signal, for example, the subframe number of the subframe in which the base station transmits the downlink signal.
  • the base station determines second measurement information, where the second measurement information is used to indicate a difference between a subframe in which the base station transmits the downlink signal and a subframe in which the base station receives the uplink signal.
  • the base station determines the subframe in which the base station receives the uplink signal, and after the base station transmits the subframe in which the downlink signal is located, the second measurement information may be determined, where the second measurement information is used to indicate the subframe where the base station transmits the downlink signal and the subframe where the base station receives the uplink signal.
  • the difference between, for example, the second measurement information may include The subframe number of the subframe in which the base station receives the uplink signal and the subframe number of the subframe in which the base station transmits the downlink signal, and the second measurement information may include a subframe between the subframe where the base station transmits the downlink signal and the subframe where the base station receives the uplink signal.
  • the base station sends the first measurement information and the second measurement information to the positioning server.
  • the first measurement information and the second measurement information may be sent to the positioning server by using a communication interface between the base station and the positioning server.
  • the positioning server locates the terminal device according to the first measurement information and the second measurement information.
  • the positioning server may adopt the formula: (eNB Rx-Tx time difference- (the subframe where the downlink signal is transmitted by the base station - the base station receives the uplink signal) The sub-frame))/(2* speed of light) obtains the distance between the terminal device and the base station, and locates the terminal device according to the distance between the terminal device and the base station.
  • the base station determines first measurement information, where the first measurement information includes a difference between a transmission time of the downlink signal and a reception time of the uplink signal, and determines the second measurement information, and second.
  • the measurement information is used to indicate the difference between the subframe in which the base station sends the downlink signal and the subframe in which the base station receives the uplink signal, and sends the first measurement information and the second measurement information to the positioning server, where the positioning server performs the terminal device. Positioning to improve positioning accuracy.
  • FIG. 5 is a schematic flowchart of a method for transmitting positioning information according to another embodiment of the present invention, as shown in the embodiment of the present invention.
  • the positioning information transmission method may include:
  • the terminal device sends an uplink signal to the base station.
  • the terminal device may send an uplink signal to the base station every preset time interval, and receive the downlink signal of the base station, and after the terminal device determines the first measurement information and the second measurement information, the first measurement information and the second measurement information may be used. Sent to the location server for locating server-to-terminal devices Positioning.
  • the terminal device may be configured to perform measurement on the Rx-Tx time difference of the UE, and the terminal device may send the uplink signal to the base station.
  • the location server may query whether the terminal device has the capability of reporting the second measurement information.
  • the location server may send the second measurement to the terminal device.
  • the information acquisition request the terminal device may send the uplink signal to the base station in response to the second measurement information acquisition request.
  • the terminal device may also send the recently acquired second measurement information to the location server in response to the second measurement information acquisition request.
  • the base station generates a downlink signal, and sends the downlink signal to the terminal device.
  • step S402 For details, refer to the description of step S402 in the foregoing, and details are not described herein again.
  • the terminal device determines first measurement information, where the first measurement information includes a difference between a receiving time of the downlink signal and a sending time of the uplink signal.
  • the sending time of the uplink signal may be determined; when the terminal device receives the downlink signal of the base station, the terminal device may determine the receiving time of the downlink signal, and further, between the receiving time of the downlink signal and the sending time of the uplink signal. The difference obtains the first measurement information.
  • the terminal device determines a subframe in which the terminal device receives the downlink signal, and a subframe in which the terminal device sends the uplink signal.
  • the terminal device After the terminal device sends the uplink signal to the base station, it may determine the subframe in which the terminal device sends the uplink signal, for example, the subframe number in which the terminal device sends the uplink signal. In addition, after receiving the downlink signal sent by the base station, the terminal device may determine the subframe in which the terminal device receives the downlink signal, for example, the subframe number in which the terminal device receives the downlink signal.
  • the terminal device determines the second measurement information, where the second measurement information is used to indicate that the terminal device receives the difference between the subframe where the downlink signal is located and the subframe where the terminal device sends the uplink signal.
  • the second measurement information may be determined, where the second measurement information is used to indicate that the terminal device receives the downlink signal and the terminal device sends the subframe.
  • the difference between the subframes in which the uplink signal is located, for example, the second measurement information may include a subframe number of the subframe in which the terminal device transmits the uplink signal, and a subframe number of the subframe in which the terminal device receives the downlink signal, and the second measurement information.
  • the subframe number of the subframe in which the terminal device sends the uplink signal is 2, and the terminal device receives the subframe of the subframe where the downlink signal is located.
  • the terminal device sends the first measurement information and the second measurement information to the positioning server.
  • the first measurement information and the second measurement information may be sent to the positioning server by using a communication interface between the terminal device and the positioning server.
  • the positioning server locates the terminal device according to the first measurement information and the second measurement information.
  • the positioning server may adopt the formula: (UE Rx-Tx time difference- (the terminal device receives the downlink signal where the subframe is located - the terminal device The subframe in which the uplink signal is transmitted))/(2* speed of light) obtains the distance between the terminal device and the base station, and locates the terminal device according to the distance between the terminal device and the base station.
  • the terminal device determines first measurement information, where the first measurement information includes a difference between a transmission time of the downlink signal and a reception time of the uplink signal, and determines a second measurement information, where The second measurement information is used to indicate the difference between the subframe where the downlink signal is sent by the base station and the subframe where the base station receives the uplink signal, and the first measurement information and the second measurement information are sent to the positioning server for positioning the server to the terminal device. Positioning can improve positioning accuracy.
  • FIG. 6 is a schematic flowchart of a method for transmitting positioning information according to another embodiment of the present invention, as shown in the embodiment of the present invention.
  • the positioning information transmission method may include:
  • the terminal device sends an uplink signal to the base station.
  • step S401 For details, refer to the description of step S401 in the foregoing, and details are not described herein again.
  • the base station generates a downlink signal, and sends the downlink signal to the terminal device.
  • step S402 For details, refer to the description of step S402 in the foregoing, and details are not described herein again.
  • the terminal device determines first measurement information, where the first measurement information includes receiving the downlink signal. The difference between the transmission time between the uplink signal and the uplink signal.
  • step S503 For details, refer to the description of step S503 in the foregoing, and details are not described herein again.
  • the terminal device determines a subframe in which the terminal device receives the downlink signal, and a subframe in which the terminal device sends the uplink signal.
  • step S504 For details, refer to the description of step S504 in the foregoing, and details are not described herein again.
  • the terminal device determines the second measurement information, where the second measurement information is used to indicate the difference between the subframe in which the terminal device receives the downlink signal and the subframe in which the terminal device sends the uplink signal.
  • step S505 For details, refer to the description of step S505 in the foregoing, and details are not described herein again.
  • the terminal device sends the first measurement information and the second measurement information to the base station.
  • the base station sends the first measurement information and the second measurement information to the positioning server.
  • the positioning server locates the terminal device according to the first measurement information and the second measurement information.
  • the base station may determine the first measurement information, the base station sends the first measurement information to the location server, and the terminal device may determine the second measurement information, where the terminal device The second measurement information is sent to the positioning server, so that the positioning server locates the terminal device according to the first measurement information and the second measurement information.
  • the base station may determine the first measurement information, the terminal device may determine the second measurement information, and the terminal device sends the second measurement information to the base station, where the base station A measurement information and a second measurement information are sent to the positioning server, so that the positioning server locates the terminal device according to the first measurement information and the second measurement information.
  • the terminal device may determine the first measurement information, and the terminal device sends the first measurement information to the positioning server, where the base station may determine the second measurement information, where the base station The second measurement information is sent to the positioning server, so that the positioning server locates the terminal device according to the first measurement information and the second measurement information.
  • the terminal device may determine the first measurement information, and the terminal device sends the first measurement information to the base station, where the base station may determine the second measurement information, where the base station A measurement information and a second measurement information are sent to the positioning server, so that the positioning server locates the terminal device according to the first measurement information and the second measurement information.
  • the terminal device determines the first measurement information and the second After the information is measured, the first measurement information and the second measurement information may be sent to the base station, and the base station sends the first measurement information and the second measurement information to the positioning server, so that the positioning server can locate the terminal device, thereby improving positioning accuracy. degree.
  • FIG. 7 is a schematic flowchart diagram of a method for transmitting positioning information according to another embodiment of the present invention, as shown in the embodiment of the present invention.
  • the positioning information transmission method may include:
  • the base station sends a downlink signal to the terminal device.
  • step S201 For details, refer to the description of step S201 in the foregoing, and details are not described herein again.
  • the terminal device generates an uplink signal, and sends the uplink signal to the base station.
  • step S202 For details, refer to the description of step S202 in the foregoing, and details are not described herein again.
  • the base station determines third measurement information, where the third measurement information is used to indicate a distance between the base station and the terminal device, or the third measurement information is used to indicate a transmission time of the uplink signal and/or the downlink signal.
  • the base station may determine the first measurement information, where the first measurement information includes a difference between a receiving time of the uplink signal and a sending time of the downlink signal, and determines second measurement information, where the second measurement information is used to indicate that the base station receives The difference between the subframe where the uplink signal is located and the subframe where the base station sends the downlink signal, and the base station may calculate the third measurement information according to the first measurement information and the second measurement information. For example, the base station subtracts the second measurement information from the first measurement information, and the obtained third measurement information is used to indicate the sum of the transmission time of the uplink signal and the transmission time of the downlink signal.
  • the base station subtracts one-half of the difference between the first measurement information and the second measurement information as the third measurement information, where the third measurement information is used to indicate the transmission time of the uplink signal or the transmission time of the downlink signal.
  • the base station uses the quotient of the difference between the first measurement information and the second measurement information and the quotient of the speed of light as the third measurement information, and the third measurement information is used to indicate a one-way between the base station and the terminal device. distance.
  • the base station uses the difference between the first measurement information and the second measurement information and the quotient of the speed of light as the third measurement information, and the third measurement information is used to indicate the round-trip distance between the base station and the terminal device.
  • the terminal device may determine the second measurement information, and send the second measurement information to the base station, where the base station calculates the third measurement information according to the determined first measurement information and the second measurement information sent by the terminal device.
  • the base station sends the third measurement information to the positioning server.
  • the base station may send the third measurement information to the positioning server through a communication interface between the base station and the positioning server.
  • the positioning server locates the terminal device according to the third measurement information.
  • the base station sends the third measurement information to the positioning server, the third measurement information is used to indicate the distance between the base station and the terminal device, or the third measurement information is used to indicate the uplink signal and/or Or the transmission time of the downlink signal is used for positioning the server to locate the terminal device, which can improve the positioning accuracy.
  • FIG. 8 is a schematic flowchart of a positioning information transmission method according to another embodiment of the present invention, which is shown in the embodiment of the present invention.
  • the positioning information transmission method may include:
  • the terminal device sends an uplink signal to the base station.
  • step S401 For details, refer to the description of step S401 in the foregoing, and details are not described herein again.
  • the base station generates a downlink signal, and sends the downlink signal to the terminal device.
  • step S402 For details, refer to the description of step S402 in the foregoing, and details are not described herein again.
  • the base station determines third measurement information, where the third measurement information is used to indicate a distance between the base station and the terminal device, or the third measurement information is used to indicate a transmission time of the uplink signal and/or the downlink signal.
  • the base station may determine the first measurement information, where the first measurement information includes a difference between a transmission time of the downlink signal and a reception time of the uplink signal, and determines second measurement information, where the second measurement information is used to indicate that the base station sends the The difference between the subframe in which the downlink signal is located and the subframe in which the base station receives the uplink signal, and the base station may calculate the third measurement information according to the first measurement information and the second measurement information. For example, the base station subtracts the second measurement information from the first measurement information, and the obtained third measurement information is used to indicate the sum of the transmission time of the uplink signal and the transmission time of the downlink signal.
  • the base station subtracts one-half of the difference between the first measurement information and the second measurement information as the third measurement information, where the third measurement information is used to indicate the transmission time of the uplink signal or the transmission time of the downlink signal.
  • the base station uses the quotient of the difference between the first measurement information and the second measurement information and the quotient of the speed of light as the third measurement information, and the third measurement information is used to indicate a one-way between the base station and the terminal device. distance.
  • the base station uses the difference between the first measurement information and the second measurement information and the quotient of the speed of light as the third measurement information, and the third measurement information is used to indicate the round-trip distance between the base station and the terminal device.
  • the terminal device may determine the second measurement information, and send the second measurement information to the base station, where the base station calculates the third measurement information according to the determined first measurement information and the second measurement information sent by the terminal device.
  • the terminal device may determine the first measurement information, and send the first measurement information to the base station, where the base station calculates the third measurement information according to the first measurement information sent by the terminal device and the determined second measurement information.
  • the terminal device may determine the first measurement information and the second measurement information, and send the first measurement information and the second measurement information to the base station, where the base station calculates, according to the first measurement information and the second measurement information sent by the terminal device, The third measurement information.
  • the base station sends the third measurement information to the positioning server.
  • the positioning server locates the terminal device according to the third measurement information.
  • the base station sends the third measurement information to the positioning server, the third measurement information is used to indicate the distance between the base station and the terminal device, or the third measurement information is used to indicate the uplink signal and/or Or the transmission time of the downlink signal is used for positioning the server to locate the terminal device, which can improve the positioning accuracy.
  • FIG. 9 is a schematic flowchart of a positioning information transmission method according to another embodiment of the present invention, which is shown in the embodiment of the present invention.
  • the positioning information transmission method may include:
  • the terminal device sends an uplink signal to the base station.
  • step S501 For details, refer to the description of step S501 in the foregoing, and details are not described herein again.
  • the base station generates a downlink signal, and sends the downlink signal to the terminal device.
  • step S402 For details, refer to the description of step S402 in the foregoing, and details are not described herein again.
  • the terminal device determines third measurement information, where the third measurement information is used to indicate a distance between the base station and the terminal device, or the third measurement information is used to indicate a transmission time of the uplink signal and/or the downlink signal.
  • the terminal device may determine the first measurement information, where the first measurement information includes a difference between a receiving time of the downlink signal and a sending time of the uplink signal, and determines second measurement information, where the second measurement information is used to indicate the terminal.
  • the device receives the difference between the subframe where the downlink signal is located and the subframe where the terminal device sends the uplink signal, and the terminal device can calculate according to the first measurement information and the second measurement information.
  • the third measurement information is obtained. For example, the terminal device subtracts the second measurement information from the first measurement information, and the obtained third measurement information is used to indicate the sum of the transmission time of the uplink signal and the transmission time of the downlink signal.
  • the terminal device subtracts one-half of the difference between the first measurement information and the second measurement information as the third measurement information, where the third measurement information is used to indicate the transmission time of the uplink signal or the transmission time of the downlink signal.
  • the terminal device uses a quotient of a difference between the first measurement information and the second measurement information and a quotient of the speed of light as the third measurement information, where the third measurement information is used to indicate between the base station and the terminal device.
  • One way distance For another example, the terminal device uses the difference between the first measurement information and the second measurement information and the quotient of the speed of light as the third measurement information, and the third measurement information is used to indicate the round-trip distance between the base station and the terminal device.
  • the terminal device sends the third measurement information to the positioning server.
  • the positioning server locates the terminal device according to the third measurement information.
  • the terminal device sends the third measurement information to the positioning server, the third measurement information is used to indicate the distance between the base station and the terminal device, or the third measurement information is used to indicate the uplink signal and / or the transmission time of the downlink signal, used for positioning the server to locate the terminal device, which can improve the positioning accuracy.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station in the embodiment of the present invention may include: a subframe determining module 11, a measurement information determining module 12, and The information transmitting module 13 is measured. among them,
  • the subframe determining module 11 is configured to determine an uplink subframe that carries an uplink signal
  • the subframe determining module 11 is further configured to determine a downlink subframe that carries a downlink signal
  • the measurement information determining module 12 is configured to determine first measurement information, where the first measurement information includes a difference between a receiving time of the uplink signal and a sending time of the downlink signal, or the first measurement The information includes a difference between a reception time of the downlink signal and a transmission time of the uplink signal;
  • the measurement information determining module 12 is further configured to determine second measurement information, where the second measurement information is used to indicate a difference between the uplink subframe and the downlink subframe;
  • the measurement information sending module 13 is configured to send the first measurement information and the second measurement information to a positioning server, where the positioning server locates the terminal device.
  • the difference between the uplink subframe and the downlink subframe is obtained by using a difference between a subframe identifier of the uplink subframe and a subframe identifier of the downlink subframe.
  • the second measurement information includes at least one of the following:
  • the uplink subframe and the downlink subframe are The uplink subframe and the downlink subframe;
  • the base station may further include:
  • the identity information sending module 14 is configured to send the identity information to the positioning server before the measurement information sending module 13 sends the second measurement information to the positioning server, where the identity information is used to indicate that the base station has The ability to send second measurement information;
  • the measurement information sending module 13 is further configured to: when receiving the measurement information acquisition request that is sent by the positioning server in response to the identity information, send the second measurement information to the positioning server.
  • the subframe determining module 11 determines the uplink subframe that carries the uplink signal and the downlink subframe that carries the downlink signal
  • the measurement information determining module 12 determines the first measurement information and the second measurement information
  • the measurement information sending module 13 The first measurement information and the second measurement information are sent to the positioning server for positioning the server to locate the terminal device, thereby improving positioning accuracy.
  • FIG. 11 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • the base station in the embodiment of the present invention may include: a measurement information determining module 21 and a measurement information sending module. twenty two. among them,
  • the measurement information determining module 21 is configured to determine third measurement information, where the third measurement information is used to indicate a distance between the base station and the terminal device, or the third measurement information is used to indicate an uplink signal and/or The transmission time of the downlink signal;
  • the measurement information sending module 22 is configured to send the third measurement information to a positioning server, where the positioning server locates the terminal device.
  • the measurement information determining module 21 is specifically configured to receive the third measurement information sent by the terminal device.
  • the measurement information determining module 21 may be specifically configured to:
  • the terminal device And receiving, by the terminal device, second measurement information, where the second measurement information is used to indicate a difference between an uplink subframe that carries the uplink signal and a downlink subframe that carries the downlink signal;
  • the difference between the uplink subframe and the downlink subframe is obtained by using a difference between a subframe identifier of the uplink subframe and a subframe identifier of the downlink subframe.
  • the second measurement information includes at least one of the following:
  • the uplink subframe and the downlink subframe are The uplink subframe and the downlink subframe;
  • the base station may further include:
  • the identity information sending module 23 is configured to send the identity information to the positioning server, where the measurement information sending module 22 sends the third measurement information to the positioning server, where the identity information is used to indicate that the base station has The ability to send third measurement information;
  • the measurement information sending module 22 is further configured to: when receiving the measurement information acquisition request that is sent by the positioning server in response to the identity information, send the third measurement information to the positioning server.
  • the third measurement information includes a sum of a transmission time of the uplink signal and a transmission time of the downlink signal, a transmission time of the uplink signal, a transmission time of the downlink signal, and the base station and the The round trip distance between the terminal devices or the one-way distance between the base station and the terminal device.
  • the measurement information determining module 21 determines the third measurement information
  • the measurement information sending module 22 sends the third measurement information to the positioning server, so that the positioning server can locate the terminal device, which can improve the positioning accuracy.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device in the embodiment of the present invention may include: a measurement information determining module 31 and a measurement information transmission. Module 32. among them,
  • the measurement information determining module 31 is configured to determine first measurement information, where the first measurement information includes a difference between a receiving time of the downlink signal and a sending time of the uplink signal;
  • the measurement information sending module 32 is configured to send the first measurement information to a positioning server, where the positioning server locates the terminal device.
  • the terminal device may further include:
  • a subframe determining module 33 configured to determine an uplink subframe that carries the uplink signal
  • the subframe determining module 33 is further configured to determine a downlink subframe that carries the downlink signal
  • the measurement information determining module 31 is further configured to determine second measurement information, where the second measurement information is used to indicate a difference between the uplink subframe and the downlink subframe;
  • the measurement information determining module 31 is further configured to calculate, according to the first measurement information and the second measurement information, third measurement information, where the third measurement information is used to indicate between the base station and the terminal device. a distance, or the third measurement information is used to indicate a transmission time of the uplink signal and/or the downlink signal;
  • the measurement information sending module 32 is further configured to send the third measurement information to the positioning server, where the positioning server locates the terminal device.
  • the terminal device may further include:
  • a subframe determining module 33 configured to determine an uplink subframe that carries the uplink signal
  • the subframe determining module 33 is further configured to determine a downlink subframe that carries the downlink signal
  • the measurement information determining module 31 is further configured to determine second measurement information, where the second measurement information is used to indicate a difference between the uplink subframe and the downlink subframe;
  • the measurement information sending module 32 is further configured to send the second measurement information to the positioning server.
  • the terminal device may further include:
  • a subframe determining module 33 configured to determine an uplink subframe that carries the uplink signal
  • the subframe determining module 33 is further configured to determine a downlink subframe that carries the downlink signal
  • the measurement information determining module 31 is further configured to determine second measurement information, where the second measurement information is used to indicate a difference between the uplink subframe and the downlink subframe;
  • the measurement information sending module 32 is further configured to send the second measurement information to a base station.
  • the difference between the uplink subframe and the downlink subframe is obtained by using a difference between a subframe identifier of the uplink subframe and a subframe identifier of the downlink subframe.
  • the second measurement information includes at least one of the following:
  • the uplink subframe and the downlink subframe are The uplink subframe and the downlink subframe;
  • the terminal device may further include:
  • the identity information sending module 34 is configured to send the identity information to the positioning server before the measurement information sending module 32 sends the second measurement information to the positioning server, where the identity information is used to indicate the terminal device Ability to send second measurement information;
  • the measurement information sending module 32 is further configured to: when receiving the measurement information acquisition request that is sent by the location server in response to the identity information, send the second measurement information to the location server.
  • the terminal device may further include:
  • the identity information sending module 34 is configured to send the identity information to the positioning server, where the measurement information sending module sends the third measurement information to the positioning server, where the identity information is used to indicate that the terminal device has The ability to send third measurement information;
  • the measurement information sending module 32 is further configured to: when receiving the measurement information acquisition request that is sent by the positioning server in response to the identity information, send the third measurement information to the positioning server.
  • the third measurement information includes a transmission time of the uplink signal and the downlink signal. a sum of transmission times, a transmission time of the uplink signal, a transmission time of the downlink signal, a round-trip distance between the base station and the terminal device, or a one-way distance between the base station and the terminal device.
  • the measurement information determining module 31 determines the first measurement information, and the measurement information sending module 32 sends the first measurement information to the positioning server, so that the positioning server can locate the terminal device, which can improve the positioning accuracy.
  • FIG. 13 is a schematic structural diagram of a positioning server according to an embodiment of the present invention.
  • the positioning server in the embodiment of the present invention may include: a measurement information receiving module 41 and a positioning module 42. . among them,
  • the measurement information receiving module 41 is configured to receive first measurement information and second measurement information, where the first measurement information includes a difference between a receiving time of the uplink signal and a sending time of the downlink signal, Or the first measurement information includes a difference between a receiving time of the downlink signal and a sending time of the uplink signal, where the second measurement information is used to indicate an uplink subframe carrying an uplink signal and a downlink signal carrying the downlink signal.
  • the positioning module 42 is configured to locate the terminal device according to the first measurement information and the second measurement information.
  • the measurement information receiving module 41 is further configured to receive third measurement information, where the third measurement information is used to indicate a distance between the base station and the terminal device, or the third measurement information is used to indicate an uplink signal and/or Or the transmission time of the downlink signal;
  • the positioning module 42 is further configured to locate the terminal device according to the third measurement information.
  • the measurement information receiving module 41 may only receive the first measurement information and the third measurement information, or only receive the third measurement information;
  • the positioning module performs positioning on the terminal device according to the first measurement information and the third measurement information, or according to the third measurement information.
  • the second measurement information includes at least one of the following:
  • the uplink subframe and the downlink subframe are The uplink subframe and the downlink subframe;
  • the third measurement information includes a sum of a transmission time of the uplink signal and a transmission time of the downlink signal, a transmission time of the uplink signal, a transmission time of the downlink signal, and the base station and a round trip distance between the terminal devices or a one-way distance between the base station and the terminal device.
  • the measurement information receiving module 41 receives the first measurement information and the second measurement information
  • the positioning module 42 locates the terminal device according to the first measurement information and the second measurement information, thereby improving positioning accuracy.
  • FIG. 14 is a schematic structural diagram of a positioning information transmission system according to an embodiment of the present invention. As shown in FIG. 14, the system includes a base station, a terminal device, and a positioning server.
  • the base station may refer to related descriptions of the foregoing embodiments, and details are not described herein.
  • FIG. 15 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station may include: a processor 1501, a memory 1502, a transmitter 1503, and a receiver 1504.
  • the memory 1502 may be a high-speed RAM memory or a non-volatile memory, such as at least A disk storage, optionally, the memory 1502 can also be at least one storage device located remotely from the processor 1501. among them:
  • the program 1502 stores a set of program codes, and the processor 1501 calls the program code stored in the memory for performing the following operations:
  • the base station introduced in the embodiment of the present invention may be used to implement some or all of the processes in the method embodiments introduced in conjunction with FIG. 2 to FIG.
  • FIG. 16 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • the base station may include: a processor 1601, a memory 1602, a transmitter 1603, and a receiver 1604.
  • the memory 1602 may be a high-speed RAM memory or a non-volatile memory, such as at least A disk storage, optionally, the memory 1602 can also be at least one storage device located remotely from the processor 1601. among them:
  • the program 1602 stores a set of program codes, and the processor 1601 calls the program code stored in the memory for performing the following operations:
  • the third measurement information is used to indicate a distance between the base station and the terminal device, or the third measurement information is used to indicate a transmission time of the uplink signal and/or the downlink signal;
  • the base station introduced in the embodiment of the present invention may be used to implement some or all of the processes in the method embodiments introduced in conjunction with FIG. 2 to FIG.
  • FIG. 17 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device may include: a processor 1701, a memory 1702, a transmitter 1703, and a receiver 1704.
  • the memory 1702 may be a high-speed RAM memory or a non-volatile memory, such as At least one disk storage, optionally, the memory 1702 may also be at least one storage device located away from the aforementioned processor 1701. among them:
  • the program 1702 stores a set of program codes, and the processor 1701 calls the program code stored in the memory for performing the following operations:
  • the first measurement information includes a receiving time and an uplink signal of the downlink signal The difference between the sending times of the numbers;
  • the base station introduced in the embodiment of the present invention may be used to implement some or all of the processes in the method embodiments introduced in conjunction with FIG. 2 to FIG.
  • FIG. 18 is a schematic structural diagram of a positioning server according to an embodiment of the present invention.
  • the positioning server may include: a processor 1801, a memory 1802, a transmitter 1803, and a receiver 1804.
  • the memory 1802 may be a high-speed RAM memory or a non-volatile memory, such as At least one disk storage, optionally, the memory 1802 may also be at least one storage device located away from the aforementioned processor 1801. among them:
  • the program 1802 stores a set of program codes, and the processor 1801 calls the program code stored in the memory 1802 to perform the following operations:
  • first measurement information includes a difference between a reception time of the uplink signal and a transmission time of the downlink signal, or the first measurement information includes the a difference between a receiving time of the downlink signal and a sending time of the uplink signal, where the second measurement information is used to indicate a difference between an uplink subframe carrying the uplink signal and a downlink subframe carrying the downlink signal;
  • the base station introduced in the embodiment of the present invention may be used to implement some or all of the processes in the method embodiments introduced in conjunction with FIG. 2 to FIG.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one of the following techniques known in the art or a combination thereof: Discrete logic for logic gates that implement logic functions on data signals, application specific integrated circuits with suitable combination gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), and the like.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

本发明实施例公开了一种定位信息传输方法、相关设备以及系统,所述定位信息传输方法包括:确定承载上行信号的上行子帧;确定承载下行信号的下行子帧;确定第一测量信息,第一测量信息包括上行信号的接收时间与下行信号的发送时间之间的差值,或者第一测量信息包括下行信号的接收时间与上行信号的发送时间之间的差值;确定第二测量信息,第二测量信息用于指示上行子帧与下行子帧之间的差值;将第一测量信息和第二测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位。采用本发明实施例,可提高定位精确度。

Description

一种定位信息传输方法、相关设备以及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种定位信息传输方法、相关设备以及系统。
背景技术
随着通信业务的发展,定位业务作为移动通信或者个人通信服务的一个不可或缺的部分,发挥着重要作用。定位业务是指通过电信移动运营商的网络(如LTE网络等)获取终端设备(User Equipment,UE)的位置信息(经纬度坐标),例如预估基站与UE之间的距离,根据基站的位置信息,以及基站与UE之间的距离,确定UE的位置信息。基站与UE之间的距离可以通过承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值得到,但是当存在基站快速调度上行子帧或者下行子帧的情况时,“承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值”是变化的,而传统的定位方法中假定“承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值”是定位服务器已知的,定位服务器中“承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值”保持固定不变,使得定位服务器无法精确计算UE与基站之间的距离,降低定位精确度。
发明内容
本发明实施例提供了定位信息传输方法、相关设备以及系统,可提高定位精确度。
本发明实施例第一方面提供了一种定位信息传输方法,基站可以确定承载上行信号的上行子帧,确定承载下行信号的下行子帧,确定第一测量信息,确定第二测量信息,并将第一测量信息和第二测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位。
其中,第一测量信息包括上行信号的接收时间与下行信号的发送时间之间 的差值,或者第一测量信息包括下行信号的接收时间与上行信号的发送时间之间的差值。第二测量信息用于指示上行子帧与下行子帧之间的差值。
可选的,上行子帧与下行子帧之间的差值是通过上行子帧的子帧标识与下行子帧的子帧标识之间的差值得到的。
可选的,第二测量信息可以包括以下至少一项:上行子帧和下行子帧;承载上行子帧的重复次数;承载下行子帧的重复次数;上行子帧与下行子帧之间的差值;上行子帧与下行子帧之间的配比(UL/DL configuration)。
可选的,基站将第二测量信息发送给定位服务器之前,可以向定位服务器发送身份信息,当接收到定位服务器响应身份信息所反馈的测量信息获取请求时,基站将第二测量信息发送给定位服务器。其中,身份信息用于指示基站具备发送第二测量信息的能力。
本发明实施例第二方面提供一种定位信息传输方法,基站可以确定第三测量信息,并将第三测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位。其中,第三测量信息用于指示基站与终端设备之间距离,或者第三测量信息用于指示上行信号和/或下行信号的传输时间。
可选的,基站确定第三测量信息的具体方式可以为:基站接收终端设备发送的第三测量信息。
可选的,基站确定第三测量信息的具体方式可以为:基站确定第一测量信息,接收终端设备发送的第二测量信息,根据第一测量信息和第二测量信息,计算得到第三测量信息。其中,第一测量信息包括上行信号的接收时间与下行信号的发送时间之间的差值,或者第一测量信息包括下行信号的接收时间与上行信号的发送时间之间的差值。第二测量信息用于指示承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值。
可选的,上行子帧与下行子帧之间的差值是通过上行子帧的子帧标识与下行子帧的子帧标识之间的差值得到的。
可选的,第二测量信息可以包括以下至少一项:上行子帧和下行子帧;承载上行子帧的重复次数;承载下行子帧的重复次数;上行子帧与下行子帧之间的差值;上行子帧与下行子帧之间的配比(UL/DL configuration)。
可选的,基站将第三测量信息发送给定位服务器之前,可以向定位服务器发送身份信息,当接收到定位服务器响应身份信息所反馈的测量信息获取请求时,基站可以将第三测量信息发送给定位服务器。其中,身份信息用于指示基站具备发送第三测量信息的能力。
可选的,第三测量信息包括上行信号的传输时间和下行信号的传输时间的总和、上行信号的传输时间、下行信号的传输时间、基站与终端设备之间的往返距离或者基站与终端设备之间的单程距离。
本发明实施例第三方面提供一种定位信息传输方法,终端设备可以确定第一测量信息,将所述第一测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。其中,所述第一测量信息包括下行信号的接收时间与上行信号的发送时间之间的差值。
可选的,终端设备还可以确定承载所述上行信号的上行子帧,确定承载所述下行信号的下行子帧,确定第二测量信息,根据所述第一测量信息和所述第二测量信息,计算得到第三测量信息,将所述第三测量信息发送给所述定位服务器,以用于所述定位服务器对所述终端设备进行定位。其中,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值。所述第三测量信息用于指示基站与所述终端设备之间距离,或者所述第三测量信息用于指示所述上行信号和/或所述下行信号的传输时间。
可选的,终端设备还可以确定承载所述上行信号的上行子帧,确定承载所述下行信号的下行子帧,确定第二测量信息,将所述第二测量信息发送给所述定位服务器。其中,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
可选的,终端设备还可以确定承载所述上行信号的上行子帧,确定承载所述下行信号的下行子帧,确定第二测量信息,将所述第二测量信息发送给基站。其中,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值。
可选的,所述上行子帧与所述下行子帧之间的差值是通过所述上行子帧的子帧标识与所述下行子帧的子帧标识之间的差值得到的。
可选的,所述第二测量信息包括以下至少一项:所述上行子帧和所述下行 子帧;承载所述上行子帧的重复次数;承载所述下行子帧的重复次数;所述上行子帧与所述下行子帧之间的差值;所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
可选的,终端设备将所述第二测量信息发送给所述定位服务器之前,还可以向所述定位服务器发送身份信息,当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第二测量信息发送给所述定位服务器。其中,所述身份信息用于指示所述终端设备具备发送第二测量信息的能力。
可选的,终端设备将所述第三测量信息发送给所述定位服务器之前,还可以向所述定位服务器发送身份信息,当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第三测量信息发送给所述定位服务器。其中,所述身份信息用于指示所述终端设备具备发送第三测量信息的能力。
可选的,所述第三测量信息包括所述上行信号的传输时间和所述下行信号的传输时间的总和、所述上行信号的传输时间、所述下行信号的传输时间、所述基站与所述终端设备之间的往返距离或者所述基站与所述终端设备之间的单程距离。
本发明实施例第四方面提供一种定位信息传输方法,定位服务器可以接收第一测量信息和第二测量信息,根据所述第一测量信息和所述第二测量信息,对终端设备进行定位。其中,所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值。所述第二测量信息用于指示承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值。
可选的,定位服务器还可以接收第三测量信息,根据所述第三测量信息,对所述终端设备进行定位。其中,所述第三测量信息用于指示所述基站与终端设备之间距离,或者所述第三测量信息用于指示上行信号和/或下行信号的传输时间;
可选的,所述第二测量信息包括以下至少一项:所述上行子帧和所述下行子帧;承载所述上行子帧的重复次数;承载所述下行子帧的重复次数;所述上行子帧与所述下行子帧之间的差值;所述上行子帧与所述下行子帧之间的配比 (UL/DL configuration)。
可选的,所述第三测量信息包括所述上行信号的传输时间和所述下行信号的传输时间的总和、所述上行信号的传输时间、所述下行信号的传输时间、所述基站与所述终端设备之间的往返距离或者所述基站与所述终端设备之间的单程距离。
本发明实施例第五方面提供一种计算机存储介质,所述计算机存储介质存储有程序,所述程序执行时包括本发明实施例第一方面提供的定位信息传输方法中全部或部分的步骤。
本发明实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有程序,所述程序执行时包括本发明实施例第二方面提供的定位信息传输方法中全部或部分的步骤。
本发明实施例第七方面提供一种计算机存储介质,所述计算机存储介质存储有程序,所述程序执行时包括本发明实施例第三方面提供的定位信息传输方法中全部或部分的步骤。
本发明实施例第八方面提供一种计算机存储介质,所述计算机存储介质存储有程序,所述程序执行时包括本发明实施例第四方面提供的定位信息传输方法中全部或部分的步骤。
本发明实施例第九方面公开了一种基站,该基站包括用于执行本发明实施例第一方面公开的定位信息传输方法的模块。
本发明实施例第十方面公开了一种基站,该基站包括处理器、存储器、发射器以及接收器,所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的程序代码,用于执行以下操作:
确定承载上行信号的上行子帧;
确定承载下行信号的下行子帧;
确定第一测量信息,所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值;
确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
将所述第一测量信息和所述第二测量信息发送给定位服务器,以用于所述定位服务器对终端设备进行定位。
本发明实施例第十一方面公开了一种基站,该基站包括用于执行本发明实施例第二方面公开的定位信息传输方法的模块。
本发明实施例第十二方面公开了一种基站,该基站包括处理器、存储器、发射器以及接收器,所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的程序代码,用于执行以下操作:
确定第三测量信息,所述第三测量信息用于指示所述基站与终端设备之间距离,或者所述第三测量信息用于指示上行信号和/或下行信号的传输时间;
将所述第三测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
本发明实施例第十三方面公开了一种终端设备,该终端设备包括用于执行本发明实施例第三方面公开的定位信息传输方法的模块。
本发明实施例第十四方面公开了一种终端设备,该终端设备包括处理器、存储器、发射器以及接收器,所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的程序代码,用于执行以下操作:
确定第一测量信息,所述第一测量信息包括下行信号的接收时间与上行信号的发送时间之间的差值;
将所述第一测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
本发明实施例第十五方面公开了一种定位服务器,该定位服务器包括用于执行本发明实施例第四方面公开的定位信息传输方法的模块。
本发明实施例第十六方面公开了一种定位服务器,该定位服务器包括处理器、存储器、发射器以及接收器,所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的程序代码,用于执行以下操作:
接收第一测量信息和第二测量信息,其中所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值,所述第二测量信息用于指示承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值;
根据所述第一测量信息和所述第二测量信息,对终端设备进行定位。
本发明实施例第十七方面公开了一种定位信息传输系统,该定位信息传输系统包括本发明实施例第十方面公开的基站、第十四方面公开的终端设备以及第十六方面公开的定位服务器。
本发明实施例第十八方面公开了一种定位信息传输系统,该定位信息传输系统包括本发明实施例第十二方面公开的基站、第十四方面公开的终端设备以及第十六方面公开的定位服务器。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中提供的一种定位信息传输系统的架构示意图;
图2为本发明实施例中提供的一种定位信息传输方法的流程示意图;
图3为本发明另一实施例中提供的一种定位信息传输方法的流程示意图;
图4为本发明另一实施例中提供的一种定位信息传输方法的流程示意图;
图5为本发明另一实施例中提供的一种定位信息传输方法的流程示意图;
图6为本发明另一实施例中提供的一种定位信息传输方法的流程示意图;
图7为本发明另一实施例中提供的一种定位信息传输方法的流程示意图;
图8为本发明另一实施例中提供的一种定位信息传输方法的流程示意图;
图9为本发明另一实施例中提供的一种定位信息传输方法的流程示意图;
图10为本发明实施例中提供的一种基站的结构示意图;
图11为本发明另一实施例中提供的一种基站的结构示意图;
图12为本发明实施例中提供的一种终端设备的结构示意图;
图13为本发明实施例中提供的一种定位服务器的结构示意图;
图14为本发明实施例中提供的一种定位信息传输系统的结构示意图;
图15为本发明另一实施例中提供的一种基站的结构示意图;
图16为本发明另一实施例中提供的一种基站的结构示意图;
图17为本发明另一实施例中提供的一种终端设备的结构示意图;
图18为本发明另一实施例中提供的一种定位服务器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
传统的增强的小区ID定位技术(Enhanced Cell ID positioning,E-CID)可以使用UE Rx-Tx measurement(UE发射上行信号的发射时间与UE接收下行信号的接收时间之间的差值)或者eNB Rx-Tx measurement(基站发射下行 信号的发射时间与基站接收上行信号的接收时间之间的差值)确定UE与基站之间的距离。具体的,UE与基站之间的距离=(eNB Rx-Tx time difference-(基站接收上行信号所在上行子帧-基站发射下行信号所在下行子帧))/(2*光速),但是对于基于蜂窝的窄带物联网(Narrow Band Internet of Things,NB-IoT)、HD-FDD或者时分双工(Time Division Duplexing,TDD)模式等,存在基站快速调度上行信号所在子帧或者下行信号所在子帧的情况,导致“基站接收上行信号所在上行子帧与基站发射下行信号所在下行子帧之间的差值”是变化的,而传统的增强的小区ID定位技术中假定“基站接收上行信号所在上行子帧与基站发射下行信号所在下行子帧之间的差值”是定位服务器已知的,“基站接收上行信号所在上行子帧与基站发射下行信号所在下行子帧之间的差值”保持固定不变,使得定位服务器无法精确计算UE与基站之间的距离,降低定位精确度。本发明中所述“差值”,如甲与乙的差值,包括甲减去乙,或者乙减去甲,不做区分。本发明中所述“子帧”,包括无线帧、超帧、超高帧、子帧、帧等不同通信系统中的帧概念。
本发明实施例提供了一种定位信息传输方法,基站可以确定承载上行信号的上行子帧,以及承载下行信号的下行子帧,并确定第一测量信息和第二测量信息,基站可以将第一测量信息和第二测量信息发送给定位服务器,定位服务器可以根据第一测量信息和第二测量信息,计算得到基站与终端设备之间的距离,定位服务器还可以根据计算得到的基站与终端设备之间的距离对终端设备进行定位,可提高定位精确度。
基于上述原理,本发明实施例提供了一种定位信息传输系统的架构示意图,请参见图1,该定位信息传输系统的架构至少可以包括:基站101、终端设备102以及定位服务器103。示例性的,定位服务器103与基站101之间的通信接口可以为3GPP 36.455LPPa,定位服务器103与终端设备102之间的通信接口可以为3GPP 36.355LPP。
其中,基站101与终端设备102之间的数据流向可以如下所示:终端设备102向基站101发送上行信号,基站101将下行信号发送给终端设备102。终端设备102(或者基站101)可以基于终端设备102发送上行信号的发送时间,以及终端设备102接收下行信号的接收时间,得到第一测量信息,其中第一测 量信息包括下行信号的接收时间与上行信号的发送时间之间的差值;终端设备102(或者基站101)还可以基于终端设备102发送上行信号所在的上行子帧,以及终端设备102接收下行信号所在的下行子帧,得到第二测量信息,第二测量信息用于指示下行子帧与上行子帧之间的差值;终端设备102(或者基站101)将第一测量信息和第二测量信息发送给定位服务器103,定位服务器103可以基于第一测量信息和第二测量信息得到基站101与终端设备102之间的距离,定位服务器103还可以根据基站101与终端设备102之间的距离,对终端设备102进行定位。进一步可选的,终端设备102(或者基站101)得到第一测量信息和第二测量信息之后,可以基于第一测量信息和第二测量信息得到第三测量信息,第三测量信息用于指示基站101与终端设备102之间距离或往返距离;终端设备102(或者基站101)可以将第三测量信息发送给定位服务器103,定位服务器103可以根据第三测量信息,对终端设备102进行定位。进一步可选的,第三测量信息可以用于指示上行信号和/或下行信号的传输时间或传输往返时间,终端设备102(或者基站101)将第三测量信息发送给定位服务器103之后,定位服务器103可以基于第三测量信息得到基站101与终端设备102之间的距离,定位服务器103还可以根据基站101与终端设备102之间的距离,对终端设备102进行定位。
可选的,基站101与终端设备102之间的数据流向可以如下所示:基站101向终端设备102发送下行信号,,终端设备102将该上行信号发送给基站101。基站101可以基于基站101发送下行信号的发送时间,以及基站101接收上行信号的接收时间,得到第一测量信息,其中第一测量信息包括上行信号的接收时间与下行信号的发送时间之间的差值;基站101还可以基于基站101发送下行信号所在的下行子帧,以及基站101接收上行信号所在的上行子帧,得到第二测量信息,第二测量信息用于指示上行子帧与下行子帧之间的差值;基站101将第一测量信息和第二测量信息发送给定位服务器103,定位服务器103可以基于第一测量信息和第二测量信息得到基站101与终端设备102之间的距离或往返距离,定位服务器103还可以根据基站101与终端设备102之间的距离,对终端设备102进行定位。进一步可选的,基站101得到第一测量信息和第二测量信息之后,可以基于第一测量信息和第二测量信息得到第三测量 信息,第三测量信息用于指示基站101与终端设备102之间距离或往返距离;基站101可以将第三测量信息发送给定位服务器103,定位服务器103可以根据第三测量信息,对终端设备102进行定位。进一步可选的,第三测量信息可以用于指示上行信号和/或下行信号的传输时间或传输往返时间,基站101将第三测量信息发送给定位服务器103之后,定位服务器103可以基于第三测量信息得到基站101与终端设备102之间的距离,定位服务器103还可以根据基站101与终端设备102之间的距离,对终端设备102进行定位。
在介绍本发明的具体实施例之前,首先对本发明中可能涉及到的基站、终端设备以及定位服务器等概念进行一些简单说明。基站可以是宏基站,LMU,微型基站,微微基站,归属于同一个宏基站的微型射频拉远单元(pico Remote Radio Unit,pRRU)与射频拉远单元(Remote Radio Head,RRH)等,或者归属于不同宏基站的pRRU与RRH等,其中LMU是一个逻辑实体,可能与基站共设备,也可能是独立的网元设备,用于在上行信号到达时间差(Uplink Time Difference of Arrival,UTDOA)技术中参与定位,并接收UE发送探测参考信号(Sounding Reference Signal,SRS)的网元。终端设备也可以称为UE、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理或用户装置等,其具体可以是WLAN中的站点(Station,ST)、蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的PLMN网络中的终端设备等中的任意一种。定位服务器(Enhanced Serving Mobile Location Center,E-SMLC),泛指一切通信系统中负责定位的逻辑实体。
在介绍本发明的具体实施例之前,首先对本发明中可能涉及到的上行信号、下行信号、上行子帧或者下行子帧等概念进行一些简单说明。
UE和基站之间传输的信号可以分为上下信号和下行信号,其中上行信号指的是UE向基站发送的信号,下行信号指的是基站发送给UE的信号。基站接收UE发送的上行信号所在的子帧可以称为承载上行信号的上行子帧,具体 的,基站可以接收UE发送的上行信号所在子帧的子帧编号,例如系统帧号信息(System Frame Number,SFN)和子帧号信息。基站发送下行信号所在的子帧可以称为承载下行信号的下行子帧,具体的,基站可以获取向UE发送的下行信号所在子帧的子帧编号,例如SFN和子帧号信息。UE接收基站发送的下行所在的子帧可以称为承载下行信号的下行子帧,具体的,UE可以接收基站发送的下行信号所在子帧的子帧编号,例如SFN和子帧号信息。UE发送上行信号所在的子帧可以称为承载上行信号的上行子帧,具体的,UE可以获取向基站发送的上行信号所在子帧的子帧编号,例如SFN和子帧号信息。不失一般性,UE接收下行信号所在的子帧与基站发送下行信号所在的子帧相同,UE发送上行信号所在的子帧与基站接收上行信号所在的子帧相同。
一个系统无线帧可以由若干个子帧组成,载波使用的子帧长度可以为15kHz*2^n(2^n即为2的n次方),其对应的子帧长度为1/(2^n)ms,即支持0.5ms、0.25ms、0.125ms等多种传输时间单元。其中,n为整数。不同子帧对应有不同的子帧标识,例如子帧编号等。由于不同通信系统中帧的命名方式和构成不一样,本发明中所述“子帧”,包括无线帧、超帧、超高帧、子帧、帧等不同通信系统中的帧概念。
基站与UE之间的距离可以通过如下公式计算得到:
UE与基站之间的距离=(eNB Rx-Tx time difference-(基站接收上行信号所在子帧-基站发射下行信号所在子帧))/(2*光速)
其中,eNB Rx-Tx measurement指的是基站发送下行信号的发送时间与基站接收上行信号的接收时间之间的差值,eNB Rx-Tx time difference-(基站接收上行信号所在子帧-基站发射下行信号所在子帧)指的是上行信号的传输时间和下行信号的传输时间的总和,(eNB Rx-Tx time difference-(基站接收上行信号所在子帧-基站发射下行信号所在子帧))/2指的是上行信号的传输时间或者下行信号的传输时间,(eNB Rx-Tx time difference-(基站接收上行信号所在子帧-基站发射下行信号所在子帧))/(2*光速)指的是基站与UE之间的单程距离,(eNB Rx-Tx time difference-(基站接收上行信号所在子帧-基站发射下行信号所在子帧))/光速指的是基站与UE之间的往返距离。
可选的,基站与UE之间的距离可以通过如下公式计算得到:
UE与基站之间的距离=(UE Rx-Tx time difference-(UE接收下行信号所在子帧-UE发送上行信号所在子帧))/(2*光速)
其中,UE Rx-Tx measurement指的是UE接收下行信号的接收时间与UE发送上行信号的发送时间之间的差值,UE Rx-Tx time difference-(UE接收下行信号所在子帧-UE发送上行信号所在子帧)指的是上行信号的传输时间和下行信号的传输时间的总和,(UE Rx-Tx time difference-(UE接收下行信号所在子帧-UE发送上行信号所在子帧))/2指的是上行信号的传输时间或者下行信号的传输时间,(UE Rx-Tx time difference-(UE接收下行信号所在子帧-UE发送上行信号所在子帧))/(2*光速)指的是基站与UE之间的单程距离,(UE Rx-Tx time difference-(UE接收下行信号所在子帧-UE发送上行信号所在子帧))/光速指的是基站与UE之间的往返距离。
基于图1所示的定位信息传输系统的架构示意图,请参见图2,图2为本发明实施例中提供的一种定位信息传输方法的流程示意图,如图所示本发明实施例中的定位信息传输方法可以包括:
S201,基站向终端设备发送下行信号。
具体实现中,基站可以每间隔预设时长向终端设备发送下行信号,并接收终端设反馈的上行信号,确定出第一测量信息和第二测量信息之后,基站可以将第一测量信息和第二测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位。
可选的,定位服务器接收到对终端设备的定位请求之后,可以配置基站进行对eNB Rx-Tx time difference的测量,则基站可以向终端设备发送下行信号。
可选的,定位服务器可以询问基站是否具有上报第二测量信息的能力,当基站向定位服务器汇报该基站具有上报第二测量信息的能力时,定位服务器可以向基站发送第二测量信息获取请求,基站可以响应该第二测量信息获取请求向终端设备发送下行信号,可选的,基站也可以响应该第二测量信息获取请求将最近获取到的第二测量信息发送给定位服务器。
S202,终端设备生成上行信号,并将上行信号发送给基站。
终端设备接收到下行信号之后,可以对下行信号进行处理,并生成上行信 号,进而将上行信号发送给基站。其中,终端设备接收到下行信号至发送上行信号的时间段可以为终端设备对下行信号的处理时长,该处理时长可以通过终端设备发送上行信号所在子帧与终端设备接收下行信号所在子帧之间的差值得到,例如终端设备接收下行信号所在子帧的子帧编号为2,终端设备发送上行信号所在子帧的子帧编号为4,当第一子帧的子帧长度为0.125ms时,终端设备可以确定终端设备对下行信号的处理时长为(4-2)*0.125=0.25ms。
S203,基站确定第一测量信息,第一测量信息包括上行信号的接收时间与下行信号的发送时间之间的差值。
基站可以确定第一测量信息,其中第一测量信息可以包括上行信号的接收时间与下行信号的发送时间之间的差值,例如基站接收上行信号的接收时间为10:30,基站发送下行信号的发送时间为10:10,则基站可以确定第一测量信息为20min。
S204,基站确定基站接收上行信号所在子帧,以及基站发送下行信号所在子帧。
基站向终端设备发送下行信号之后,可以确定基站发送下行信号所在子帧,例如基站发送下行信号所在子帧的子帧编号等。另外,基站接收终端设备发送的上行信号之后,可以确定基站接收上行信号所在子帧,例如基站接收上行信号所在子帧的子帧编号等。
需要说明的时,本发明实施例不限定基站确定基站接收上行信号所在子帧以及基站确定基站发送下行信号所在子帧的先后顺序,例如基站可以确定基站接收上行信号所在子帧之后,确定基站发送下行信号所在子帧,又如基站可以确定基站发送下行信号所在子帧之后,确定基站接收上行信号所在子帧,又如基站可以同时确定基站接收上行信号所在子帧,以及基站发送下行信号所在子帧,具体不受本发明实施例的限制。
S205,基站确定第二测量信息,第二测量信息用于指示基站接收上行信号所在子帧与基站发送下行信号所在子帧之间的差值。
基站确定基站接收上行信号所在子帧,以及基站发送下行信号所在子帧之后,可以确定第二测量信息,其中第二测量信息用于指示基站接收上行信号所在子帧与基站发送下行信号所在子帧之间的差值,例如第二测量信息可以包括 基站接收上行信号所在子帧的子帧编号以及基站发送下行信号所在子帧的子帧编号,又如第二测量信息可以包括基站接收上行信号所在子帧与基站发送下行信号所在子帧之间的差值,示例性的,基站发送下行信号所在子帧的子帧编号为2,基站接收上行信号所在子帧的子帧编号为4,当第一子帧的子帧长度为0.125ms时,基站可以确定基站接收上行信号所在子帧与基站发送下行信号所在子帧之间的差值为(4-2)*0.125=0.25ms,即终端设备对下行信号的处理时长为0.25ms。需要说明的是,本发明实施例对步骤S203和步骤S205的先后执行顺序不作限定,例如基站可以执行步骤S205之后,执行步骤S203,等等。
可选的,第二测量信息可以包括以下至少一项:上行子帧和/或下行子帧;承载上行子帧的重复次数;承载下行子帧的重复次数;上行子帧与下行子帧之间的差值;上行子帧与下行子帧之间的配比(UL/DL configuration);上行子帧和/或下行子帧的配置信息,如比特图;上行资源元素(resource element)和/或下行资源元素的配置信息,如比特图;上行资源块(resource block)和/或下行资源块的配置信息,如比特图。
S206,基站将第一测量信息和第二测量信息发送给定位服务器。
基站确定出第一测量信息和第二测量信息之后,可以通过基站与定位服务器之间的通信接口将第一测量信息和第二测量信息发送给定位服务器。
S207,定位服务器根据第一测量信息和第二测量信息,对终端设备进行定位。
定位服务器通过基站与定位服务器之间的通信接口接收到第一测量信息和第二测量信息之后,可以通过公式:(eNB Rx-Tx time difference-(基站接收上行信号所在子帧-基站发射下行信号所在子帧))/(2*光速)得到终端设备与基站之间的距离,并根据终端设备与基站之间的距离对终端设备进行定位。
在图2所示的定位信息传输方法中,基站确定第一测量信息,第一测量信息包括上行信号的接收时间与下行信号的发送时间之间的差值,并确定第二测量信息,第二测量信息用于指示上行子帧与下行子帧之间的差值,基站将第一测量信息和第二测量信息发送给定位服务器,以便定位服务器根据第一测量信息和第二测量信息,对终端设备进行定位,可提高定位精确度。
基于图1所示的定位信息传输系统的架构示意图,请参见图3,图3为本发明另一实施例中提供的一种定位信息传输方法的流程示意图,如图所示本发明实施例中的定位信息传输方法可以包括:
S301,基站向终端设备发送下行信号。
具体可参见上文中步骤S201的描述,本发明实施例不再赘述。
S302,终端设备生成上行信号,并将上行信号发送给基站。
具体可参见上文中步骤S202的描述,本发明实施例不再赘述。
S303,基站确定第一测量信息,第一测量信息包括上行信号的接收时间与下行信号的发送时间之间的差值。
具体可参见上文中步骤S203的描述,本发明实施例不再赘述。
S304,终端设备确定终端设备发送上行信号所在子帧,以及终端设备接收下行信号所在子帧。
终端设备向基站发送上行信号之后,可以确定终端设备发送上行信号所在子帧,例如终端设备发送上行信号所在子帧编号等。另外,终端设备接收基站发送的下行信号之后,可以确定终端设备接收下行信号所在子帧,例如终端设备接收下行信号所在子帧编号等。
S305,终端设备确定第二测量信息,第二测量信息用于指示终端设备发送上行信号所在子帧与终端设备接收下行信号所在子帧之间的差值。
终端设备确定终端设备发送上行信号所在子帧,以及终端设备接收下行信号所在子帧之后,可以确定第二测量信息,其中第二测量信息用于指示终端设备发送上行信号所在子帧与终端设备接收下行信号所在子帧之间的差值,例如第二测量信息可以包括终端设备发送上行信号所在子帧的子帧编号以及终端设备接收下行信号所在子帧的子帧编号,又如第二测量信息可以包括终端设备发送上行信号所在子帧与终端设备接收下行信号所在子帧之间的差值,示例性的,终端设备接收下行信号所在子帧的子帧编号为2,终端设备发送上行信号所在子帧的子帧编号为4,当第一子帧的子帧长度为0.125ms时,终端设备可以确定终端设备发送上行信号所在子帧与终端设备接收下行信号所在子帧之间的差值为(4-2)*0.125=0.25ms,即终端设备对下行信号的处理时长为0.25ms。
S306,终端设备将第二测量信息发送给基站。
可选的,终端设备确定第二测量信息之后,可以通过终端设备与定位服务器之间的通信接口将第二测量信息发送给定位服务器,另外,基站确定第一测量信息之后,可以通过基站与定位服务器之间的通信接口将第一测量信息发送给定位服务器,以便于定位服务器根据第一测量信息和第二测量信息,对终端设备进行定位。
S307,基站将第一测量信息和第二测量信息发送给定位服务器。
S308,定位服务器根据第一测量信息和第二测量信息,对终端设备进行定位。
在图3所示的定位信息传输方法中,基站确定第一测量信息,第一测量信息包括上行信号的接收时间与下行信号的发送时间之间的差值,终端设备确定第二测量信息,第二测量信息用于指示终端设备发送上行信号所在子帧与终端设备接收下行信号所在子帧之间的差值,终端设备将第二测量信息发送给基站,基站将第一测量信息和第二测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位。
基于图1所示的定位信息传输系统的架构示意图,请参见图4,图4为本发明另一实施例中提供的一种定位信息传输方法的流程示意图,如图所示本发明实施例中的定位信息传输方法可以包括:
S401,终端设备向基站发送上行信号。
具体实现中,终端设备可以每间隔预设时长向基站发送上行信号,并接收基站下行信号,基站确定出第一测量信息和第二测量信息之后,可以将第一测量信息和第二测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位。
可选的,定位服务器接收到对终端设备的定位请求之后,可以配置基站进行对eNB Rx-Tx time difference的测量,则基站可以向终端设备发送信号请求,终端设备根据该信号请求向基站发送上行信号。
可选的,定位服务器可以询问基站是否具有上报第二测量信息的能力,当基站向定位服务器汇报该基站具有上报第二测量信息的能力时,定位服务器可 以向基站发送第二测量信息获取请求,基站可以响应该第二测量信息获取请求向终端设备发送信号获取请求,以便终端设备根据该信号请求向基站发送上行信号,可选的,基站也可以响应该第二测量信息获取请求将最近获取到的第二测量信息发送给定位服务器。
S402,基站生成下行信号,并将下行信号发送给终端设备。
基站接收到上行信号之后,可以对上行信号进行处理,并生成下行信号,进而将下行信号发送给终端设备。其中,基站接收到上行信号至发送下行信号的时间段可以为基站对上行信号的处理时长,该处理时长可以通过基站发送下行信号所在子帧与基站接收上行信号所在子帧之间的差值得到,例如基站接收上行信号所在子帧的子帧编号为2,基站发送下行信号所在子帧的子帧编号为4,当第一子帧的子帧长度为0.125ms时,基站可以确定基站对上行信号的处理时长为(4-2)*0.125=0.25ms。
S403,基站确定第一测量信息,第一测量信息包括下行信号的发送时间与上行信号的接收时间之间的差值。
基站可以确定第一测量信息,其中第一测量信息可以包括下行信号的发送时间与上行信号的接收时间之间的差值,例如基站发送下行信号的发送时间为10:30,基站接收上行信号的接收时间为10:10,则基站可以确定第一测量信息为20min。
S404,基站确定基站发送下行信号所在子帧,以及基站接收上行信号所在子帧。
基站接收终端设备发送的上行信号之后,可以确定基站接收上行信号所在子帧,例如基站接收上行信号所在子帧的子帧编号等。另外,基站向终端设备发送下行信号之后,可以确定基站发送下行信号所在子帧,例如基站发送下行信号所在子帧的子帧编号等。
S405,基站确定第二测量信息,第二测量信息用于指示基站发送下行信号所在子帧与基站接收上行信号所在子帧之间的差值。
基站确定基站接收上行信号所在子帧,以及基站发送下行信号所在子帧之后,可以确定第二测量信息,其中第二测量信息用于指示基站发送下行信号所在子帧与基站接收上行信号所在子帧之间的差值,例如第二测量信息可以包括 基站接收上行信号所在子帧的子帧编号以及基站发送下行信号所在子帧的子帧编号,又如第二测量信息可以包括基站发送下行信号所在子帧与基站接收上行信号所在子帧之间的差值,示例性的,基站接收上行信号所在子帧的子帧编号为2,基站发送下行信号所在子帧的子帧编号为4,当第一子帧的子帧长度为0.125ms时,基站可以确定基站发送下行信号所在子帧与基站接收上行信号所在子帧之间的差值为(4-2)*0.125=0.25ms,即基站对上行信号的处理时长为0.25ms。
S406,基站将第一测量信息和第二测量信息发送给定位服务器。
基站确定出第一测量信息和第二测量信息之后,可以通过基站与定位服务器之间的通信接口将第一测量信息和第二测量信息发送给定位服务器。
S407,定位服务器根据第一测量信息和第二测量信息,对终端设备进行定位。
定位服务器通过基站与定位服务器之间的通信接口接收到第一测量信息和第二测量信息之后,可以通过公式:(eNB Rx-Tx time difference-(基站发送下行信号所在子帧-基站接收上行信号所在子帧))/(2*光速)得到终端设备与基站之间的距离,并根据终端设备与基站之间的距离对终端设备进行定位。
在图4所示的定位信息传输方法中,基站确定第一测量信息,第一测量信息包括下行信号的发送时间与上行信号的接收时间之间的差值,并确定第二测量信息,第二测量信息用于指示基站发送下行信号所在子帧与基站接收上行信号所在子帧之间的差值,将第一测量信息和第二测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位,可提高定位精确度。
基于图1所示的定位信息传输系统的架构示意图,请参见图5,图5为本发明另一实施例中提供的一种定位信息传输方法的流程示意图,如图所示本发明实施例中的定位信息传输方法可以包括:
S501,终端设备向基站发送上行信号。
具体实现中,终端设备可以每间隔预设时长向基站发送上行信号,并接收基站下行信号,终端设备确定出第一测量信息和第二测量信息之后,可以将第一测量信息和第二测量信息发送给定位服务器,以用于定位服务器对终端设备 进行定位。
可选的,定位服务器接收到对终端设备的定位请求之后,可以配置终端设备进行对UE Rx-Tx time difference的测量,则终端设备可以向基站发送上行信号。
可选的,定位服务器可以询问终端设备是否具有上报第二测量信息的能力,当终端设备向定位服务器汇报该终端设备具有上报第二测量信息的能力时,定位服务器可以向终端设备发送第二测量信息获取请求,终端设备可以响应该第二测量信息获取请求向基站发送上行信号,可选的,终端设备也可以响应该第二测量信息获取请求将最近获取到的第二测量信息发送给定位服务器。
S502,基站生成下行信号,并将下行信号发送给终端设备。
具体可参见上文中步骤S402的描述,本发明实施例不再赘述。
S503,终端设备确定第一测量信息,第一测量信息包括下行信号的接收时间与上行信号的发送时间之间的差值。
终端设备向基站发送上行信号时,可以确定上行信号的发送时间;终端设备接收到基站下行信号时,可以确定下行信号的接收时间,进而通过下行信号的接收时间与上行信号的发送时间之间的差值得到第一测量信息。
S504,终端设备确定终端设备接收下行信号所在子帧,以及终端设备发送上行信号所在子帧。
终端设备向基站发送上行信号之后,可以确定终端设备发送上行信号所在子帧,例如终端设备发送上行信号所在子帧编号等。另外,终端设备接收基站发送的下行信号之后,可以确定终端设备接收下行信号所在子帧,例如终端设备接收下行信号所在子帧编号等。
S505,终端设备确定第二测量信息,第二测量信息用于指示终端设备接收下行信号所在子帧与终端设备发送上行信号所在子帧之间的差值。
终端设备确定终端设备发送上行信号所在子帧,以及终端设备接收下行信号所在子帧之后,可以确定第二测量信息,其中第二测量信息用于指示终端设备接收下行信号所在子帧与终端设备发送上行信号所在子帧之间的差值,例如第二测量信息可以包括终端设备发送上行信号所在子帧的子帧编号以及终端设备接收下行信号所在子帧的子帧编号,又如第二测量信息可以包括终端设备 接收下行信号所在子帧与终端设备发送上行信号所在子帧之间的差值,示例性的,终端设备发送上行信号所在子帧的子帧编号为2,终端设备接收下行信号所在子帧的子帧编号为4,当第一子帧的子帧长度为0.125ms时,终端设备可以确定终端设备接收下行信号所在子帧与终端设备发送上行信号所在子帧之间的差值为(4-2)*0.125=0.25ms,即基站对上行信号的处理时长为0.25ms。
S506,终端设备将第一测量信息和第二测量信息发送给定位服务器。
终端设备确定第一测量信息和第二测量信息之后,可以通过终端设备与定位服务器之间的通信接口将第一测量信息和第二测量信息发送给定位服务器。
S507,定位服务器根据第一测量信息和第二测量信息,对终端设备进行定位。
定位服务器通过终端设备与定位服务器之间的通信接口接收到第一测量信息和第二测量信息之后,可以通过公式:(UE Rx-Tx time difference-(终端设备接收下行信号所在子帧-终端设备发送上行信号所在子帧))/(2*光速)得到终端设备与基站之间的距离,并根据终端设备与基站之间的距离对终端设备进行定位。
在图5所示的定位信息传输方法中,终端设备确定第一测量信息,第一测量信息包括下行信号的发送时间与上行信号的接收时间之间的差值,并确定第二测量信息,第二测量信息用于指示基站发送下行信号所在子帧与基站接收上行信号所在子帧之间的差值,将第一测量信息和第二测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位,可提高定位精确度。
基于图1所示的定位信息传输系统的架构示意图,请参见图6,图6为本发明另一实施例中提供的一种定位信息传输方法的流程示意图,如图所示本发明实施例中的定位信息传输方法可以包括:
S601,终端设备向基站发送上行信号。
具体可参见上文中步骤S401的描述,本发明实施例不再赘述。
S602,基站生成下行信号,并将下行信号发送给终端设备。
具体可参见上文中步骤S402的描述,本发明实施例不再赘述。
S603,终端设备确定第一测量信息,第一测量信息包括下行信号的接收时 间与上行信号的发送时间之间的差值。
具体可参见上文中步骤S503的描述,本发明实施例不再赘述。
S604,终端设备确定终端设备接收下行信号所在子帧,以及终端设备发送上行信号所在子帧。
具体可参见上文中步骤S504的描述,本发明实施例不再赘述。
S605,终端设备确定第二测量信息,第二测量信息用于指示终端设备接收下行信号所在子帧与终端设备发送上行信号所在子帧之间的差值。
具体可参见上文中步骤S505的描述,本发明实施例不再赘述。
S606,终端设备将第一测量信息和第二测量信息发送给基站。
S607,基站将第一测量信息和第二测量信息发送给定位服务器。
S608,定位服务器根据第一测量信息和第二测量信息,对终端设备进行定位。
可选的,基站生成下行信号,并将下行信号发送给终端设备之后,基站可以确定第一测量信息,基站将第一测量信息发送给定位服务器,终端设备可以确定第二测量信息,终端设备将第二测量信息发送给定位服务器,以便于定位服务器根据第一测量信息和第二测量信息,对终端设备进行定位。
可选的,基站生成下行信号,并将下行信号发送给终端设备之后,基站可以确定第一测量信息,终端设备可以确定第二测量信息,终端设备将第二测量信息发送给基站,基站将第一测量信息和第二测量信息发送给定位服务器,以便于定位服务器根据第一测量信息和第二测量信息,对终端设备进行定位。
可选的,基站生成下行信号,并将下行信号发送给终端设备之后,终端设备可以确定第一测量信息,终端设备将第一测量信息发送给定位服务器,基站可以确定第二测量信息,基站将第二测量信息发送给定位服务器,以便于定位服务器根据第一测量信息和第二测量信息,对终端设备进行定位。
可选的,基站生成下行信号,并将下行信号发送给终端设备之后,终端设备可以确定第一测量信息,终端设备将第一测量信息发送给基站,基站可以确定第二测量信息,基站将第一测量信息和第二测量信息发送给定位服务器,以便于定位服务器根据第一测量信息和第二测量信息,对终端设备进行定位。
在图6所示的定位信息传输方法中,终端设备确定出第一测量信息和第二 测量信息之后,可以将第一测量信息和第二测量信息发送给基站,基站将第一测量信息和第二测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位,可提高定位精确度。
基于图1所示的定位信息传输系统的架构示意图,请参见图7,图7为本发明另一实施例中提供的一种定位信息传输方法的流程示意图,如图所示本发明实施例中的定位信息传输方法可以包括:
S701,基站向终端设备发送下行信号。
具体可参见上文中步骤S201的描述,本发明实施例不再赘述。
S702,终端设备生成上行信号,并将上行信号发送给基站。
具体可参见上文中步骤S202的描述,本发明实施例不再赘述。
S703,基站确定第三测量信息,第三测量信息用于指示基站与终端设备之间距离,或者第三测量信息用于指示上行信号和/或下行信号的传输时间。
具体实现中,基站可以确定第一测量信息,第一测量信息包括上行信号的接收时间与下行信号的发送时间之间的差值,并确定第二测量信息,第二测量信息用于指示基站接收上行信号所在子帧与基站发送下行信号所在子帧之间的差值,基站可以根据第一测量信息和第二测量信息,计算得到第三测量信息。例如,基站将第一测量信息减去第二测量信息,得到的第三测量信息用于指示上行信号的传输时间和下行信号的传输时间的总和。又如,基站将第一测量信息减去第二测量信息的差值的二分之一作为第三测量信息,第三测量信息用于指示上行信号的传输时间或者下行信号的传输时间。又如,基站将第一测量信息与第二测量信息之间的差值的二分之一与光速的商值作为第三测量信息,第三测量信息用于指示基站与终端设备之间的单程距离。又如,基站将第一测量信息与第二测量信息之间的差值与光速的商值作为第三测量信息,第三测量信息用于指示基站与终端设备之间的往返距离。
可选的,终端设备可以确定第二测量信息,将第二测量信息发送给基站,基站根据确定出的第一测量信息和终端设备发送的第二测量信息,计算得到第三测量信息。
S704,基站将第三测量信息发送给定位服务器。
基站可以通过基站与定位服务器之间的通信接口将第三测量信息发送给定位服务器。
S705,定位服务器根据第三测量信息,对终端设备进行定位。
在图7所示的定位信息传输方法中,基站将第三测量信息发送给定位服务器,第三测量信息用于指示基站与终端设备之间距离,或者第三测量信息用于指示上行信号和/或下行信号的传输时间,以用于定位服务器对终端设备进行定位,可提高定位精确度。
基于图1所示的定位信息传输系统的架构示意图,请参见图8,图8为本发明另一实施例中提供的一种定位信息传输方法的流程示意图,如图所示本发明实施例中的定位信息传输方法可以包括:
S801,终端设备向基站发送上行信号。
具体可参见上文中步骤S401的描述,本发明实施例不再赘述。
S802,基站生成下行信号,并将下行信号发送给终端设备。
具体可参见上文中步骤S402的描述,本发明实施例不再赘述。
S803,基站确定第三测量信息,第三测量信息用于指示基站与终端设备之间距离,或者第三测量信息用于指示上行信号和/或下行信号的传输时间。
具体实现中,基站可以确定第一测量信息,第一测量信息包括下行信号的发送时间与上行信号的接收时间之间的差值,并确定第二测量信息,第二测量信息用于指示基站发送下行信号所在子帧与基站接收上行信号所在子帧之间的差值,基站可以根据第一测量信息和第二测量信息,计算得到第三测量信息。例如,基站将第一测量信息减去第二测量信息,得到的第三测量信息用于指示上行信号的传输时间和下行信号的传输时间的总和。又如,基站将第一测量信息减去第二测量信息的差值的二分之一作为第三测量信息,第三测量信息用于指示上行信号的传输时间或者下行信号的传输时间。又如,基站将第一测量信息与第二测量信息之间的差值的二分之一与光速的商值作为第三测量信息,第三测量信息用于指示基站与终端设备之间的单程距离。又如,基站将第一测量信息与第二测量信息之间的差值与光速的商值作为第三测量信息,第三测量信息用于指示基站与终端设备之间的往返距离。
可选的,终端设备可以确定第二测量信息,将第二测量信息发送给基站,基站根据确定出的第一测量信息和终端设备发送的第二测量信息,计算得到第三测量信息。
可选的,终端设备可以确定第一测量信息,将第一测量信息发送给基站,基站根据终端设备发送的第一测量信息和确定出的第二测量信息,计算得到第三测量信息。
可选的,终端设备可以确定第一测量信息和第二测量信息,将第一测量信息和第二测量信息发送给基站,基站根据终端设备发送的第一测量信息和第二测量信息,计算得到第三测量信息。
S804,基站将第三测量信息发送给定位服务器。
S805,定位服务器根据第三测量信息,对终端设备进行定位。
在图8所示的定位信息传输方法中,基站将第三测量信息发送给定位服务器,第三测量信息用于指示基站与终端设备之间距离,或者第三测量信息用于指示上行信号和/或下行信号的传输时间,以用于定位服务器对终端设备进行定位,可提高定位精确度。
基于图1所示的定位信息传输系统的架构示意图,请参见图9,图9为本发明另一实施例中提供的一种定位信息传输方法的流程示意图,如图所示本发明实施例中的定位信息传输方法可以包括:
S901,终端设备向基站发送上行信号。
具体可参见上文中步骤S501的描述,本发明实施例不再赘述。
S902,基站生成下行信号,并将下行信号发送给终端设备。
具体可参见上文中步骤S402的描述,本发明实施例不再赘述。
S903,终端设备确定第三测量信息,第三测量信息用于指示基站与终端设备之间距离,或者第三测量信息用于指示上行信号和/或下行信号的传输时间。
具体实现中,终端设备可以确定第一测量信息,第一测量信息包括下行信号的接收时间与上行信号的发送时间之间的差值,并确定第二测量信息,第二测量信息用于指示终端设备接收下行信号所在子帧与终端设备发送上行信号所在子帧之间的差值,终端设备可以根据第一测量信息和第二测量信息,计算 得到第三测量信息。例如,终端设备将第一测量信息减去第二测量信息,得到的第三测量信息用于指示上行信号的传输时间和下行信号的传输时间的总和。又如,终端设备将第一测量信息减去第二测量信息的差值的二分之一作为第三测量信息,第三测量信息用于指示上行信号的传输时间或者下行信号的传输时间。又如,终端设备将第一测量信息与第二测量信息之间的差值的二分之一与光速的商值作为第三测量信息,第三测量信息用于指示基站与终端设备之间的单程距离。又如,终端设备将第一测量信息与第二测量信息之间的差值与光速的商值作为第三测量信息,第三测量信息用于指示基站与终端设备之间的往返距离。
S904,终端设备将第三测量信息发送给定位服务器。
S905,定位服务器根据第三测量信息,对终端设备进行定位。
在图9所示的定位信息传输方法中,终端设备将第三测量信息发送给定位服务器,第三测量信息用于指示基站与终端设备之间距离,或者第三测量信息用于指示上行信号和/或下行信号的传输时间,以用于定位服务器对终端设备进行定位,可提高定位精确度。
请参见图10,图10为本发明实施例中提供的一种基站的结构示意图,如图10所示,本发明实施例中的基站可以包括:子帧确定模块11、测量信息确定模块12和测量信息发送模块13。其中,
所述子帧确定模块11,用于确定承载上行信号的上行子帧;
所述子帧确定模块11,还用于确定承载下行信号的下行子帧;
所述测量信息确定模块12,用于确定第一测量信息,所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值;
所述测量信息确定模块12,还用于确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
所述测量信息发送模块13,用于将所述第一测量信息和所述第二测量信息发送给定位服务器,以用于所述定位服务器对终端设备进行定位。
可选的,所述上行子帧与所述下行子帧之间的差值是通过所述上行子帧的子帧标识与所述下行子帧的子帧标识之间的差值得到的。
可选的,所述第二测量信息包括以下至少一项:
所述上行子帧和所述下行子帧;
承载所述上行子帧的重复次数;
承载所述下行子帧的重复次数;
所述上行子帧与所述下行子帧之间的差值;
所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
进一步的,在可选的实施例中,所述基站还可包括:
身份信息发送模块14,用于所述测量信息发送模块13将所述第二测量信息发送给所述定位服务器之前,向所述定位服务器发送身份信息,所述身份信息用于指示所述基站具备发送第二测量信息的能力;
所述测量信息发送模块13,还用于当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第二测量信息发送给所述定位服务器。
本发明实施例中,子帧确定模块11确定承载上行信号的上行子帧以及承载下行信号的下行子帧,测量信息确定模块12确定第一测量信息以及第二测量信息,测量信息发送模块13将第一测量信息和第二测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位,可提高定位精确度。
请参见图11,图11为本发明另一实施例中提供的一种基站的结构示意图,如图11所示,本发明实施例中的基站可以包括:测量信息确定模块21和测量信息发送模块22。其中,
所述测量信息确定模块21,用于确定第三测量信息,所述第三测量信息用于指示所述基站与终端设备之间距离,或者所述第三测量信息用于指示上行信号和/或下行信号的传输时间;
所述测量信息发送模块22,用于将所述第三测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
进一步的,在可选的实施例中,
所述测量信息确定模块21,具体用于接收所述终端设备发送的所述第三测量信息。
进一步的,在可选的实施例中,所述测量信息确定模块21,可具体用于:
确定第一测量信息,所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值;
接收所述终端设备发送的第二测量信息,所述第二测量信息用于指示承载所述上行信号的上行子帧与承载所述下行信号的下行子帧之间的差值;
根据所述第一测量信息和所述第二测量信息,计算得到所述第三测量信息。
可选的,所述上行子帧与所述下行子帧之间的差值是通过所述上行子帧的子帧标识与所述下行子帧的子帧标识之间的差值得到的。
可选的,所述第二测量信息包括以下至少一项:
所述上行子帧和所述下行子帧;
承载所述上行子帧的重复次数;
承载所述下行子帧的重复次数;
所述上行子帧与所述下行子帧之间的差值;
所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
进一步的,在可选的实施例中,所述基站还可包括:
身份信息发送模块23,用于所述测量信息发送模块22将所述第三测量信息发送给所述定位服务器之前,向所述定位服务器发送身份信息,所述身份信息用于指示所述基站具备发送第三测量信息的能力;
所述测量信息发送模块22,还用于当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第三测量信息发送给所述定位服务器。
可选的,所述第三测量信息包括所述上行信号的传输时间和所述下行信号的传输时间的总和、所述上行信号的传输时间、所述下行信号的传输时间、所述基站与所述终端设备之间的往返距离或者所述基站与所述终端设备之间的单程距离。
本发明实施例中,测量信息确定模块21确定第三测量信息,测量信息发送模块22将第三测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位,可提高定位精确度。
请参见图12,图12为本发明一实施例中提供的一种终端设备的结构示意图,如图12所示,本发明实施例中的终端设备可以包括:测量信息确定模块31和测量信息发送模块32。其中,
所述测量信息确定模块31,用于确定第一测量信息,所述第一测量信息包括下行信号的接收时间与上行信号的发送时间之间的差值;
所述测量信息发送模块32,用于将所述第一测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
进一步的,在可选的实施例中,所述终端设备还可包括:
子帧确定模块33,用于确定承载所述上行信号的上行子帧;
所述子帧确定模块33,还用于确定承载所述下行信号的下行子帧;
所述测量信息确定模块31,还用于确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
所述测量信息确定模块31,还用于根据所述第一测量信息和所述第二测量信息,计算得到第三测量信息,所述第三测量信息用于指示基站与所述终端设备之间距离,或者所述第三测量信息用于指示所述上行信号和/或所述下行信号的传输时间;
所述测量信息发送模块32,还用于将所述第三测量信息发送给所述定位服务器,以用于所述定位服务器对所述终端设备进行定位。
进一步的,在可选的实施例中,所述终端设备还可包括:
子帧确定模块33,用于确定承载所述上行信号的上行子帧;
所述子帧确定模块33,还用于确定承载所述下行信号的下行子帧;
所述测量信息确定模块31,还用于确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
所述测量信息发送模块32,还用于将所述第二测量信息发送给所述定位服务器。
进一步的,在可选的实施例中,所述终端设备还可包括:
子帧确定模块33,用于确定承载所述上行信号的上行子帧;
所述子帧确定模块33,还用于确定承载所述下行信号的下行子帧;
所述测量信息确定模块31,还用于确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
所述测量信息发送模块32,还用于将所述第二测量信息发送给基站。
可选的,所述上行子帧与所述下行子帧之间的差值是通过所述上行子帧的子帧标识与所述下行子帧的子帧标识之间的差值得到的。
进一步可选的,所述第二测量信息包括以下至少一项:
所述上行子帧和所述下行子帧;
承载所述上行子帧的重复次数;
承载所述下行子帧的重复次数;
所述上行子帧与所述下行子帧之间的差值;
所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
进一步的,在可选的实施例中,所述终端设备还可包括:
身份信息发送模块34,用于所述测量信息发送模块32将所述第二测量信息发送给所述定位服务器之前,向所述定位服务器发送身份信息,所述身份信息用于指示所述终端设备具备发送第二测量信息的能力;
所述测量信息发送模块32,还用于当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第二测量信息发送给所述定位服务器。
进一步的,在可选的实施例中,所述终端设备还可包括:
身份信息发送模块34,用于所述测量信息发送模块将所述第三测量信息发送给所述定位服务器之前,向所述定位服务器发送身份信息,所述身份信息用于指示所述终端设备具备发送第三测量信息的能力;
所述测量信息发送模块32,还用于当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第三测量信息发送给所述定位服务器。
可选的,所述第三测量信息包括所述上行信号的传输时间和所述下行信号 的传输时间的总和、所述上行信号的传输时间、所述下行信号的传输时间、所述基站与所述终端设备之间的往返距离或者所述基站与所述终端设备之间的单程距离。
本发明实施例中,测量信息确定模块31确定第一测量信息,测量信息发送模块32将第一测量信息发送给定位服务器,以用于定位服务器对终端设备进行定位,可提高定位精确度。
请参见图13,图13为本发明一实施例中提供的一种定位服务器的结构示意图,如图13所示,本发明实施例中的定位服务器可以包括:测量信息接收模块41和定位模块42。其中,
所述测量信息接收模块41,用于接收第一测量信息和第二测量信息,其中所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值,所述第二测量信息用于指示承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值;
所述定位模块42,用于根据所述第一测量信息和所述第二测量信息,对终端设备进行定位。
进一步的,在可选的实施例中,
所述测量信息接收模块41,还用于接收第三测量信息,所述第三测量信息用于指示所述基站与终端设备之间距离,或者所述第三测量信息用于指示上行信号和/或下行信号的传输时间;
所述定位模块42,还用于根据所述第三测量信息,对所述终端设备进行定位。
进一步需要说明的是,一种可选的实施例中,所述测量信息接收模块41可以仅接收所述第一测量信息和所述第三测量信息,或者仅接收所述第三测量信息;所述定位模块根据所述第一测量信息和所述第三测量信息,或者根据所述第三测量信息,对所述终端设备进行定位。
可选的,所述第二测量信息包括以下至少一项:
所述上行子帧和所述下行子帧;
承载所述上行子帧的重复次数;
承载所述下行子帧的重复次数;
所述上行子帧与所述下行子帧之间的差值;
所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
进一步可选的,所述第三测量信息包括所述上行信号的传输时间和所述下行信号的传输时间的总和、所述上行信号的传输时间、所述下行信号的传输时间、所述基站与所述终端设备之间的往返距离或者所述基站与所述终端设备之间的单程距离。
本发明实施例中,测量信息接收模块41接收第一测量信息和第二测量信息,定位模块42根据第一测量信息和第二测量信息,对终端设备进行定位,可提高定位精确度。
请参见图14,图14是本发明一实施例中提供的一种定位信息传输系统的结构示意图。如图14所示,该系统包括基站、终端设备和定位服务器。
具体的,该基站、终端设备和定位服务器可参照上述实施例的相关描述,此处不赘述。
请参见图15,图15是本发明一实施例中提供的一种基站的结构示意图。如图15所示,该基站可以包括:处理器1501、存储器1502、发射器1503以及接收器1504,存储器1502可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器1502还可以是至少一个位于远离前述处理器1501的存储装置。其中:
所述存储器1502中存储一组程序代码,且所述处理器1501调用所述存储器中存储的程序代码,用于执行以下操作:
确定承载上行信号的上行子帧;
确定承载下行信号的下行子帧;
确定第一测量信息,所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值;
确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
将所述第一测量信息和所述第二测量信息发送给定位服务器,以用于所述定位服务器对终端设备进行定位。
具体的,本发明实施例中介绍的基站可以用以实施本发明结合图2~图9介绍的方法实施例中的部分或全部流程。
请参见图16,图16是本发明另一实施例中提供的一种基站的结构示意图。如图16所示,该基站可以包括:处理器1601、存储器1602、发射器1603以及接收器1604,存储器1602可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器1602还可以是至少一个位于远离前述处理器1601的存储装置。其中:
所述存储器1602中存储一组程序代码,且所述处理器1601调用所述存储器中存储的程序代码,用于执行以下操作:
确定第三测量信息,所述第三测量信息用于指示所述基站与终端设备之间距离,或者所述第三测量信息用于指示上行信号和/或下行信号的传输时间;
将所述第三测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
具体的,本发明实施例中介绍的基站可以用以实施本发明结合图2~图9介绍的方法实施例中的部分或全部流程。
请参见图17,图17是本发明一实施例中提供的一种终端设备的结构示意图。如图17所示,该终端设备可以包括:处理器1701、存储器1702、发射器1703以及接收器1704,存储器1702可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器1702还可以是至少一个位于远离前述处理器1701的存储装置。其中:
所述存储器1702中存储一组程序代码,且所述处理器1701调用所述存储器中存储的程序代码,用于执行以下操作:
确定第一测量信息,所述第一测量信息包括下行信号的接收时间与上行信 号的发送时间之间的差值;
将所述第一测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
具体的,本发明实施例中介绍的基站可以用以实施本发明结合图2~图9介绍的方法实施例中的部分或全部流程。
请参见图18,图18是本发明一实施例中提供的一种定位服务器的结构示意图。如图18所示,该定位服务器可以包括:处理器1801、存储器1802、发射器1803以及接收器1804,存储器1802可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器1802还可以是至少一个位于远离前述处理器1801的存储装置。其中:
所述存储器1802中存储一组程序代码,且所述处理器1801调用所述存储器1802中存储的程序代码,用于执行以下操作:
接收第一测量信息和第二测量信息,其中所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值,所述第二测量信息用于指示承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值;
根据所述第一测量信息和所述第二测量信息,对终端设备进行定位。
具体的,本发明实施例中介绍的基站可以用以实施本发明结合图2~图9介绍的方法实施例中的部分或全部流程。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不是必须针对相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的程序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有 用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (54)

  1. 一种定位信息传输方法,其特征在于,所述方法应用于基站,所述方法包括:
    确定承载上行信号的上行子帧;
    确定承载下行信号的下行子帧;
    确定第一测量信息,所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值;
    确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
    将所述第一测量信息和所述第二测量信息发送给定位服务器,以用于所述定位服务器对终端设备进行定位。
  2. 如权利要求1所述的方法,其特征在于,所述上行子帧与所述下行子帧之间的差值是通过所述上行子帧的子帧标识与所述下行子帧的子帧标识之间的差值得到的。
  3. 如权利要求1所述的方法,其特征在于,所述第二测量信息包括以下至少一项:
    所述上行子帧和所述下行子帧;
    承载所述上行子帧的重复次数;
    承载所述下行子帧的重复次数;
    所述上行子帧与所述下行子帧之间的差值;
    所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
  4. 如权利要求1所述的方法,其特征在于,所述将所述第二测量信息发送给定位服务器之前,还包括:
    向所述定位服务器发送身份信息,所述身份信息用于指示所述基站具备发送第二测量信息的能力;
    当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第二测量信息发送给所述定位服务器。
  5. 一种定位信息传输方法,其特征在于,所述方法应用于基站,所述方法包括:
    确定第三测量信息,所述第三测量信息用于指示所述基站与终端设备之间距离,或者所述第三测量信息用于指示上行信号和/或下行信号的传输时间;
    将所述第三测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
  6. 如权利要求5所述的方法,其特征在于,所述确定第三测量信息,包括:
    接收所述终端设备发送的所述第三测量信息。
  7. 如权利要求5所述的方法,其特征在于,所述确定第三测量信息,包括:
    确定第一测量信息,所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值;
    接收所述终端设备发送的第二测量信息,所述第二测量信息用于指示承载所述上行信号的上行子帧与承载所述下行信号的下行子帧之间的差值;
    根据所述第一测量信息和所述第二测量信息,计算得到所述第三测量信息。
  8. 如权利要求7所述的方法,其特征在于,所述上行子帧与所述下行子帧之间的差值是通过所述上行子帧的子帧标识与所述下行子帧的子帧标识之间的差值得到的。
  9. 如权利要求7所述的方法,其特征在于,所述第二测量信息包括以下至少一项:
    所述上行子帧和所述下行子帧;
    承载所述上行子帧的重复次数;
    承载所述下行子帧的重复次数;
    所述上行子帧与所述下行子帧之间的差值;
    所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
  10. 如权利要求5所述的方法,其特征在于,所述将所述第三测量信息发送给定位服务器之前,还包括:
    向所述定位服务器发送身份信息,所述身份信息用于指示所述基站具备发送第三测量信息的能力;
    当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第三测量信息发送给所述定位服务器。
  11. 如权利要求5所述的方法,其特征在于,所述第三测量信息包括所述上行信号的传输时间和所述下行信号的传输时间的总和、所述上行信号的传输时间、所述下行信号的传输时间、所述基站与所述终端设备之间的往返距离或者所述基站与所述终端设备之间的单程距离。
  12. 一种定位信息传输方法,其特征在于,所述方法应用于终端设备,所述方法包括:
    确定第一测量信息,所述第一测量信息包括下行信号的接收时间与上行信号的发送时间之间的差值;
    将所述第一测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    确定承载所述上行信号的上行子帧;
    确定承载所述下行信号的下行子帧;
    确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
    根据所述第一测量信息和所述第二测量信息,计算得到第三测量信息,所述第三测量信息用于指示基站与所述终端设备之间距离,或者所述第三测量信息用于指示所述上行信号和/或所述下行信号的传输时间;
    将所述第三测量信息发送给所述定位服务器,以用于所述定位服务器对所述终端设备进行定位。
  14. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    确定承载所述上行信号的上行子帧;
    确定承载所述下行信号的下行子帧;
    确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
    将所述第二测量信息发送给所述定位服务器。
  15. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    确定承载所述上行信号的上行子帧;
    确定承载所述下行信号的下行子帧;
    确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
    将所述第二测量信息发送给基站。
  16. 如权利要求15所述的方法,其特征在于,所述上行子帧与所述下行子帧之间的差值是通过所述上行子帧的子帧标识与所述下行子帧的子帧标识之间的差值得到的。
  17. 如权利要求15所述的方法,其特征在于,所述第二测量信息包括以 下至少一项:
    所述上行子帧和所述下行子帧;
    承载所述上行子帧的重复次数;
    承载所述下行子帧的重复次数;
    所述上行子帧与所述下行子帧之间的差值;
    所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
  18. 如权利要求15所述的方法,其特征在于,所述将所述第二测量信息发送给所述定位服务器之前,还包括:
    向所述定位服务器发送身份信息,所述身份信息用于指示所述终端设备具备发送第二测量信息的能力;
    当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第二测量信息发送给所述定位服务器。
  19. 如权利要求13所述的方法,其特征在于,所述将所述第三测量信息发送给所述定位服务器之前,还包括:
    向所述定位服务器发送身份信息,所述身份信息用于指示所述终端设备具备发送第三测量信息的能力;
    当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第三测量信息发送给所述定位服务器。
  20. 如权利要求13所述的方法,其特征在于,所述第三测量信息包括所述上行信号的传输时间和所述下行信号的传输时间的总和、所述上行信号的传输时间、所述下行信号的传输时间、所述基站与所述终端设备之间的往返距离或者所述基站与所述终端设备之间的单程距离。
  21. 一种定位信息传输方法,其特征在于,所述方法应用于定位服务器,所述方法包括:
    接收第一测量信息和第二测量信息,其中所述第一测量信息包括所述上行 信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值,所述第二测量信息用于指示承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值;
    根据所述第一测量信息和所述第二测量信息,对终端设备进行定位。
  22. 如权利要求21所述的方法,其特征在于,所述方法还包括:
    接收第三测量信息,所述第三测量信息用于指示所述基站与终端设备之间距离,或者所述第三测量信息用于指示上行信号和/或下行信号的传输时间;
    根据所述第三测量信息,对所述终端设备进行定位。
  23. 如权利要求21所述的方法,其特征在于,所述第二测量信息包括以下至少一项:
    所述上行子帧和所述下行子帧;
    承载所述上行子帧的重复次数;
    承载所述下行子帧的重复次数;
    所述上行子帧与所述下行子帧之间的差值;
    所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
  24. 如权利要求22所述的方法,其特征在于,所述第三测量信息包括所述上行信号的传输时间和所述下行信号的传输时间的总和、所述上行信号的传输时间、所述下行信号的传输时间、所述基站与所述终端设备之间的往返距离或者所述基站与所述终端设备之间的单程距离。
  25. 一种基站,其特征在于,所述基站包括:
    子帧确定模块,用于确定承载上行信号的上行子帧;
    所述子帧确定模块,还用于确定承载下行信号的下行子帧;
    测量信息确定模块,用于确定第一测量信息,所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测 量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值;
    所述测量信息确定模块,还用于确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
    测量信息发送模块,用于将所述第一测量信息和所述第二测量信息发送给定位服务器,以用于所述定位服务器对终端设备进行定位。
  26. 如权利要求25所述的基站,其特征在于,所述上行子帧与所述下行子帧之间的差值是通过所述上行子帧的子帧标识与所述下行子帧的子帧标识之间的差值得到的。
  27. 如权利要求25所述的基站,其特征在于,所述第二测量信息包括以下至少一项:
    所述上行子帧和所述下行子帧;
    承载所述上行子帧的重复次数;
    承载所述下行子帧的重复次数;
    所述上行子帧与所述下行子帧之间的差值;
    所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
  28. 如权利要求25所述的基站,其特征在于,所述基站还包括:
    身份信息发送模块,用于所述测量信息发送模块将所述第二测量信息发送给所述定位服务器之前,向所述定位服务器发送身份信息,所述身份信息用于指示所述基站具备发送第二测量信息的能力;
    所述测量信息发送模块,还用于当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第二测量信息发送给所述定位服务器。
  29. 一种基站,其特征在于,包括处理器、存储器、发射器以及接收器,所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的程序代码,用于执行以下操作:
    确定承载上行信号的上行子帧;
    确定承载下行信号的下行子帧;
    确定第一测量信息,所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值;
    确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
    将所述第一测量信息和所述第二测量信息发送给定位服务器,以用于所述定位服务器对终端设备进行定位。
  30. 一种基站,其特征在于,所述基站包括:
    测量信息确定模块,用于确定第三测量信息,所述第三测量信息用于指示所述基站与终端设备之间距离,或者所述第三测量信息用于指示上行信号和/或下行信号的传输时间;
    测量信息发送模块,用于将所述第三测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
  31. 如权利要求30所述的基站,其特征在于,
    所述测量信息确定模块,具体用于接收所述终端设备发送的所述第三测量信息。
  32. 如权利要求30所述的基站,其特征在于,所述测量信息确定模块,具体用于:
    确定第一测量信息,所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值;
    接收所述终端设备发送的第二测量信息,所述第二测量信息用于指示承载所述上行信号的上行子帧与承载所述下行信号的下行子帧之间的差值;
    根据所述第一测量信息和所述第二测量信息,计算得到所述第三测量信 息。
  33. 如权利要求32所述的基站,其特征在于,所述上行子帧与所述下行子帧之间的差值是通过所述上行子帧的子帧标识与所述下行子帧的子帧标识之间的差值得到的。
  34. 如权利要求32所述的基站,其特征在于,所述第二测量信息包括以下至少一项:
    所述上行子帧和所述下行子帧;
    承载所述上行子帧的重复次数;
    承载所述下行子帧的重复次数;
    所述上行子帧与所述下行子帧之间的差值;
    所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
  35. 如权利要求30所述的基站,其特征在于,所述基站还包括:
    身份信息发送模块,用于所述测量信息发送模块将所述第三测量信息发送给所述定位服务器之前,向所述定位服务器发送身份信息,所述身份信息用于指示所述基站具备发送第三测量信息的能力;
    所述测量信息发送模块,还用于当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第三测量信息发送给所述定位服务器。
  36. 如权利要求30所述的基站,其特征在于,所述第三测量信息包括所述上行信号的传输时间和所述下行信号的传输时间的总和、所述上行信号的传输时间、所述下行信号的传输时间、所述基站与所述终端设备之间的往返距离或者所述基站与所述终端设备之间的单程距离。
  37. 一种基站,其特征在于,包括处理器、存储器、发射器以及接收器,所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的程序 代码,用于执行以下操作:
    确定第三测量信息,所述第三测量信息用于指示所述基站与终端设备之间距离,或者所述第三测量信息用于指示上行信号和/或下行信号的传输时间;
    将所述第三测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
  38. 一种终端设备,其特征在于,所述终端设备包括:
    测量信息确定模块,用于确定第一测量信息,所述第一测量信息包括下行信号的接收时间与上行信号的发送时间之间的差值;
    测量信息发送模块,用于将所述第一测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
  39. 如权利要求38所述的终端设备,其特征在于,所述终端设备还包括:
    子帧确定模块,用于确定承载所述上行信号的上行子帧;
    所述子帧确定模块,还用于确定承载所述下行信号的下行子帧;
    所述测量信息确定模块,还用于确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
    所述测量信息确定模块,还用于根据所述第一测量信息和所述第二测量信息,计算得到第三测量信息,所述第三测量信息用于指示基站与所述终端设备之间距离,或者所述第三测量信息用于指示所述上行信号和/或所述下行信号的传输时间;
    所述测量信息发送模块,还用于将所述第三测量信息发送给所述定位服务器,以用于所述定位服务器对所述终端设备进行定位。
  40. 如权利要求38所述的终端设备,其特征在于,所述终端设备还包括:
    子帧确定模块,用于确定承载所述上行信号的上行子帧;
    所述子帧确定模块,还用于确定承载所述下行信号的下行子帧;
    所述测量信息确定模块,还用于确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
    所述测量信息发送模块,还用于将所述第二测量信息发送给所述定位服务器。
  41. 如权利要求38所述的终端设备,其特征在于,所述终端设备还包括:
    子帧确定模块,用于确定承载所述上行信号的上行子帧;
    所述子帧确定模块,还用于确定承载所述下行信号的下行子帧;
    所述测量信息确定模块,还用于确定第二测量信息,所述第二测量信息用于指示所述上行子帧与所述下行子帧之间的差值;
    所述测量信息发送模块,还用于将所述第二测量信息发送给基站。
  42. 如权利要求41所述的终端设备,其特征在于,所述上行子帧与所述下行子帧之间的差值是通过所述上行子帧的子帧标识与所述下行子帧的子帧标识之间的差值得到的。
  43. 如权利要求41所述的终端设备,其特征在于,所述第二测量信息包括以下至少一项:
    所述上行子帧和所述下行子帧;
    承载所述上行子帧的重复次数;
    承载所述下行子帧的重复次数;
    所述上行子帧与所述下行子帧之间的差值;
    所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
  44. 如权利要求41所述的终端设备,其特征在于,所述终端设备还包括:
    身份信息发送模块,用于所述测量信息发送模块将所述第二测量信息发送给所述定位服务器之前,向所述定位服务器发送身份信息,所述身份信息用于指示所述终端设备具备发送第二测量信息的能力;
    所述测量信息发送模块,还用于当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第二测量信息发送给所述定位服务器。
  45. 如权利要求39所述的终端设备,其特征在于,所述终端设备还包括:
    身份信息发送模块,用于所述测量信息发送模块将所述第三测量信息发送给所述定位服务器之前,向所述定位服务器发送身份信息,所述身份信息用于指示所述终端设备具备发送第三测量信息的能力;
    所述测量信息发送模块,还用于当接收到所述定位服务器响应所述身份信息所反馈的测量信息获取请求时,将所述第三测量信息发送给所述定位服务器。
  46. 如权利要求39所述的终端设备,其特征在于,所述第三测量信息包括所述上行信号的传输时间和所述下行信号的传输时间的总和、所述上行信号的传输时间、所述下行信号的传输时间、所述基站与所述终端设备之间的往返距离或者所述基站与所述终端设备之间的单程距离。
  47. 一种终端设备,其特征在于,包括处理器、存储器、发射器以及接收器,所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的程序代码,用于执行以下操作:
    确定第一测量信息,所述第一测量信息包括下行信号的接收时间与上行信号的发送时间之间的差值;
    将所述第一测量信息发送给定位服务器,以用于所述定位服务器对所述终端设备进行定位。
  48. 一种定位服务器,其特征在于,所述定位服务器包括:
    测量信息接收模块,用于接收第一测量信息和第二测量信息,其中所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值,所述第二测量信息用于指示承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值;
    定位模块,用于根据所述第一测量信息和所述第二测量信息,对终端设备 进行定位。
  49. 如权利要求48所述的定位服务器,其特征在于,
    所述测量信息接收模块,还用于接收第三测量信息,所述第三测量信息用于指示所述基站与终端设备之间距离,或者所述第三测量信息用于指示上行信号和/或下行信号的传输时间;
    所述定位模块,还用于根据所述第三测量信息,对所述终端设备进行定位。
  50. 如权利要求48所述的定位服务器,其特征在于,所述第二测量信息包括以下至少一项:
    所述上行子帧和所述下行子帧;
    承载所述上行子帧的重复次数;
    承载所述下行子帧的重复次数;
    所述上行子帧与所述下行子帧之间的差值;
    所述上行子帧与所述下行子帧之间的配比(UL/DL configuration)。
  51. 如权利要求49所述的定位服务器,其特征在于,所述第三测量信息包括所述上行信号的传输时间和所述下行信号的传输时间的总和、所述上行信号的传输时间、所述下行信号的传输时间、所述基站与所述终端设备之间的往返距离或者所述基站与所述终端设备之间的单程距离。
  52. 一种定位服务器,其特征在于,包括处理器、存储器、发射器以及接收器,所述存储器中存储一组程序代码,且所述处理器调用所述存储器中存储的程序代码,用于执行以下操作:
    接收第一测量信息和第二测量信息,其中所述第一测量信息包括所述上行信号的接收时间与所述下行信号的发送时间之间的差值,或者所述第一测量信息包括所述下行信号的接收时间与所述上行信号的发送时间之间的差值,所述第二测量信息用于指示承载上行信号的上行子帧与承载下行信号的下行子帧之间的差值;
    根据所述第一测量信息和所述第二测量信息,对终端设备进行定位。
  53. 一种定位信息传输系统,其特征在于,包括如权利要求25~28任一项所述的基站、如权利要求38~46任一项所述的终端设备以及如权利要求48~51任一项所述的定位服务器。
  54. 一种定位信息传输系统,其特征在于,包括如权利要求30~36任一项所述的基站、如权利要求38~46任一项所述的终端设备以及如权利要求48~51任一项所述的定位服务器。
PCT/CN2016/104791 2016-11-04 2016-11-04 一种定位信息传输方法、相关设备以及系统 WO2018082075A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019523546A JP6822724B2 (ja) 2016-11-04 2016-11-04 測位情報伝送方法、基地局、装置、測位サーバ、コンピュータ可読記憶媒体およびプログラム
EP16920618.2A EP3531759A1 (en) 2016-11-04 2016-11-04 Positioning information transmission method, related device and system
CN201680090551.9A CN109906642B (zh) 2016-11-04 2016-11-04 一种定位信息传输方法、相关设备以及系统
PCT/CN2016/104791 WO2018082075A1 (zh) 2016-11-04 2016-11-04 一种定位信息传输方法、相关设备以及系统
US16/403,117 US11234207B2 (en) 2016-11-04 2019-05-03 Positioning information transmission method, related device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104791 WO2018082075A1 (zh) 2016-11-04 2016-11-04 一种定位信息传输方法、相关设备以及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/403,117 Continuation US11234207B2 (en) 2016-11-04 2019-05-03 Positioning information transmission method, related device, and system

Publications (1)

Publication Number Publication Date
WO2018082075A1 true WO2018082075A1 (zh) 2018-05-11

Family

ID=62075467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104791 WO2018082075A1 (zh) 2016-11-04 2016-11-04 一种定位信息传输方法、相关设备以及系统

Country Status (5)

Country Link
US (1) US11234207B2 (zh)
EP (1) EP3531759A1 (zh)
JP (1) JP6822724B2 (zh)
CN (1) CN109906642B (zh)
WO (1) WO2018082075A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147220B (zh) * 2019-12-27 2021-09-03 京信网络系统股份有限公司 Srs传输方法、装置、设备、系统和存储介质
CN115299136A (zh) * 2020-03-31 2022-11-04 高通股份有限公司 用于无线通信中的半双工(hd)频分双工(fdd)(hd-fdd)的超级时隙格式

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271419A (zh) * 1997-09-23 2000-10-25 艾利森电话股份有限公司 确定蜂窝移动终端位置的方法和系统
US20030190919A1 (en) * 2000-08-22 2003-10-09 Jarko Niemenmaa Method for positioning a mobile station
CN104394590A (zh) * 2014-11-26 2015-03-04 中国联合网络通信集团有限公司 一种定位方法、装置及系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215932A (en) * 1988-03-26 1989-09-27 Gec Traffic Automation Radio position finding system
US7110774B1 (en) * 2000-10-27 2006-09-19 Intel Corporation Dual mode uplink/downlink location measurement and multi-protocol location measurement
US20040080454A1 (en) * 2002-10-23 2004-04-29 Camp William O. Methods and systems for determining the position of a mobile terminal using digital television signals
KR100800738B1 (ko) * 2003-10-31 2008-02-01 삼성전자주식회사 이동통신망에서 중계기 시간 지연 판단 방법
EP1821429A3 (en) * 2005-10-26 2007-09-05 Mitsubishi Electric Information Technology Centre Europe B.V. Method and apparatus for communicating downlink and uplink sub-frames in a half duplex communication system
US20100135178A1 (en) * 2008-11-21 2010-06-03 Qualcomm Incorporated Wireless position determination using adjusted round trip time measurements
CN101801085A (zh) * 2010-02-11 2010-08-11 华为技术有限公司 一种定位方法、定位装置和基站
US8781492B2 (en) * 2010-04-30 2014-07-15 Qualcomm Incorporated Device for round trip time measurements
WO2012154105A1 (en) * 2011-05-11 2012-11-15 Telefonaktiebolaget L M Ericsson (Publ) Radio node, positioning node, and methods therein
CN102958154B (zh) * 2011-08-24 2015-05-27 华为技术有限公司 用户设备的定位方法及装置
CN103379427B (zh) * 2012-04-13 2016-06-15 华为技术有限公司 一种定位方法、设备及系统
US9648573B2 (en) * 2012-08-13 2017-05-09 Telefonaktiebolaget Lm Ericsson (Publ) Enhancing positioning with transmit-timing adjustment information
WO2014056172A1 (zh) * 2012-10-08 2014-04-17 华为技术有限公司 定位方法和装置
US20140254412A1 (en) * 2013-01-17 2014-09-11 Telefonaktiebolaget L M Ericsson (Publ) Method and network node in a radio communication system
JP5842908B2 (ja) * 2013-12-26 2016-01-13 カシオ計算機株式会社 電波時計
US9907044B2 (en) * 2014-09-15 2018-02-27 Qualcomm Incorporated IEEE 802.11 enhancements for high efficiency positioning
CN105743626B (zh) * 2014-12-30 2020-09-15 北京三星通信技术研究有限公司 一种下行信道和/或下行参考信号的接收方法和设备
JP6457096B2 (ja) * 2015-01-21 2019-01-23 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ネットワークノード、無線デバイスおよびこれらにおいて実行される自動再送要求(arq)フィードバック情報を処理する方法
CN105208653A (zh) * 2015-09-30 2015-12-30 广州慧睿思通信息科技有限公司 一种无线通信终端定位方法
US10541802B2 (en) * 2016-03-31 2020-01-21 Telefonaktiebolaget Lm Ericsson (Publ) Application of timing advance command in wireless communication device in enhanced coverage mode
JP2017188812A (ja) * 2016-04-07 2017-10-12 富士通株式会社 無線制御装置及び中継無線装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271419A (zh) * 1997-09-23 2000-10-25 艾利森电话股份有限公司 确定蜂窝移动终端位置的方法和系统
US20030190919A1 (en) * 2000-08-22 2003-10-09 Jarko Niemenmaa Method for positioning a mobile station
CN104394590A (zh) * 2014-11-26 2015-03-04 中国联合网络通信集团有限公司 一种定位方法、装置及系统

Also Published As

Publication number Publication date
CN109906642A (zh) 2019-06-18
JP6822724B2 (ja) 2021-01-27
EP3531759A4 (en) 2019-08-28
EP3531759A1 (en) 2019-08-28
JP2019536016A (ja) 2019-12-12
CN109906642B (zh) 2021-02-09
US11234207B2 (en) 2022-01-25
US20190261305A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
CN110971326B (zh) 一种时间同步的方法和装置
TWI716660B (zh) 用於獲取定位信號的方法及/或系統
CN109792584B (zh) 传输定位辅助数据的方法和设备
US9743249B2 (en) User equipment, device to device user equipment, backhaul device and positioning method thereof
CN113785633B (zh) 用于对无线通信装置定位的方法、用于促进定位的方法
WO2017113072A1 (zh) 基于到达时间差定位方法、用户设备及网络设备
WO2021008581A1 (zh) 用于定位的方法和通信装置
CN106664518A (zh) 无线蜂窝技术中设备到设备辅助定位的资源分配与使用
JP2016509771A5 (zh)
WO2014056172A1 (zh) 定位方法和装置
WO2012167724A1 (zh) 定位测量载波选择及定位测量方法、定位处理装置及终端
WO2022166862A1 (zh) 通信方法及装置、存储介质、发送ue、网络设备以及接收ue
WO2012059034A1 (zh) 一种辅助观察到达时间差定位的测量处理方法及设备
WO2015013859A1 (zh) 移动终端定位测量处理方法及装置
CN115836553A (zh) 用于在定位会话期间更新用户装备的定位能力的方法和装置
WO2018082075A1 (zh) 一种定位信息传输方法、相关设备以及系统
WO2021046820A1 (zh) 一种测量上报方法及装置
CN114071672A (zh) 定位方法、装置、终端及基站
WO2019096152A1 (zh) 通信方法及设备
CN107615812B (zh) 一种信号确定方法及装置
EP4340477A1 (en) Method and device for positioning in wireless communication system
WO2023206168A1 (zh) 定位方法、装置、设备及存储介质
WO2023116684A1 (zh) 旁链路定位信号调度方法、装置、终端及网络侧设备
WO2023207509A1 (zh) 用于sidelink的定位方法、装置及可读存储介质
CN117242840A (zh) 测量下行链路定位参考信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016920618

Country of ref document: EP

Effective date: 20190520