WO2019096152A1 - 通信方法及设备 - Google Patents

通信方法及设备 Download PDF

Info

Publication number
WO2019096152A1
WO2019096152A1 PCT/CN2018/115378 CN2018115378W WO2019096152A1 WO 2019096152 A1 WO2019096152 A1 WO 2019096152A1 CN 2018115378 W CN2018115378 W CN 2018115378W WO 2019096152 A1 WO2019096152 A1 WO 2019096152A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time
time units
identifier
subframe
Prior art date
Application number
PCT/CN2018/115378
Other languages
English (en)
French (fr)
Inventor
陈磊
李秉肇
坦尼⋅纳坦­爱德华
王学龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019096152A1 publication Critical patent/WO2019096152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and device.
  • the base station may send a paging message to the user equipment (User Equipment, UE), and the paging message may be used to notify the UE to receive the paging request, update the system information, or notify the UE to receive an earthquake, a tsunami warning system, or a commercial mobile alarm service.
  • the paging reception of the UE follows the principle of Discontinuous Reception (DRX).
  • DRX Discontinuous Reception
  • NR New Radio
  • the UE is located under the coverage of different beams.
  • the base station can perform beam scanning ( The mode of the beam sweep) sends a paging message to the UE, that is, the base station sends a paging message in all beam directions of the UE.
  • the traditional configuration method may be: in the same DRX cycle, the base station needs to page multiple UEs, and each UE has only one paging moment (Paging Occasion, PO) in this DRX cycle.
  • the length of each PO is a period of one beam sweep, where PO is in units of slots and the DRX period is set to an integral multiple of the beam sweep period.
  • the PO is in units of time slots, which will result in the PO length may not be an integer number of subframes, and the positions of different POs in different frames are irregular.
  • the UE Since the time information in the communication system is broadcasted by the System Frame Number (SFN), the UE can know that the paging message of the UE is in the Kth PO, but still cannot know that the Kth PO is located in the first few The first few subframes of the frame cause the UE to not accurately identify the location of the PO.
  • SFN System Frame Number
  • the technical problem to be solved by the embodiments of the present application is to provide a communication method and device, which can facilitate the second device to accurately identify the location of the PO.
  • the embodiment of the present application provides a communication method, including: acquiring, by a first device, a first quantity of time units included in a PO, and a second quantity of frames included in a paging frame (PF), according to The first quantity and the second quantity obtain information of the PO, and send the paging message to the second device at the PO indicated by the information of the PO.
  • a communication method including: acquiring, by a first device, a first quantity of time units included in a PO, and a second quantity of frames included in a paging frame (PF), according to The first quantity and the second quantity obtain information of the PO, and send the paging message to the second device at the PO indicated by the information of the PO.
  • PF paging frame
  • the first device may obtain the information of the PO according to the first quantity of the time unit included in the PO and the second quantity of the frame included in the PF, and further send the PO indicated by the information of the PO to the second device.
  • the second device may obtain the information of the PO according to the first quantity of the time unit included in the PO and the second quantity of the frame included in the PF, and further receive the paging message in the PO indicated by the information of the PO.
  • the PO is in the slot unit, which may result in the PO length may not be an integer number of subframes, and the positions of different POs in different frames are irregular.
  • the second device can know that the paging message of the second device is at the Kth PO, but still cannot know that the Kth PO is located in the first few frames.
  • the subframes cause the UE to not accurately identify the location of the PO.
  • the embodiment of the present application introduces the concept of PF, wherein one DRX cycle may include at least one PF, one PF may include at least one PO, and a second number of frames included in the PF and a first number of time units included in the PO may be dynamically extended.
  • the first device may obtain the information of the PO according to the first quantity and the second quantity, where the information of the PO may include time information of sending the paging message of the second device, for example, the information of the PO may be used to indicate the number in the DRX cycle.
  • the first time unit of several frames transmits the paging message, and the second device can receive the paging message in the PO indicated by the information of the PO, which can facilitate the second device to accurately identify the location of the PO in the DRX cycle, and improve the receiving and searching. The accuracy of the call message.
  • the PF may include two or more consecutive frames.
  • each PF within a DRX cycle may include 2 consecutive frames, 3 consecutive frames, or 5 consecutive frames, and the like.
  • the first device may be sent in multiple beam directions of the second device to ensure that the second device can accurately receive the paging message, which can improve the reliability of the paging message transmission.
  • the second device may be in the NR scenario under the coverage of different beams.
  • the first device may The second device sends a paging message, that is, the first device sends a paging message to all the beam directions of the second device in a PO that includes at least two time units.
  • the start frame included in the PF may be determined, and the start frame and at least one frame subsequent thereto are determined as PF, the start frame and The number of at least one frame thereafter is the same as the second number.
  • the first device may determine the start frame included in the PF by using the configuration method of the PF in the LTE system, and determine the start frame and at least one frame subsequent thereto as the PF, and the PF may be determined by the foregoing method.
  • the included frame is two or more consecutive frames, which can improve the reliability of paging message transmission.
  • the configuration method of the PF is relatively small compared to the configuration method of the PF in the LTE system, and the operation is convenient and the cost can be reduced.
  • the second device acquires a second number of frames included in the PF, and the PF configuration method in the LTE system can determine that the first frame included in the PF in the present application is located in the first frame in the DRX cycle.
  • a device can determine the first frame and the second frame in the DRX cycle as PF.
  • the first device may determine that the PO is located in the first to nth time units in the PF, and the 10*k*m/2-n+1 to the 10*k*m/2 time units, 10*k*m/2+1 to 10*k*m/2+n time units, or 10*k*m-n+1 to 10*k*m time units, where n is the first For a quantity, m is the second quantity and k is a positive integer.
  • the PO is evenly distributed in the PF.
  • the interval between the first PO and the second PO is longer, and the interval between the third PO and the fourth PO is longer, which facilitates the first device to remove the PO in the PF.
  • a special subframe is configured in a time unit other than the time unit.
  • the first device when the calculated PF includes one PO, the first device may obtain the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation. 10*k*m-n+1 to 10*k*m time units in the PF.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation. The first to nth time units in the obtained PF; when the PO identifier of the second device is the second identifier, the first device may determine that the PO is located in the calculated PF from the 10th*k*m-n+1 to the first 10*k*m time units.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first device may determine that the PO is located in the first to nth time units in the PF, and the 10*k*m/4+1 to the 10*k*m/4+n time units, 10*k*m/2+1 to 10*k*m/2+n time units, or 10*k*m*3/4+1 to 10*k*m*3/4+n Time units, where m is the second quantity, n is the first quantity, and k is a positive integer.
  • the POs for transmitting paging messages of different second devices are continuously and evenly distributed in the PF.
  • the first PO may The first subframe and the second subframe located in the PF
  • the second PO may be located in the sixth subframe and the seventh subframe in the PF
  • the third PO may be located in the eleventh subframe and the tenth in the PF
  • the fourth PO may be located in the sixteenth subframe and the seventeenth subframe in the PF.
  • the intervals between the POs are the same.
  • the POs are non-uniformly distributed in the PF.
  • the intervals between the POs in the application are the same, which facilitates the first device to determine the information of each PO, and the operation is convenient.
  • the first device when the calculated PF includes one PO, the first device may obtain the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first to nth time units in the PF when the calculated PF includes one PO, the first device may obtain the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation. The first to nth time units in the PF.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation. The first to nth time units in the obtained PF; when the PO identifier of the second device is the second identifier, the first device may determine that the PO is located in the calculated PF from the 10th*k*m/4+1 to the first 10*k*m/4+n time units; when the PO identifier of the second device is the third identifier, the first device may determine that the PO is located in the calculated PF from the 10th*k*m/2+1 to the first 10*k*m/2+n time units; when the PO identifier of the second device is the fourth identifier, the first device may determine that the PO is located in the calculated PF 10*k*m*3/4+1 Up to the 10th*k*m*3/4+n time unit.
  • the second amount may be pre-configured or derived from the first quantity.
  • the first device may determine the first quantity as the second quantity.
  • the second number of frames included in the PF does not need to be configured independently, which can save overhead.
  • the first device may determine that the second number of frames included in the PF is two.
  • the first device may determine a third quantity of the time slots included in each of the pre-configured subframes, divide the first quantity by the third quantity, and obtain the obtained quotient Round up to get the second amount.
  • the second number of frames included in the PF does not need to be configured independently, which can save overhead. For example, if the first number of time slots included in the PO is 10, and one subframe in the NR includes four time slots, the first device may determine that the third number is four, and divide the first number by the third. The quantity, the obtained quotient is 2.5, and the rounding up is 3, the first device can determine that the PF includes three frames, that is, the second number of frames included in the PF is three.
  • the first device when the calculated PF includes one PO, the first device may obtain the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation. 10*k*s+10 time units in the PF.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the number of frames included in the DRX cycle is greater than or equal to the product of the second number and the number of PFs included in the DRX cycle.
  • the product between the first quantity and the preset first value is less than or equal to the product between the second quantity and the preset second value.
  • the embodiment of the present application provides a communication method, including: acquiring, by a second device, a first quantity of time units included in a PO, and a second quantity of frames included in the PF, according to the first quantity and the second quantity, The PO information is obtained, and the paging message is received at the PO indicated by the PO information.
  • the second device may obtain the information of the PO according to the first quantity of the time unit included in the PO and the second quantity of the frame included in the PF, and further receive the paging message in the PO indicated by the information of the PO.
  • the PO is in the slot unit, which may result in the PO length may not be an integer number of subframes, and the positions of different POs in different frames are irregular. Since the time information in the communication system is broadcasted by the SFN, the second device can know that the paging message of the second device is at the Kth PO, but still cannot know that the Kth PO is located in the first few frames. The subframes cause the UE to not accurately identify the location of the PO.
  • one DRX cycle may include at least one PF
  • one PF may include at least one PO
  • a second number of frames included in the PF and a first number of time units included in the PO may be dynamically extended.
  • the second device may obtain the information of the PO according to the first quantity and the second quantity, where the information of the PO may include time information of receiving the paging message, for example, the information of the PO may be used to indicate the first frame in the DRX cycle.
  • the first time unit transmits the paging message
  • the second device can receive the paging message in the PO indicated by the information of the PO, which can facilitate the second device to accurately identify the location of the PO in the DRX cycle, and improve the accuracy of receiving the paging message. Sex.
  • the second number is obtained by high layer signaling/broadcast messages, or the second number is pre-configured, or the second number is derived from the first number.
  • the second number is that the first device sends the second device to the second device through a high layer signaling/broadcast message.
  • the second number is that the first device is pre-configured to the second device.
  • the second quantity is obtained by the second device according to the first quantity.
  • the PF may include two or more consecutive frames.
  • the PF includes two or more consecutive frames, the length of each PF may be increased, and the first number of time units included in each PO located in the PF may be increased, the first device
  • the paging message may be sent in multiple beam directions of the second device, and the second device may receive the paging message in the direction of the covered beam, which may improve the reliability of the paging message transmission.
  • the second device may be in the NR scenario under the coverage of different beams.
  • the first device may The second device sends a paging message, that is, the first device sends a paging message to all the beam directions of the second device in a PO that includes at least two time units.
  • the start frame included in the PF may be determined, and the start frame and at least one frame thereafter are determined as PF, the start frame and The number of at least one frame thereafter is the same as the second number.
  • the second device may determine the start frame included in the PF by using the configuration method of the PF in the LTE system, and determine the start frame and at least one frame subsequent thereto as the PF, and the PF may be determined by the foregoing method.
  • the included frame is two or more consecutive frames, which can improve the reliability of paging message transmission.
  • the configuration method of the PF is relatively small compared to the configuration method of the PF in the LTE system, and the operation is convenient and the cost can be reduced.
  • the second device acquires a second number of frames included in the PF, and the PF configuration method in the LTE system can determine that the first frame included in the PF in the present application is located in the first frame in the DRX cycle.
  • the second device can determine the first frame and the second frame in the DRX cycle as PF.
  • the second device may determine that the PO is located in the first to nth time units in the PF, and the 10*k*m/2-n+1 to the 10*k*m/2 time units, 10*k*m/2+1 to 10*k*m/2+n time units, or 10*k*m-n+1 to 10*k*m time units, where n is the first For a quantity, m is the second quantity and k is a positive integer.
  • the PO is evenly distributed in the PF.
  • the interval between the first PO and the second PO is longer, and the interval between the third PO and the fourth PO is longer, which may facilitate the second device to remove the PO in the PF.
  • a special subframe is configured in a time unit other than the time unit.
  • the second device may acquire the PO identifier of the second device.
  • the PO identifier of the second device is the first identifier
  • the second device may determine that the PO is located in the calculation. 10*k*m-n+1 to 10*k*m time units in the PF.
  • the second device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the second device may determine that the PO is located in the calculation.
  • the second device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the second device may determine that the PO is located in the calculation.
  • the second device may determine that the PO is located in the first to nth time units in the PF, and the 10*k*m/4+1 to the 10*k*m/4+n time units, 10*k*m/2+1 to 10*k*m/2+n time units, or 10*k*m*3/4+1 to 10*k*m*3/4+n Time units.
  • the intervals between the POs are the same.
  • the POs are non-uniformly distributed in the PF.
  • the intervals between the POs in the application are the same, which facilitates the second device to determine the information of each PO, and the operation is convenient.
  • the second device may acquire the PO identifier of the second device.
  • the PO identifier of the second device is the first identifier
  • the second device may determine that the PO is located in the calculation. The first to nth time units in the PF.
  • the second device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the second device may determine that the PO is located in the calculation.
  • the second device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the second device may determine that the PO is located in the calculation.
  • the first to nth time units in the obtained PF when the PO identifier of the second device is the second identifier, the second device may determine that the PO is located in the calculated PF from the 10th*k*m/4+1 to the first 10*k*m/4+n time units; when the PO identifier of the second device is the third identifier, the second device may determine that the PO is located in the calculated PF from the 10th*k*m/2+1 to the first 10*k*m/2+n time units; when the PO identifier of the second device is the fourth identifier, the second device may determine that the PO is located in the calculated PF 10*k*m*3/4+1 Up to the 10th*k*m*3/4+n time unit.
  • the second device may determine the first quantity as the second quantity.
  • the second device may determine a third quantity of time slots included in each of the pre-configured subframes, divide the first quantity by a third quantity, and obtain the obtained quotient Round up to get the second amount.
  • the second device may acquire the PO identifier of the second device.
  • the PO identifier of the second device is the first identifier
  • the second device may determine that the PO is located in the calculation. 10*k*s+10 time units in the PF.
  • the second device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the second device may determine that the PO is located in the calculation.
  • the second device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the second device may determine that the PO is located in the calculation.
  • the 10th*k*s+1 time unit in the obtained PF when the PO identifier of the second device is the second identifier, the second device may determine that the PO is located in the 10th*k*s+5 of the calculated PF a time unit; when the PO identifier of the second device is the third identifier, the second device may determine that the PO is located in the 10th**th+s 6th time unit of the calculated PF; and when the PO identifier of the second device is the fourth When marking, the second device can determine that the PO is located in the 10th*k*s+10 time units in the calculated PF.
  • the embodiment of the present application provides a computer storage medium, where the computer storage medium is used to store computer program instructions, when the computer program instructions are executed by the first device, causing the first device to perform the first aspect. Communication method.
  • the embodiment of the present application provides a computer storage medium, where the computer storage medium is used to store computer program instructions, when the computer program instructions are executed by the second device, so that the second device performs the second aspect. Communication method.
  • an embodiment of the present application provides a first device, where the first device has a function of implementing behavior of a first device in an example of a communication method according to the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions described above.
  • the processing of the first device may include a processing module and a transmitting module, the processing module being configured to support the first device to perform a corresponding function in the communication method of the first aspect.
  • the sending module is configured to support communication between the first device and other devices.
  • the first device may further include a storage module for coupling with the processing module, which stores program instructions and data necessary for the first device.
  • the processing module can be a processor and the transmitting module can be a transmitter.
  • the storage module can be a memory.
  • the first device may further include a receiving module configured to support communication between the first device and other devices.
  • the receiving module can be a receiver, and the receiving module and the transmitting module can be implemented by one transceiver.
  • the embodiment of the present application provides a second device, where the second device has a function of implementing the behavior of the second device in the example of the communication method in the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions described above.
  • the processing of the second device may include a processing module and a receiving module, the processing module being configured to support the second device to perform a corresponding function in the communication method of the second aspect.
  • the receiving module is used to support communication between the second device and other devices.
  • the second device may further include a storage module for coupling with the processing module, which stores program instructions and data necessary for the second device.
  • the processing module can be a processor and the transmitting module can be a transmitter.
  • the storage module can be a memory.
  • the structure of the second device may further include a sending module, where the sending module is configured to support communication between the second device and other devices.
  • the transmitting module can be a transmitter, and the receiving module and the transmitting module can be implemented by one transceiver.
  • an embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the communication method of the first aspect.
  • an embodiment of the present application provides a computer program product comprising instructions, when executed on a computer, causing a computer to perform the communication method of the second aspect.
  • the embodiment of the present application provides a communication system, where the system includes the first device and the second device.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, where the first device implements functions involved in the foregoing aspects, for example, generating or processing data involved in the foregoing method and/or Or information.
  • the chip system further includes a memory for storing program instructions and data necessary for the first device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, configured to support a second device to implement the functions involved in the foregoing aspects, for example, receiving or processing the method involved in the foregoing method. Data and / or information.
  • the chip system further includes a memory for storing necessary program instructions and data of the second device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of a communication system disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic flow chart of a communication method according to another embodiment of the present application.
  • FIG. 4 is a schematic flow chart of a communication method according to another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic flow chart of a communication method according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 8A is a schematic structural diagram of a PF disclosed in an embodiment of the present application.
  • FIG. 8B is a schematic structural diagram of a PO disclosed in an embodiment of the present application.
  • 8C is a schematic structural diagram of a PO disclosed in another embodiment of the present application.
  • 8D is a schematic structural diagram of a PO disclosed in another embodiment of the present application.
  • 8E is a schematic structural diagram of a PO disclosed in another embodiment of the present application.
  • FIG. 8F is a schematic structural diagram of a PO disclosed in another embodiment of the present application.
  • 8G is a schematic structural diagram of a PO disclosed in another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a first device disclosed in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a first device according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a second device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a second device according to another embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the communication system can include a first device 101 and at least one second device 102.
  • the first device and the second device may establish a data communication, and the first device may send, by using the data communication, the first quantity of the time unit included in the PO to the second device, where the first device may be according to the first quantity of the time unit included in the PO And the second quantity of the frame included in the PF, obtaining the information of the PO, and sending the paging message to the second device by the PO indicated by the information of the PO, the second device may receive, from the first device, the time unit included in the PO For a quantity, the information of the PO is obtained according to the first quantity of the time unit included in the PO and the second quantity of the frame included in the PF, and the paging message is received by the PO indicated by the information of the PO.
  • the first device may be a device for communicating with the mobile station, and specifically may be an access point (AP) in a Wireless Local Area Networks (WLAN), and a Global System for Mobile (Global System for Mobile) Communication, GSM) or Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), Base Station in Wideband Code Division Multiple Access (WCDMA) (NodeB) , NB), an evolved base station (eNB) in an LTE system, a relay station or access point, an in-vehicle device, a wearable device, an access network device in a future 5G network, and a future evolved public land mobile network ( Any of the access network devices and the like in the Public Land Mobile Network, PLMN).
  • AP access point
  • WLAN Wireless Local Area Networks
  • GSM Global System for Mobile
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • NodeB NodeB
  • eNB evolved base station
  • LTE Long Term Evolution
  • the second device may also be referred to as a terminal device, a UE, a mobile station, an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a terminal, a wireless communication device, a user agent, or a user device.
  • a station Station, ST
  • it can be a station (Station, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, and a personal digital processing.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in future 5G networks, and in future evolved PLMN networks Any of terminal devices and the like.
  • PDA Personal Digital Assistant
  • the second device is described by taking a UE in a general sense as an example.
  • the paging reception of the second device follows the DRX principle, that is, the cell sends the DRX cycle of the cell to all the second devices in the cell, and each second device can set the DRX of the second device based on its own power and the paging system. .
  • the first device needs to send a paging message to different second devices in different POs, and the first device sends only one PO message to a second device in the DRX cycle.
  • the DRX period may include at least one PF, where the PF is one frame or multiple consecutive frames for transmitting a paging message, and the number of frames included in the PF is configurable.
  • a PF may include at least one PO, which is a time unit for transmitting a paging message, and the number of time units included in the PO is configurable.
  • PO refers to a time period, such as a time period included in the first frame in the PF, or a time period between the 41st time slot and the 48th time slot in the PF.
  • the cell mentioned in the present invention may be a cell corresponding to the base station, and the cell may belong to a macro base station or a base station corresponding to a small cell, where the small cell may include a metro cell and a micro cell.
  • Cell, pico cell, and femto cell which have the characteristics of small coverage and low transmission power, and are suitable for providing a high-speed data transmission service.
  • the first device can obtain the information of the PF according to the number of frames included in the PF.
  • the information of the PF may include time information of the PF, including but not limited to a starting time, a frame number, a time slot number, an ending time, a duration, and the like.
  • the frame number may be a frame number of each frame included in the PF, or the frame number may be a frame number of the start frame included in the PF and a frame number of the end frame included in the PF.
  • the first device may obtain information of the PO according to the number of frames included in the PF and the number of time units included in the PO.
  • the information of the PO may include time information of the PO, including but not limited to the start time, the subframe number, the slot number, the end time, the duration, and the like.
  • the subframe number may be a subframe number of each subframe included in the PO, or the subframe number may be a subframe number of the start subframe included in the PO and a subframe number of the end subframe included in the PO.
  • the slot number may be the slot number of each slot included in the PO, or the slot number may be the slot number of the start slot included in the PO and the slot number of the end slot included in the PO.
  • the time unit can include a subframe or a time slot.
  • one frame may include 10 subframes, and in an LTE system, one subframe may include 2 slots; in NR, one subframe may include 2 slots, 4 slots, 6 slots, or 8 Time slots, etc.
  • FIG. 2 is a schematic diagram of a communication method according to an embodiment of the present disclosure. The method includes, but is not limited to, the following steps:
  • Step S201 The base station sends, by using the high layer signaling or the broadcast message, the first quantity of the subframe included in the PO and the second quantity of the frame included in the PF to the UE.
  • the first quantity and the second quantity are independently configured by the base station.
  • Step S202 The base station obtains information of the PF according to the second quantity.
  • the base station may determine a start frame included in the PF, determine the start frame and at least one frame thereafter as a PF, and the number of the start frame and at least one frame thereafter is the same as the second number.
  • the second number is three, and the frame number of the start frame included in the PF is 0.
  • the base station may determine that the frame number is 0, 1, 2;
  • the information includes the frame number of the start frame included, and the frame number of the end frame, and the base station can determine that the frame number is 0, 2.
  • the second number of frames included in the PF may be one or multiple, which is not limited by the embodiment of the present application.
  • the frame included in the PF is a continuous frame, for example, two consecutive frames or two or more consecutive frames.
  • the base station may determine a start frame of a frame included in the PF based on a related parameter of the UE. For example, the base station may calculate a start frame of the frame included in the PF by using the following formula:
  • T the DRX cycle
  • N min(T, nB)
  • nB 4T, 2T, T, T/2, T/4, T/8, T/16 or T/32
  • UE_ID IMSI mod 1024
  • IMSI indicates the International Mobile Subscriber Identification Number (IMSI) of the UE.
  • Step S203 The base station obtains the information of the PO in the PF indicated by the information of the PF according to the first quantity, and the PO is continuously non-uniformly distributed.
  • the PO may be continuously distributed in the PF or may be discontinuously distributed, and the PO may be uniformly distributed in the PF or may be non-uniformly distributed.
  • the base station can configure the PO in a continuous and non-uniform distribution manner.
  • the base station can determine the PO. Located in the first subframe and the second subframe in the PF. If the subframe number is 8, 9, the base station may determine that the PO is located in the ninth subframe and the tenth subframe in the PF. If the subframe number is 10, 11, the base station may determine that the PO is located in the eleventh subframe or the twelfth subframe in the PF. If the subframe number is 18, 19, the base station may determine that the PO is located in the nineteenth subframe or the twentieth subframe in the PF.
  • the information of the PO includes but is not limited to the subframe number of the subframe included in the PO, the subframe number of the start subframe included in the PO, the subframe number of the end subframe, and the like. It should be noted that, in the embodiment of the present application, the first number of the subframes included in the PO may be one, or may be multiple, which is not limited by the embodiment of the present application.
  • the product between the first quantity and the preset first value is less than or equal to the product between the second quantity and the preset second value.
  • one frame may include 10 subframes, and a PF may include up to 4 POs.
  • the preset first value may be 4, and the preset second value may be 10, that is, 4*n ⁇ 10*m.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first to nth subframes in the obtained PF; when the PO identifier of the second device is the second identifier, the first device may determine that the PO is located in the calculated PF from the 10th*k*m-n+1 to the 10th *k*m subframes. Where k 1.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the 10th*k*m/2+1 to the 10th*k*m/2+n subframes in the obtained PF; when the PO identifier of the second device is the second identifier, the first device may determine that the PO is located in the calculation The 10th*k*m/2-n+1 to the 10th*k*m/2th subframe in the PF; when the PO identifier of the second device is the third identifier, the first device may determine that the PO is located in the calculated The first to nth subframes in the PF; when the PO identifier of the second device is the fourth identifier, the first device may determine that the PO is located in the calculated PF from the 10th*k*m-n+1 to the 10th*th *m subframes. Where k 1.
  • the base station may determine the PO identifier based on the relevant parameters of the UE. For example, the base station may calculate the PO identifier by using the following formula:
  • i_s represents the PO identity of the UE
  • UE_ID IMSI mod 1024
  • IMSI represents the IMSI of the UE
  • N min(T, nB)
  • T represents the DRX cycle
  • nB can be 4T, 2T, T, T/2, T/ 4.
  • Ns max(1, nB/T)
  • Ns can be expressed as the number of POs contained in one PF.
  • the correspondence between the PO identifier and the information of the PO can be as shown in Table 1:
  • the information of the PO may include a duration, for example, a 10*m-n+1 to a 10*mth subframe in the PF.
  • the information of the PO may include a duration, for example, the first to the nth subframes in the PF; when the PO identifier is 1, the information of the PO may be the 10th in the PF. M-n+1 to 10*m subframes.
  • the information of the PO may include a duration, for example, the 10th*m/2+1 to the 10th*m/2+n subframes in the PF; when the PO identifier is 1
  • the information of the PO may be the 10th to the 10th and the 10th to the 2nd subframes in the PF.
  • the information of the PO may be the first to the nth subframes in the PF.
  • the information of the PO may be the 10*m-n+1 to the 10th*m subframes in the PF.
  • the PO information may include the persistent information.
  • the time for example, the 10th to the 10thth subframes in the PF; when the PO flag is 1, the information of the PO may be the first to the nth subframes in the PF; when the PO identifier is 2,
  • the information of the PO may be the 10th*m/2-n+1 to the 10th*m/2th subframe in the PF; when the PO identifier is 3, the information of the PO may be the 10th*m/2+1 in the PF. 10*m/2+n subframes.
  • Step S204 The UE obtains information of the PF according to the second quantity.
  • the UE Before receiving the paging message, the UE needs to acquire the information of the PO, and further receives the paging message in the PO indicated by the information of the PO. It should be noted that, in the embodiment of the present application, the implementation manner of the information about the PF of the UE is the same as the implementation manner of the information about the PF obtained by the base station, and the step S204 is specifically described in the description of the step S202.
  • Step S205 The UE obtains the information of the PO in the PF indicated by the information of the PF according to the first quantity.
  • the implementation manner of the information about the PO of the UE is the same as the implementation manner of the information about the PO of the base station, and the step S205 is specifically described in the description of the step S203.
  • step S204 and step S205 in FIG. 2 is not limited.
  • the UE may Step S204 and step S205 are performed.
  • step S204 and step S205 may be performed before or after step S202, or before or after step S203, or before or after step S206.
  • Step S206 The base station sends a paging message to the UE in the PO indicated by the information of the PO, where the PO is continuously non-uniformly distributed.
  • the base station may send a paging message to the UE at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the information of the PO is the nineteenth subframe and the twentieth subframe in the PF
  • the base station can be the nineteenth subframe and the first in the DRX cycle. Twenty subframes send a paging message to the UE.
  • the base station may send a paging message to the UE in at least one beam direction of the UE, to ensure that the UE can accurately receive the paging message, and improve the transmission reliability of the paging message.
  • the UE may receive the paging message at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the information of the PO is the nineteenth subframe and the twentieth subframe in the PF
  • the UE can be the nineteenth subframe and the first in the DRX cycle. Twenty subframes receive paging messages.
  • the base station sends, by using the high layer signaling or the broadcast message, the first quantity of the subframe included in the PO and the second quantity of the frame included in the PF, and the base station obtains according to the first quantity and the second quantity.
  • the information of the PO, and the PO indicated by the information of the PO sends a paging message to the UE, the UE may obtain the information of the PO according to the first quantity and the second quantity, and receive the paging message by the PO indicated by the information of the PO, It is convenient for the second device to accurately identify the location of the PO.
  • FIG. 3 is a schematic diagram of a communication method according to an embodiment of the present disclosure. The method includes, but is not limited to, the following steps:
  • Step S301 The base station sends, by using the high layer signaling or the broadcast message, the first quantity of the time slot included in the PO and the second quantity of the frame included in the PF to the UE.
  • the first quantity and the second quantity are independently configured by the base station.
  • Step S302 The base station obtains information of the PF according to the second quantity.
  • step S302 reference may be made to the description of step S202, which is not repeatedly described in the embodiment of the present application.
  • Step S303 The base station obtains information about the PO in the PF indicated by the information of the PF according to the first quantity.
  • the PO may be continuously distributed in the PF or may be discontinuously distributed, and the PO may be uniformly distributed in the PF or may be non-uniformly distributed.
  • the base station can configure the PO in a continuous and non-uniform distribution manner.
  • the information of the PO includes the slot number of the slot included in the PO, and the slot number is 0, 1, then The base station can determine that the PO is located in the first time slot and the second time slot in the PF. If the slot number is 8, 9, the base station can determine that the PO is located in the ninth slot and the tenth slot in the PF. If the slot number is 10, 11, the base station may determine that the PO is located in the eleventh slot or the twelfth slot in the PF. If the slot number is 18, 19, the base station can determine that the PO is located in the nineteenth slot or the twentieth slot in the PF.
  • the information of the PO includes, but is not limited to, the slot number of the time slot included in the PO, the time slot number of the start time slot included in the PO, and the time slot number of the end time slot, and the like. It should be noted that, in the embodiment of the present application, the first number of time slots included in the PO may be one or multiple, which is not limited by the embodiment of the present application.
  • the product between the first quantity and the preset first value is less than or equal to the product between the second quantity and the preset second value.
  • one frame may include 10 subframes, one subframe may include k time slots, and one PF may include up to 4 POs, and the preset first value may be 4, and the preset second value may be 10 *k, ie 4*n ⁇ 10*k*m.
  • the first device when the calculated PF includes one PO, the first device may obtain the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation. 10*k*m-n+1 to 10*k*m time slots in the PF. Where k is the third number of time slots included in each subframe.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • k is the third number of time slots
  • the base station may determine the PO identifier based on the relevant parameters of the UE. For example, the base station may calculate the PO identifier by using the following formula:
  • i_s represents the PO identity of the UE
  • UE_ID IMSI mod 1024
  • IMSI represents the IMSI of the UE
  • N min(T, nB)
  • T represents the DRX cycle
  • nB can be 4T, 2T, T, T/2, T/ 4.
  • Ns max(1, nB/T)
  • Ns can be expressed as the number of POs contained in one PF.
  • the correspondence between the PO identifier and the information of the PO can be as shown in Table 2:
  • the information of the PO may include a duration, for example, a 10*k*m-n+1 to a 10*k*m time slot in the PF.
  • the information of the PO may include a duration, for example, the first to the nth slots in the PF; when the PO identifier is 1, the information of the PO may be the 10th in the PF. *k*m-n+1 to 10*k*m time slots.
  • the information of the PO may include a duration, for example, a 10*k*m/2+1 to a 10*k*m/2+n time slot in the PF;
  • the PO information may be the 10th*k*m/2-n+1 to the 10th*k*m/2 time slot in the PF;
  • the PO information may be The first to nth time slots in the PF;
  • the information of the PO may be the 10th*k*m-n+1 to the 10th*k*m time slots in the PF.
  • the correspondence between the PO identifier and the PO information in the embodiment of the present application includes but is not limited to the foregoing manner.
  • the PO information may include the persistent information.
  • Time for example, 10*k*m-n+1 to 10*k*m time slots in the PF; when the PO flag is 1, the PO information may be the first to nth time slots in the PF; When the PO identifier is 2, the information of the PO may be the 10th*k*m/2-n+1 to the 10th*k*m/2 time slot in the PF; when the PO identifier is 3, the information of the PO may be 10*k*m/2+1 to 10*k*m/2+n time slots in the PF.
  • Step S304 The UE obtains information of the PF according to the second quantity.
  • the UE Before receiving the paging message, the UE needs to acquire the information of the PO, and further receives the paging message in the PO indicated by the information of the PO. It should be noted that, in the embodiment of the present application, the implementation manner of the information about the PF of the UE is the same as the implementation manner of the information about the PF obtained by the base station, and the step S304 is specifically described in the description of the step S202.
  • Step S305 The UE obtains information about the PO in the PF indicated by the information of the PF according to the first quantity.
  • the implementation manner of the information about the PO of the UE is the same as the implementation manner of the information about the PO of the base station, and the step S305 is specifically described in the description of the step S303.
  • step S304 and step S305 in FIG. 3 is not limited.
  • the UE may Step S304 and step S305 are performed.
  • step S304 and step S305 may be performed before or after step S302, or before or after step S303, or before or after step S306.
  • Step S306 The base station sends a paging message to the UE in the PO indicated by the information of the PO, where the PO is continuously non-uniformly distributed.
  • the base station may send a paging message to the UE at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the information of the PO is the nineteenth time slot and the twentieth time slot in the PF
  • the base station can be in the nineteenth time in the DRX cycle.
  • the slot and the twentieth time slot send a paging message to the UE.
  • the base station may send a paging message to the UE in at least one beam direction of the UE, to ensure that the UE can accurately receive the paging message, and improve the transmission reliability of the paging message.
  • the UE may receive the paging message at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the information of the PO is the nineteenth time slot and the twentieth time slot in the PF, and the UE can be in the nineteenth time in the DRX cycle.
  • the slot and the twentieth time slot receive the paging message.
  • the base station sends, by using the high layer signaling or the broadcast message, the first quantity of the time slot included in the PO and the second quantity of the frame included in the PF, and the base station obtains the first quantity and the second quantity according to the first quantity and the second quantity.
  • the information of the PO, and the PO indicated by the information of the PO sends a paging message to the UE, the UE may obtain the information of the PO according to the first quantity and the second quantity, and receive the paging message by the PO indicated by the information of the PO, It is convenient for the second device to accurately identify the location of the PO.
  • FIG. 4 is a schematic diagram of a communication method according to an embodiment of the present disclosure. The method includes, but is not limited to, the following steps:
  • Step S401 The base station sends, by using the high layer signaling or the broadcast message, the first quantity of the subframe included in the PO and the second quantity of the frame included in the PF to the UE.
  • the first quantity and the second quantity are independently configured by the base station.
  • Step S402 The base station obtains information of the PF according to the second quantity.
  • step S402 reference may be made to the description of step S202, which is not repeatedly described in the embodiment of the present application.
  • Step S403 The base station obtains the information of the PO in the PF indicated by the information of the PF according to the first quantity.
  • the PO may be continuously distributed in the PF or may be discontinuously distributed, and the PO may be uniformly distributed in the PF or may be non-uniformly distributed.
  • the base station can configure the PO in a continuous and evenly distributed manner without considering the setting of the special subframe.
  • the base station can determine the PO. Located in the first subframe and the second subframe in the PF. If the subframe number is 5, 6, the base station may determine that the PO is located in the sixth subframe and the seventh subframe in the PF. If the subframe number is 10, 11, the base station may determine that the PO is located in the eleventh subframe or the twelfth subframe in the PF. If the subframe number is 15, 16, the base station may determine that the PO is located in the sixteenth subframe or the seventeenth subframe in the PF.
  • the information of the PO includes but is not limited to the subframe number of the subframe included in the PO, the subframe number of the start subframe included in the PO, the subframe number of the end subframe, and the like. It should be noted that, in the embodiment of the present application, the first number of the subframes included in the PO may be one, or may be multiple, which is not limited by the embodiment of the present application.
  • the product between the first quantity and the preset first value is less than or equal to the product between the second quantity and the preset second value.
  • one frame may include 10 subframes, and a PF may include up to 4 POs.
  • the preset first value may be 4, and the preset second value may be 10, that is, 4*n ⁇ 10*m.
  • the first device when the calculated PF includes one PO, the first device may obtain the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first to nth subframes in the obtained PF; when the PO identifier of the second device is the second identifier, the first device may determine that the PO is located in the calculated PF from the 10th*k*m/2+1 to the 10th *k*m/2+n subframes. Where k 1.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation. The first to nth subframes in the obtained PF; when the PO identifier of the second device is the second identifier, the first device may determine that the PO is located in the calculated PF from the 10th*k*m/4+1 to the 10th *k*m/4+n subframes; when the PO identifier of the second device is the third identifier, the first device may determine that the PO is located in the calculated PF from the 10th*k*m/2+1 to the 10th* k*m/2+n subframes; when the PO identifier of the second device is the fourth identifier, the first device may determine that the PO is located in the calculated PF from the 10th*k*m*3/4+1 to the 10th *k*m*3/4+n sub-frames.
  • the base station may determine the PO identifier based on the relevant parameters of the UE. For example, the base station may calculate the PO identifier by using the following formula:
  • I_s floor(10*m div Ns)*(floor(UE_ID/N)mod Ns)
  • i_s represents the PO identity of the UE
  • m represents the second quantity
  • Ns max(1, nB/T)
  • Ns can be expressed as the number of POs included in one PF
  • UE_ID IMSI mod 1024
  • IMSI represents the IMSI of the UE
  • N min (T, nB)
  • T represents the DRX cycle
  • nB can be 4T, 2T, T, T/2, T/4, T/8, T/16 or T/32.
  • the correspondence between the PO identifier and the information of the PO can be as shown in Table 3:
  • the information of the PO may include a duration, for example, the first to nth subframes in the PF.
  • the information of the PO may include a duration, for example, the first to the nth subframes in the PF; when the PO identifier is 1, the information of the PO may be the 10th in the PF. m/2+1 to 10*m/2+n subframes.
  • the information of the PO may include a duration, for example, the first to the nth subframes in the PF; when the PO identifier is 1, the information of the PO may be the 10th in the PF. m/4+1 to 10*m/4+n subframes; when the PO identifier is 2, the PO information may be the 10th*m/2+1th to the 10th*m/2+n subframes in the PF.
  • the PO flag is 3
  • the information of the PO may be 10th*m*3/4+1 to 10*m*3/4+n subframes in the PF.
  • the correspondence between the PO identifier and the PO information in the embodiment of the present application includes but is not limited to the foregoing manner.
  • the PO information may include the persistent information. Time, for example, 10*m*3/4+1 to 10*m*3/4+n subframes in the PF; when the PO identifier is 1, the information of the PO may be the 10*m/2+ in the PF.
  • the information of the PO may be 10*m/4+1 to 10*m/4+n subframes in the PF; when the PO identifier When it is 3, the information of the PO may be the first to nth subframes in the PF.
  • Step S404 The UE obtains information of the PF according to the second quantity.
  • the UE Before receiving the paging message, the UE needs to acquire the information of the PO, and further receives the paging message in the PO indicated by the information of the PO. It should be noted that, in the embodiment of the present application, the implementation manner of the information about the PF of the UE is the same as the implementation manner of the PF information of the base station, and the step S405 is specifically referred to the description of the step S202.
  • Step S405 The UE obtains the information of the PO in the PF indicated by the information of the PF according to the first quantity.
  • the implementation manner of the information about the PO of the UE is the same as that of the information obtained by the base station, and the step S406 is specifically referred to the description of the step S403.
  • step S404 and step S405 in FIG. 4 is not limited. After the UE receives the first number of subframes included in the PO and the second number of frames included in the PF, the UE may Step S404 and step S405 are performed. For example, step S404 and step S405 may be performed before or after step S402, or before or after step S403, or before or after step S406.
  • Step S406 The base station sends a paging message to the UE in the PO indicated by the information of the PO, and the PO is continuously and evenly distributed.
  • the base station may send a paging message to the UE at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the information of the PO is the first subframe and the second subframe in the PF
  • the base station can be the first subframe and the second in the DRX cycle.
  • the subframes send a paging message to the UE.
  • the base station may send a paging message to the UE in at least one beam direction of the UE, to ensure that the UE can accurately receive the paging message, and improve the transmission reliability of the paging message.
  • the UE may receive the paging message at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the information of the PO is the first subframe and the second subframe in the PF
  • the UE may be the first subframe and the second in the DRX cycle.
  • Each subframe receives a paging message.
  • the base station sends, by using the high layer signaling or the broadcast message, the first quantity of the subframe included in the PO and the second quantity of the frame included in the PF, and the base station obtains according to the first quantity and the second quantity.
  • the information of the PO, and the PO indicated by the information of the PO sends a paging message to the UE, the UE may obtain the information of the PO according to the first quantity and the second quantity, and receive the paging message by the PO indicated by the information of the PO, It is convenient for the second device to accurately identify the location of the PO.
  • FIG. 5 is a schematic diagram of a communication method according to an embodiment of the present disclosure. The method includes, but is not limited to, the following steps:
  • Step S501 The base station sends, by using the high layer signaling or the broadcast message, the first quantity of the time slot included in the PO and the second quantity of the frame included in the PF to the UE.
  • the first quantity and the second quantity are independently configured by the base station.
  • Step S502 The base station obtains information of the PF according to the second quantity.
  • step S502 reference may be made to the description of step S202, which is not repeatedly described in the embodiment of the present application.
  • Step S503 The base station obtains the information of the PO in the PF indicated by the information of the PF according to the first quantity.
  • the PO may be continuously distributed in the PF or may be discontinuously distributed, and the PO may be uniformly distributed in the PF or may be non-uniformly distributed.
  • the base station can configure the PO in a continuous and evenly distributed manner without considering the setting of the special subframe.
  • PO may be located in the first to nth time slots in the PF, 10*k*m/4+1 to 10*k*m/4+n time slots, 10*k*m/2+1 to 10*k*m/2+n time slots, or 10*k*m*3/4+1 to 10*k*m*3/4+n time slots, where n is the first number m is the second number and k is the third number of time slots included in each subframe.
  • the information of the PO includes the slot number of the slot included in the PO, and the slot number is 0, 1, then The base station can determine that the PO is located in the first time slot and the second time slot in the PF. If the slot number is 5, 6, the base station can determine that the PO is located in the sixth slot and the seventh slot in the PF. If the slot number is 10, 11, the base station may determine that the PO is located in the eleventh slot or the twelfth slot in the PF. If the slot number is 15, 16, the base station can determine that the PO is located in the sixteenth time slot or the seventeenth time slot in the PF.
  • the information of the PO includes, but is not limited to, the slot number of the time slot included in the PO, the time slot number of the start time slot included in the PO, and the time slot number of the end time slot, and the like. It should be noted that, in the embodiment of the present application, the first number of time slots included in the PO may be one or multiple, which is not limited by the embodiment of the present application.
  • the product between the first quantity and the preset first value is less than or equal to the product between the second quantity and the preset second value.
  • one frame may include 10 subframes, one subframe may include k time slots, and one PF may include up to 4 POs, and the preset first value may be 4, and the preset second value may be 10 *k, ie 4*n ⁇ 10*k*m.
  • the first device when the calculated PF includes one PO, the first device may obtain the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first to nth time slots in the PF when the calculated PF includes one PO, the first device may obtain the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first to nth time slots in the PF when the calculated PF includes one PO, the first device may obtain the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first to nth time slots in the PF when the calculated PF includes one PO, the first device may obtain the PO identifier of the second device, and when the PO identifier of the second device is the first identifier
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first to nth time slots in the obtained PF when the PO identifier of the second device is the second identifier, the first device may determine that the PO is located in the calculated PF from the 10th*k*m/4+1 to the first 10*k*m/4+n time slots; when the PO identifier of the second device is the third identifier, the first device may determine that the PO is located in the calculated PF from the 10th*k*m/2+1 to the first 10*k*m/2+n timeslots; when the PO identifier of the second device is the fourth identifier, the first device may determine that the PO is located in the calculated PF of the 10th*****3/4+1 Up to the 10*k*m*3/4+n time slots.
  • k is the third number of time slots
  • the base station may determine the PO identifier based on the relevant parameters of the UE. For example, the base station may calculate the PO identifier by using the following formula:
  • I_s floor(10*m div Ns)*(floor(UE_ID/N)mod Ns)
  • i_s represents the PO identity of the UE
  • m represents the second quantity
  • Ns max(1, nB/T)
  • Ns can be expressed as the number of POs included in one PF
  • UE_ID IMSI mod 1024
  • IMSI represents the IMSI of the UE
  • N min (T, nB)
  • T represents the DRX cycle
  • nB can be 4T, 2T, T, T/2, T/4, T/8, T/16 or T/32.
  • the correspondence between the PO identifier and the information of the PO can be as shown in Table 4:
  • the information of the PO may include a duration, for example, the first to nth slots in the PF.
  • the information of the PO may include a duration, for example, the first to the nth slots in the PF; when the PO identifier is 1, the information of the PO may be the 10th in the PF. *k*m/2+1 to 10*k*m/2+n time slots.
  • the information of the PO may include a duration, for example, the first to nth slots in the PF; when the PO identifier is 1, the information of the PO may be the 10th in the PF. *k*m/4+1 to 10*k*m/4+n time slots; when the PO flag is 2, the PO information can be 10*k*m/2+1 to 10th in the PF *k*m/2+n time slots; when the PO flag is 3, the PO information can be 10*k*m*3/4+1 to 10*k*m*3/4+ in the PF. n time slots.
  • the PO information may include the persistent information.
  • Time for example, 10*k*m*3/4+1 to 10*k*m*3/4+n time slots in the PF; when the PO flag is 1, the PO information may be the 10th in the PF. *k*m/2+1 to 10*k*m/2+n time slots; when the PO flag is 2, the PO information can be 10*k*m/4+1 to 10th in the PF *k*m/4+n time slots; when the PO flag is 3, the PO information may be the first to nth time slots in the PF.
  • Step S504 The UE obtains the information of the PF according to the second quantity.
  • the UE Before receiving the paging message, the UE needs to acquire the information of the PO, and further receives the paging message in the PO indicated by the information of the PO. It should be noted that, in the embodiment of the present application, the implementation manner of the information about the PF of the UE is the same as the implementation manner of the information about the PF obtained by the base station, and the step S505 is specifically referred to the description of the step S202.
  • Step S505 The UE obtains information about the PO in the PF indicated by the information of the PF according to the first quantity.
  • the implementation manner of the information about the PO of the UE is the same as that of the information obtained by the base station, and the step S506 is specifically referred to the description of the step S503.
  • step S504 and step S505 in FIG. 5 is not limited. After the UE receives the first quantity of the time slot included in the PO and the second quantity of the frame included in the PF, the UE may Step S504 and step S505 are performed. For example, step S504 and step S505 may be performed before or after step S502, or before or after step S503, and may also be performed before or after step S506.
  • Step S506 The base station sends a paging message to the UE in the PO indicated by the information of the PO, and the PO is continuously and evenly distributed.
  • the base station may send a paging message to the UE at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the information of the PO is the first time slot and the second time slot in the PF
  • the base station can be in the first time slot and the first time in the DRX cycle.
  • Two time slots send a paging message to the UE.
  • the base station may send a paging message to the UE in at least one beam direction of the UE, to ensure that the UE can accurately receive the paging message, and improve the transmission reliability of the paging message.
  • the UE may receive the paging message at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the information of the PO is the first time slot and the second time slot in the PF
  • the UE can be in the first time slot and the first time in the DRX cycle.
  • Two time slots receive paging messages.
  • the base station sends, by using the high layer signaling or the broadcast message, the first quantity of the time slot included in the PO and the second quantity of the frame included in the PF, and the base station obtains the first quantity and the second quantity according to the first quantity and the second quantity.
  • the information of the PO, and the PO indicated by the information of the PO sends a paging message to the UE, the UE may obtain the information of the PO according to the first quantity and the second quantity, and receive the paging message by the PO indicated by the information of the PO, It is convenient for the second device to accurately identify the location of the PO.
  • FIG. 6 is a communication method provided by an embodiment of the present application, where the method includes but is not limited to the following steps:
  • Step S601 The base station sends the first quantity of the subframes included in the PO to the UE by using the high layer signaling or the broadcast message.
  • the first number is independently configured by the base station.
  • Step S602 The base station determines the first quantity as the second quantity of frames included in the PF.
  • the PO is discontinuously distributed in the PF, and the configuration manner of the PO in each frame included in the PF is the same as that in the LTE system.
  • the PO includes one subframe
  • the base station may determine that the PO includes one subframe in each frame included in the PF, that is, the second number of frames included in the PF and the number of subframes included in the PO are the same.
  • the first number can be determined as the second number of frames included in the PF.
  • Step S603 The base station obtains information of the PF according to the second quantity.
  • step S603 reference may be made to the description of step S202, which is not repeatedly described in the embodiment of the present application.
  • Step S604 The base station obtains the information of the PO in the PF indicated by the information of the PF according to the first quantity.
  • the base station can configure the PO in a non-continuous and non-uniformly distributed manner.
  • the PO may be located in the 10th*k*s+1 subframe in the PF, the 10*k*s+5 subframes, the 10th*k*s+6 subframes, or the 10th*k*s+10 subframes.
  • s 0, 1, 2...m-1
  • m is the second quantity
  • k 1.
  • the base station may determine that the PO is located in the fifth subframe and the fifteenth subframe in the PF. If the subframe number is 5, 15, the base station may determine that the PO is located in the sixth subframe or the sixteenth subframe in the PF. If the subframe number is 9, 19, the base station may determine that the PO is located in the tenth subframe or the twentieth subframe in the PF.
  • the information of the PO includes but is not limited to the subframe number of the subframe included in the PO, the subframe number of the start subframe included in the PO, the subframe number of the end subframe, and the like. It should be noted that, in the embodiment of the present application, the first number of the subframes included in the PO may be one, or may be multiple, which is not limited by the embodiment of the present application.
  • the product between the first quantity and the preset first value is less than or equal to the product between the second quantity and the preset second value.
  • one frame may include 10 subframes, and a PF may include up to 4 POs.
  • the preset first value may be 4, and the preset second value may be 10, that is, 4*n ⁇ 10*m.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the 10th*k*s+5 subframes in the obtained PF; when the PO identifier of the second device is the second identifier, the first device may determine that the PO is located in the 10th*k*s+10 subframes in the calculated PF. . Where k 1.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the base station may determine the PO identifier based on the relevant parameters of the UE. For example, the base station may calculate the PO identifier by using the following formula:
  • i_s represents the PO identity of the UE
  • UE_ID IMSI mod 1024
  • IMSI represents the IMSI of the UE
  • N min(T, nB)
  • T represents the DRX cycle
  • nB can be 4T, 2T, T, T/2, T/ 4.
  • Ns max(1, nB/T)
  • Ns can be expressed as the number of POs contained in one PF.
  • the correspondence between the PO identifier and the information of the PO can be as shown in Table 5:
  • the information of the PO may include a duration, for example, 10*s+10 subframes in the PF.
  • the information of the PO may include a duration, for example, 10th s+5 subframes in the PF; when the PO identifier is 1, the PO information may be 10th in the PF. *s+10 subframes.
  • the information of the PO may include a duration, for example, the 10th*s+1 subframe in the PF; when the PO identifier is 1, the information of the PO may be the 10th in the PF.
  • the information of the PO can be the 10th s+6 subframes in the PF; when the PO identifier is 3, the PO information can be the 10th s+10 in the PF. Subframes.
  • the PO information may include the persistent information.
  • the time for example, the 10th s + 10 subframes in the PF; when the PO identifier is 1, the PO information may be the 10th s+1 subframe in the PF; when the PO identifier is 2, the PO information may be PF.
  • Step S605 The UE determines the first quantity as the second quantity of frames included in the PF.
  • the method for obtaining the second number of the UE is the same as the method for obtaining the second number of the base station, and the step S606 is specifically referred to the description of the step S602.
  • Step S606 The UE obtains the information of the PF according to the second quantity.
  • the UE Before receiving the paging message, the UE needs to acquire the information of the PO, and further receives the paging message in the PO indicated by the information of the PO. It should be noted that, in the embodiment of the present application, the implementation manner of the information about the PF of the UE is the same as the implementation manner of the information about the PF obtained by the base station, and the step S607 is specifically described in the description of the step S202.
  • Step S607 The UE obtains the information of the PO in the PF indicated by the information of the PF according to the first quantity.
  • the implementation manner of the information about the PO of the UE is the same as the implementation manner of the information about the PO of the base station, and the step S608 is specifically referred to the description of the step S604.
  • steps S605-S607 in FIG. 6 is not limited. After the UE receives the first number of subframes included in the PO from the base station, steps S605-S607 may be performed, for example, step S605. -S607 may be performed before or after step S602, or before or after step S603, or before or after step S604, or before or after step S608.
  • Step S608 The base station sends a paging message to the UE by the PO indicated by the information of the PO.
  • the base station may send a paging message to the UE at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the information of the PO is the tenth subframe and the twentieth subframe in the PF
  • the base station can be the tenth subframe and the twentieth in the DRX cycle.
  • the subframes send a paging message to the UE.
  • the base station may send a paging message to the UE in at least one beam direction of the UE, to ensure that the UE can accurately receive the paging message, and improve the transmission reliability of the paging message.
  • the UE may receive the paging message at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the information of the PO is the tenth subframe and the twentieth subframe in the PF
  • the UE may be the tenth subframe and the twentieth in the DRX cycle.
  • Each subframe receives a paging message.
  • the base station sends the first quantity of the subframes included in the PO to the UE through the high layer signaling or the broadcast message, and the base station determines the first quantity as the second quantity of the frame included in the PF, and the base station according to the first
  • the quantity and the second quantity, the PO information is obtained, and the PO indicates that the PO sends the paging message to the UE, and the UE may determine the first quantity as the second quantity of the frame included in the PF, according to the first quantity and the first quantity.
  • the second quantity which obtains the information of the PO, and receives the paging message by the PO indicated by the information of the PO, can facilitate the second device to accurately identify the location of the PO.
  • FIG. 7 is a schematic diagram of a communication method according to an embodiment of the present disclosure. The method includes, but is not limited to, the following steps:
  • Step S701 The base station sends the first quantity of the time slots included in the PO to the UE by using the high layer signaling or the broadcast message.
  • the first number is independently configured by the base station.
  • Step S702 The base station determines a third number of time slots included in each subframe that is pre-configured.
  • one subframe may include 2 slots; in NR, one subframe may include 2 slots, 4 slots, 6 slots, or 8 slots. Based on this, the base station can determine a third number of time slots included in each of the pre-configured subframes.
  • Step S703 The base station divides the first quantity by the third quantity, and rounds the obtained quotient to obtain the second quantity.
  • the PO is discontinuously distributed in the PF, and the configuration manner of the PO in each frame included in the PF is the same as that in the LTE system.
  • the PO includes one subframe, and the base station may determine that the number of time slots included in the PO included in each frame included in the PF is less than or equal to a third number. Based on this, the base station can divide the first quantity by the third quantity and round up the obtained quotient to obtain the second quantity.
  • the first number of time slots included in the PO is 10
  • each of the pre-configured subframes includes 4 time slots, and the base station can determine That is, the number of frames included in the PF is three.
  • Step S704 The base station obtains information of the PF according to the second quantity.
  • step S704 reference may be made to the description of step S202, which is not repeatedly described in the embodiment of the present application.
  • Step S705 The base station obtains the information of the PO in the PF indicated by the information of the PF according to the first quantity.
  • the base station can configure the PO in a non-continuous and non-uniformly distributed manner.
  • the PO can be located in the 10th*k*s+1 time slot in the PF, the 10th*k*s+5 time slots, the 10th*k*s+6 time slots, or the 10th*k*s+10 Time slots.
  • s 0, 1, 2...m-1
  • m is the second number
  • k is the third number of time slots included in each subframe.
  • the information of the PO includes the slot number of the slot included in the PO, and the slot number is 0, 10, then The base station can determine that the PO is located in the first time slot and the eleventh time slot in the PF. If the slot number is 4, 14, the base station can determine that the PO is located in the fifth slot and the fifteenth slot in the PF. If the slot number is 5, 15, the base station can determine that the PO is located in the sixth slot or the sixteenth slot in the PF. If the slot number is 9, 19, the base station may determine that the PO is located in the tenth slot or the twentieth slot in the PF.
  • the information of the PO includes, but is not limited to, the slot number of the time slot included in the PO, the time slot number of the start time slot included in the PO, and the time slot number of the end time slot, and the like. It should be noted that, in the embodiment of the present application, the first number of time slots included in the PO may be one or multiple, which is not limited by the embodiment of the present application.
  • the product between the first quantity and the preset first value is less than or equal to the product between the second quantity and the preset second value.
  • one frame may include 10 subframes, one subframe may include k time slots, and one PF may include up to 4 POs, and the preset first value may be 4, and the preset second value may be 10 *k, ie 4*n ⁇ 10*k*m.
  • the first device when the calculated PF includes one PO, the first device may obtain the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation. 10*k*s+10 time slots in the PF. Where k is the third number of time slots included in each subframe.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • Time slot Where k is the third number of time slots included in each subframe.
  • the first device may acquire the PO identifier of the second device, and when the PO identifier of the second device is the first identifier, the first device may determine that the PO is located in the calculation.
  • the first device may determine that the PO is located in the 10th*k*s+6 slots in the calculated PF; and when the PO identifier of the second device is the fourth When marking, the first device may determine that the PO is located in the 10th*k*s+10 time slots in the calculated PF.
  • k is the third number of time slots included in each subframe.
  • the base station may determine the PO identifier based on the relevant parameters of the UE. For example, the base station may calculate the PO identifier by using the following formula:
  • i_s represents the PO identity of the UE
  • UE_ID IMSI mod 1024
  • IMSI represents the IMSI of the UE
  • N min(T, nB)
  • T represents the DRX cycle
  • nB can be 4T, 2T, T, T/2, T/ 4.
  • Ns max(1, nB/T)
  • Ns can be expressed as the number of POs contained in one PF.
  • the correspondence between the PO identifier and the information of the PO can be as shown in Table 6:
  • the information of the PO may include a duration, for example, 10*k*s+10 slots in the PF.
  • the PO information may include a duration, for example, 10*k*s+5 slots in the PF; when the PO identifier is 1, the PO information may be PF.
  • the PO information may include a duration, for example, 10*k*s+1 slots in the PF; when the PO identifier is 1, the PO information may be PF.
  • the information of the PO can be the 10th*k*s+6 time slots in the PF; when the PO identifier is 3, the information of the PO can be It is the 10th*k*s+10 time slots in the PF.
  • the PO information may include the persistent information.
  • Time for example, 10*k*s+10 time slots in the PF; when the PO flag is 1, the PO information may be the 10th*k*s+1 time slot in the PF; when the PO flag is 2,
  • the PO information may be the 10th*k*s+5 time slots in the PF; when the PO identifier is 3, the PO information may be the 10th*k*s+6 time slots in the PF.
  • Step S706 The UE determines a third number of time slots included in each subframe that is pre-configured.
  • Step S707 The UE divides the first quantity by the third quantity, and rounds the obtained quotient to obtain the second quantity.
  • the UE obtains the second quantity of the implementation manner and the base station obtains the second quantity of the implementation manner, and the step S708 may be specifically referred to the description of step S703, which is not repeatedly described in the embodiment of the present application.
  • Step S708 The UE obtains the information of the PF according to the second quantity.
  • the UE Before receiving the paging message, the UE needs to acquire the information of the PO, and further receives the paging message in the PO indicated by the information of the PO. It should be noted that, in the embodiment of the present application, the implementation manner of the information about the PF of the UE is the same as the implementation manner of the information about the PF obtained by the base station, and the step S709 is specifically described in the description of the step S202.
  • Step S709 The UE obtains the information of the PO in the PF indicated by the information of the PF according to the first quantity.
  • the implementation manner of the information about the PO of the UE is the same as that of the information obtained by the base station, and the step S710 is specifically referred to the description of the step S705.
  • steps S706-S709 in FIG. 7 is not limited. After the UE receives the first number of time slots included in the PO from the base station, steps S706-S709 may be performed, for example, step S706. -S709 may be performed before or after any of steps S702-S705, and may also be performed before or after step S710.
  • Step S710 The base station sends a paging message to the UE by the PO indicated by the information of the PO.
  • the base station may send a paging message to the UE at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the PO information is the tenth time slot and the twentieth time slot in the PF, and the base station can be in the tenth time slot in the DRX cycle.
  • the twentieth time slot sends a paging message to the UE.
  • the base station may send a paging message to the UE in at least one beam direction of the UE, to ensure that the UE can accurately receive the paging message, and improve the transmission reliability of the paging message.
  • the UE may receive the paging message at the PO indicated by the PO information.
  • the PF is the first frame and the second frame in the DRX cycle
  • the information of the PO is the tenth time slot and the twentieth time slot in the PF
  • the UE can be in the tenth time slot in the DRX cycle and The twentieth time slot receives the paging message.
  • the base station sends the first quantity of the time slots included in the PO to the UE through the high layer signaling or the broadcast message, and the base station obtains the second quantity according to the first quantity, according to the first quantity and the second quantity.
  • PO information and the PO indicates that the PO sends a paging message to the UE
  • the UE may obtain the second quantity according to the first quantity, and obtain the PO information according to the first quantity and the second quantity, and Receiving the paging message by the PO indicated by the information may facilitate the second device to accurately identify the location of the PO.
  • FIG. 9 is a schematic structural diagram of a first device according to an embodiment of the present disclosure, which is used to implement the functions of a base station in the embodiment of FIG. 2-7, where the first device may include a processing module 901 and a sending module. 902, wherein the detailed description of each module is as follows.
  • the processing module 901 is configured to acquire a first quantity of time units included in the PO, and a second quantity of frames included in the PF, where the time unit is a subframe or a time slot;
  • the processing module 901 is further configured to obtain information about the PO according to the first quantity and the second quantity;
  • the sending module 902 is configured to send a paging message to the second device by the PO indicated by the information of the PO.
  • the processing module 901 is further configured to: after acquiring the second number of frames included in the PF, determine a start frame included in the PF;
  • the processing module 901 is further configured to determine the start frame and at least one frame subsequent thereto as the PF, and the number of the start frame and at least one frame subsequent thereto is the same as the second number.
  • the processing module 901 obtains PO information according to the first quantity and the second quantity, specifically for:
  • n is the first number
  • m is the second quantity
  • k is a positive integer
  • the processing module 901 obtains PO information according to the first quantity and the second quantity, specifically for:
  • n is the first quantity
  • k is a positive integer
  • the processing module 901 acquires a second quantity of frames included in the PF, specifically for:
  • the first quantity is determined as the second quantity.
  • the processing module 901 acquires a second quantity of frames included in the PF, specifically for:
  • the processing module 901 obtains PO information according to the first quantity and the second quantity, specifically for:
  • each module may also correspond to the corresponding description of the embodiment shown in FIG. 2-7.
  • the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • FIG. 10 is a schematic structural diagram of a first device according to another embodiment of the present invention.
  • the first device may include: a processor 1001, a memory 1002, and a transmitter 1003.
  • the memory 1002 may be a high-speed RAM memory or a non-volatile memory, such as at least one disk.
  • the memory optionally, the memory 1002 may also be at least one storage device located away from the processor 1001. among them:
  • the processor 1001 is configured to acquire a first quantity of time units included in the PO, and a second quantity of frames included in the PF, where the time unit is a subframe or a time slot;
  • the processor 1001 is further configured to obtain information about the PO according to the first quantity and the second quantity;
  • the transmitter 1003 is configured to send a paging message to the second device by the PO indicated by the information of the PO.
  • the processor 1001 is further configured to: after acquiring the second number of frames included in the PF, determine a start frame included in the PF;
  • the processor 1001 is further configured to determine the start frame and at least one frame subsequent thereto as the PF, and the number of the start frame and at least one frame subsequent thereto is the same as the second number.
  • the processor 1001 obtains PO information according to the first quantity and the second quantity, specifically for:
  • n is the first number
  • m is the second quantity
  • k is a positive integer
  • the processor 1001 obtains PO information according to the first quantity and the second quantity, specifically for:
  • n is the first quantity
  • k is a positive integer
  • the processor 1001 acquires a second quantity of frames included in the PF, specifically for:
  • the first quantity is determined as the second quantity.
  • the processor 1001 acquires a second quantity of frames included in the PF, specifically for:
  • the processor 1001 obtains PO information according to the first quantity and the second quantity, specifically for:
  • the first device introduced in the embodiment of the present invention may be used to implement some or all of the processes in the method embodiments introduced in conjunction with FIG. 2 to FIG.
  • FIG. 11 is a schematic structural diagram of a second device according to an embodiment of the present application, where the functions of the UE in the embodiment of FIG. 2 to FIG. 7 are implemented, and the second device may include a processing module 1101 and a receiving module. 1102, wherein a detailed description of each module is as follows.
  • the processing module 1101 is configured to acquire a first quantity of time units included in the PO, and a second quantity of frames included in the PF, where the time unit is a subframe or a time slot;
  • the processing module 1101 is further configured to obtain information about the PO according to the first quantity and the second quantity;
  • the receiving module 1102 is configured to receive a paging message in the PO indicated by the information of the PO.
  • the processing module 1101 is further configured to: after acquiring the second number of frames included in the PF, determine a start frame included in the PF;
  • the processing module 1101 is further configured to determine the start frame and at least one frame subsequent thereto as the PF, and the number of the start frame and at least one frame subsequent thereto is the same as the second number.
  • the processing module 1101 obtains PO information according to the first quantity and the second quantity, specifically for:
  • n is the first number
  • m is the second quantity
  • k is a positive integer
  • the processing module 1101 obtains PO information according to the first quantity and the second quantity, specifically for:
  • n is the first quantity
  • k is a positive integer
  • the processing module 1101 acquires a second quantity of frames included in the PF, specifically for:
  • the first quantity is determined as the second quantity.
  • the processing module 1101 acquires a second quantity of frames included in the PF, specifically for:
  • the processing module 1101 obtains PO information according to the first quantity and the second quantity, specifically for:
  • each module may also correspond to the corresponding description of the embodiment shown in FIG. 2-7.
  • the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • FIG. 12 is a schematic structural diagram of a second device according to another embodiment of the present invention.
  • the second device may include: a processor 1201, a memory 1202, and a receiver 1203.
  • the memory 1202 may be a high-speed RAM memory or a non-volatile memory, such as at least one disk.
  • the memory optionally, the memory 1202 may also be at least one storage device located remotely from the processor 1201. among them:
  • the processor 1201 is configured to acquire a first quantity of time units included in the PO, and a second quantity of frames included in the PF, where the time unit is a subframe or a time slot;
  • the processor 1201 is further configured to obtain information about the PO according to the first quantity and the second quantity;
  • the receiver 1203 is configured to receive a paging message in the PO indicated by the information of the PO.
  • the processor 1201 is further configured to: after acquiring the second number of frames included in the PF, determine a start frame included in the PF;
  • the processor 1201 is further configured to determine the start frame and at least one frame subsequent thereto as the PF, and the number of the start frame and at least one frame subsequent thereto is the same as the second number.
  • the processor 1201 obtains PO information according to the first quantity and the second quantity, specifically for:
  • n is the first number
  • m is the second quantity
  • k is a positive integer
  • the processor 1201 obtains PO information according to the first quantity and the second quantity, specifically for:
  • n is the first quantity
  • k is a positive integer
  • the processor 1201 obtains a second quantity of frames included in the PF, specifically for:
  • the first quantity is determined as the second quantity.
  • the processor 1201 obtains a second quantity of frames included in the PF, specifically for:
  • the processor 1201 obtains PO information according to the first quantity and the second quantity, specifically for:
  • the second device introduced in the embodiment of the present invention may be used to implement some or all of the processes in the method embodiments introduced in conjunction with FIG. 2 to FIG.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center via wired (eg, coaxial cable, fiber optic, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Abstract

本申请实施例公开了通信方法及设备,所述方法包括:第一设备获取PO所包含时间单元的第一数量,以及PF所包含帧的第二数量,时间单元为子帧或者时隙;第一设备根据第一数量和第二数量,得到PO的信息;第一设备在PO的信息所指示的PO向第二设备发送寻呼消息。采用本申请实施例,可便于第二设备准确识别PO的位置。

Description

通信方法及设备 技术领域
本申请涉及通信技术领域,尤其涉及通信方法及设备。
背景技术
基站可以向用户设备(User Equipment,UE)发送寻呼消息,寻呼消息可以用于通知UE接收寻呼请求,系统信息更新,或者通知UE接收地震、海啸预警系统或商业移动告警服务。出于节能的考虑,UE的寻呼接收遵循非连续接收(Discontinuous Reception,DRX)的原则。而在新空口(New Radio,NR)中,UE位于不同波束(beam)的覆盖之下,在UE的beam方向未知的情况下,为了确保UE能接收到寻呼消息,基站可以通过波束扫描(beam sweep)的方式向UE发送寻呼消息,即基站在该UE的所有beam方向上发送寻呼消息。
传统的配置方法可以为:在同一个DRX周期内,基站需要寻呼多个UE,并且每个UE在这个DRX周期内只有一个寻呼时刻(Paging Occasion,PO)。每个PO的长度为一次beam sweep的周期,其中PO以时隙为单位,DRX周期设置为beam sweep周期的整数倍。PO以时隙为单位,将导致PO的长度可能不是整数个子帧,且不同PO在不同帧内的位置是不规律的。由于通信系统中的时间信息是以系统帧号(System Frame Number,SFN)进行广播,则UE虽然可以知道该UE的寻呼消息在第K个PO,但是依然无法知道第K个PO位于第几个帧的第几个子帧,导致UE无法准确识别PO的位置。
发明内容
本申请实施例所要解决的技术问题在于,提供通信方法及设备,可便于第二设备准确识别PO的位置。
第一方面,本申请实施例提供了一种通信方法,包括:第一设备获取PO所包含时间单元的第一数量,以及寻呼帧(Paging Frame,PF)所包含帧的第二数量,根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示的PO向第二设备发送寻呼消息。
在该技术方案中,第一设备可以根据PO所包含时间单元的第一数量,以及PF所包含帧的第二数量,得到PO的信息,进而在PO的信息所指示的PO向第二设备发送寻呼消息,则第二设备可以根据PO所包含时间单元的第一数量,以及PF所包含帧的第二数量,得到PO的信息,进而在PO的信息所指示的PO接收寻呼消息。相对传统的通信方法中,PO以时隙为单位,将导致PO的长度可能不是整数个子帧,且不同PO在不同帧内的位置是不规律的。由于通信系统中的时间信息是以SFN进行广播,则第二设备虽然可以知道该第二设备的寻呼消息在第K个PO,但是依然无法知道第K个PO位于第几个帧的第几个子帧,导致UE无法准确识别PO的位置。然而本申请实施例引入PF的概念,其中一个DRX周期可包括至少一个PF,一个PF可包括至少一个PO,且PF所包含帧的第二数量以及PO所包含时间单元的第一数量可动态扩展,则第一设备可以根据第一数量和第二数量得到PO的信息,PO的信息可以包括发送第二设备的寻呼消息的时间信息,例如PO的信息可以用 于指示在DRX周期内的第几个帧的第几个时间单元传输寻呼消息,则第二设备可以在PO的信息所指示的PO接收寻呼消息,可便于第二设备准确识别PO在DRX周期内的位置,提高接收寻呼消息的准确性。
在一个设计方案中,PF可以包括两个或者两个以上连续帧。例如,DRX周期内的每个PF可以包括2个连续帧、3个连续帧或者5个连续帧等。
在该设计方案中,若PF包括两个或者两个以上连续帧,则每一个PF的长度可以增大,位于PF中的每一个PO所包含时间单元的第一数量可以增大,第一设备可以在第二设备的多个beam方向上发送寻呼消息,以确保第二设备可准确接收到该寻呼消息,可提高寻呼消息传输的可靠性。例如,第二设备在NR场景位于不同beam的覆盖之下,在第二设备的beam方向未知的情况下,为了确保第二设备能接收到寻呼消息,第一设备可以通过beam sweep的方式向第二设备发送寻呼消息,即第一设备在包含至少两个时间单元的PO向该第二设备的所有beam方向上发送寻呼消息。
在一个设计方案中,第一设备获取PF所包含帧的第二数量之后,可以确定PF所包含的起始帧,将起始帧及其之后的至少一个帧确定为PF,起始帧及其之后的至少一个帧的数量与第二数量相同。
在该设计方案中,第一设备可以使用LTE系统中PF的配置方法确定PF所包含的起始帧,并将起始帧及其之后的至少一个帧确定为PF,通过上述方法可以确定PF所包含的帧为两个或者两个以上连续帧,可提高寻呼消息传输的可靠性,且本申请中PF的配置方法相对LTE系统中PF的配置方法改动较小,操作便捷,可降低成本。例如,第一设备获取PF所包含帧的第二数量为2个,基于LTE系统中PF的配置方法可以确定本申请中PF所包含的起始帧位于DRX周期内的第一个帧,则第一设备可以将DRX周期内的第一个帧和第二个帧确定为PF。
在一个设计方案中,第一设备可以确定PO位于PF中第一至第n个时间单元,第10*k*m/2-n+1至第10*k*m/2个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m-n+1至第10*k*m个时间单元,其中n为第一数量,m为第二数量,k为正整数。
在该设计方案中,当时间单元为子帧时,k=1;当时间单元为时隙时,k为预先配置的每个子帧所包含时隙的第三数量。用于传输不同第二设备的寻呼消息的PO在PF中是连续非均匀分布的,例如,若k=1,m=2,n=2,且该PF中包括四个PO,则第一PO可以位于PF中的第一个子帧和第二个子帧,第二PO可以位于PF中的第九个子帧和第十个子帧,第三PO可以位于PF中的第十一个子帧和第十二个子帧,第四PO可以位于PF中的第十九个子帧和第二十个子帧。相对PO在PF中均匀分布,本申请中第一PO和第二PO之间的间隔较长,第三PO和第四PO之间的间隔较长,可便于第一设备在该PF中除PO以外的时间单元配置特殊子帧。
在一个设计方案中,当计算得到的PF包括一个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个时间单元。
在一个设计方案中,当计算得到的PF包括两个PO时,第一设备可以获取第二设备的 PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个时间单元;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个时间单元。
在一个设计方案中,当计算得到的PF包括四个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个时间单元;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2-n+1至第10*k*m/2个时间单元;当第二设备的PO标识为第三标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个时间单元;当第二设备的PO标识为第四标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个时间单元。
在一个设计方案中,第一设备可以确定PO位于PF中第一至第n个时间单元,第10*k*m/4+1至第10*k*m/4+n个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元,其中m为第二数量,n为第一数量,k为正整数。
在该设计方案中,当时间单元为子帧时,k=1;当时间单元为时隙时,k为预先配置的每个子帧所包含时隙的第三数量。用于传输不同第二设备的寻呼消息的PO在PF中是连续均匀分布的,例如若k=1,m=2,n=2,且该PF中包括四个PO,则第一PO可以位于PF中的第一个子帧和第二个子帧,第二PO可以位于PF中的第六个子帧和第七个子帧,第三PO可以位于PF中的第十一个子帧和第十二个子帧,第四PO可以位于PF中的第十六个子帧和第十七个子帧。其中,各个PO之间的间隔相同。相对PO在PF中非均匀分布,本申请中各个PO之间的间隔相同,可便于第一设备确定各个PO的信息,操作便捷。
在一个设计方案中,当计算得到的PF包括一个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个时间单元。
在一个设计方案中,当计算得到的PF包括两个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个时间单元;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个时间单元。
在一个设计方案中,当计算得到的PF包括四个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个时间单元;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/4+1至第10*k*m/4+n个时间单元;当第二设备的PO标识为第三标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个时间单元;当第二设备的PO标识为第四标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元。
在一个设计方案中,第二数量可以是预配置的,或者根据第一数量得到的。
在一个设计方案中,当时间单元为子帧时,第一设备可以将第一数量确定为第二数量。
在该技术方案中,PF所包含帧的第二数量无需独立配置,可节省开销。例如,当PO 所包含子帧的第一数量为2个时,第一设备可以确定PF所包含帧的第二数量为2个。
在一个设计方案中,当时间单元为时隙时,第一设备可以确定预先配置的每个子帧所包含时隙的第三数量,将第一数量除以第三数量,并将得到的商向上取整,得到第二数量。
在该技术方案中,PF所包含帧的第二数量无需独立配置,可节省开销。例如,若PO所包含时隙的第一数量为10个,且在NR中一个子帧包括四个时隙,则第一设备可以确定第三数量为4个,将第一数量除以第三数量,得到的商为2.5,向上取整为3,则第一设备可以确定PF包括三个帧,即PF所包含帧的第二数量为3个。
在一个设计方案中,第一设备可以确定PO位于PF中第10*k*s+1个时间单元,第10*k*s+5个时间单元,第10*k*s+6个时间单元,或者第10*k*s+10个时间单元,其中s=0,1,2…m-1,m为第二数量,k为正整数。
在该技术方案中,当时间单元为子帧时,k=1;当时间单元为时隙时,k为预先配置的每个子帧所包含时隙的第三数量。第一设备可以以PF所包含的每个帧为单位,使用LTE系统中PO的配置方法确定PO的信息,PO的信息的确定方法简单,可节省开销。例如,若k=1,m=2,n=2,第一设备确定PO所包含的第一个子帧位于PF中第十个子帧,则第一设备可以确定PO所包含的第二个子帧位于PF中第二十个子帧,即PO位于PF中第十个子帧和第二十个子帧。
在一个设计方案中,当计算得到的PF包括一个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+10个时间单元。
在一个设计方案中,当计算得到的PF包括两个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+5个时间单元;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+10个时间单元。
在一个设计方案中,当计算得到的PF包括四个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+1个时间单元;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+5个时间单元;当第二设备的PO标识为第三标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+6个时间单元;当第二设备的PO标识为第四标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+10个时间单元。
在一个设计方案中,DRX周期所包含帧的数量大于等于第二数量与DRX周期所包含PF的数量的乘积。
在一个设计方案中,第一数量与预设第一数值之间的乘积小于等于第二数量与预设第二数值之间的乘积。
第二方面,本申请实施例提供了一种通信方法,包括:第二设备获取PO所包含时间单元的第一数量,以及PF所包含帧的第二数量,根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示的PO接收寻呼消息。
在该技术方案中,第二设备可以根据PO所包含时间单元的第一数量,以及PF所包含 帧的第二数量,得到PO的信息,进而在PO的信息所指示的PO接收寻呼消息。相对传统的通信方法中,PO以时隙为单位,将导致PO的长度可能不是整数个子帧,且不同PO在不同帧内的位置是不规律的。由于通信系统中的时间信息是以SFN进行广播,则第二设备虽然可以知道该第二设备的寻呼消息在第K个PO,但是依然无法知道第K个PO位于第几个帧的第几个子帧,导致UE无法准确识别PO的位置。然而本申请实施例引入PF的概念,其中一个DRX周期可包括至少一个PF,一个PF可包括至少一个PO,且PF所包含帧的第二数量以及PO所包含时间单元的第一数量可动态扩展,则第二设备可以根据第一数量和第二数量得到PO的信息,PO的信息可以包括接收寻呼消息的时间信息,例如PO的信息可以用于指示在DRX周期内的第几个帧的第几个时间单元传输寻呼消息,则第二设备可以在PO的信息所指示的PO接收寻呼消息,可便于第二设备准确识别PO在DRX周期内的位置,提高接收寻呼消息的准确性。
在一个设计方案中,第二数量是通过高层信令/广播消息获得的,或者第二数量是预配置的,或者第二数量是根据第一数量得到的。
例如,第二数量是第一设备通过高层信令/广播消息发送给第二设备的。又如,第二数量是第一设备预配置给第二设备的。又如,第二数量是第二设备根据第一数量得到的。
在一个设计方案中,PF可以包括两个或者两个以上连续帧。
在该设计方案中,若PF包括两个或者两个以上连续帧,则每一个PF的长度可以增大,位于PF中的每一个PO所包含时间单元的第一数量可以增大,第一设备可以在第二设备的多个beam方向上发送寻呼消息,第二设备可在被覆盖的beam方向上接收寻呼消息,可提高寻呼消息传输的可靠性。例如,第二设备在NR场景位于不同beam的覆盖之下,在第二设备的beam方向未知的情况下,为了确保第二设备能接收到寻呼消息,第一设备可以通过beam sweep的方式向第二设备发送寻呼消息,即第一设备在包含至少两个时间单元的PO向该第二设备的所有beam方向上发送寻呼消息。
在一个设计方案中,第二设备获取PF所包含帧的第二数量之后,可以确定PF所包含的起始帧,将起始帧及其之后的至少一个帧确定为PF,起始帧及其之后的至少一个帧的数量与第二数量相同。
在该设计方案中,第二设备可以使用LTE系统中PF的配置方法确定PF所包含的起始帧,并将起始帧及其之后的至少一个帧确定为PF,通过上述方法可以确定PF所包含的帧为两个或者两个以上连续帧,可提高寻呼消息传输的可靠性,且本申请中PF的配置方法相对LTE系统中PF的配置方法改动较小,操作便捷,可降低成本。例如,第二设备获取PF所包含帧的第二数量为2个,基于LTE系统中PF的配置方法可以确定本申请中PF所包含的起始帧位于DRX周期内的第一个帧,则第二设备可以将DRX周期内的第一个帧和第二个帧确定为PF。
在一个设计方案中,第二设备可以确定PO位于PF中第一至第n个时间单元,第10*k*m/2-n+1至第10*k*m/2个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m-n+1至第10*k*m个时间单元,其中n为第一数量,m为第二数量,k为正整数。
在该设计方案中,当时间单元为子帧时,k=1;当时间单元为时隙时,k为预先配置的 每个子帧所包含时隙的第三数量。不同PO在PF中是连续非均匀分布的,例如,若k=1,m=2,n=2,且该PF中包括四个PO,则第一PO可以位于PF中的第一个子帧和第二个子帧,第二PO可以位于PF中的第九个子帧和第十个子帧,第三PO可以位于PF中的第十一个子帧和第十二个子帧,第四PO可以位于PF中的第十九个子帧和第二十个子帧。相对PO在PF中均匀分布,本申请中第一PO和第二PO之间的间隔较长,第三PO和第四PO之间的间隔较长,可便于第二设备在该PF中除PO以外的时间单元配置特殊子帧。
在一个设计方案中,当计算得到的PF包括一个PO时,第二设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第二设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个时间单元。
在一个设计方案中,当计算得到的PF包括两个PO时,第二设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第二设备可以确定PO位于计算得到的PF中第一至第n个时间单元;当第二设备的PO标识为第二标识时,第二设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个时间单元。
在一个设计方案中,当计算得到的PF包括四个PO时,第二设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第二设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个时间单元;当第二设备的PO标识为第二标识时,第二设备可以确定PO位于计算得到的PF中第10*k*m/2-n+1至第10*k*m/2个时间单元;当第二设备的PO标识为第三标识时,第二设备可以确定PO位于计算得到的PF中第一至第n个时间单元;当第二设备的PO标识为第四标识时,第二设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个时间单元。
在一个设计方案中,第二设备可以确定PO位于PF中第一至第n个时间单元,第10*k*m/4+1至第10*k*m/4+n个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元。
在该设计方案中,当时间单元为子帧时,k=1;当时间单元为时隙时,k为预先配置的每个子帧所包含时隙的第三数量。不同PO在PF中是连续均匀分布的,例如若k=1,m=2,n=2,且该PF中包括四个PO,则第一PO可以位于PF中的第一个子帧和第二个子帧,第二PO可以位于PF中的第六个子帧和第七个子帧,第三PO可以位于PF中的第十一个子帧和第十二个子帧,第四PO可以位于PF中的第十六个子帧和第十七个子帧。其中,各个PO之间的间隔相同。相对PO在PF中非均匀分布,本申请中各个PO之间的间隔相同,可便于第二设备确定各个PO的信息,操作便捷。
在一个设计方案中,当计算得到的PF包括一个PO时,第二设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第二设备可以确定PO位于计算得到的PF中第一至第n个时间单元。
在一个设计方案中,当计算得到的PF包括两个PO时,第二设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第二设备可以确定PO位于计算得到的PF中第一至第n个时间单元;当第二设备的PO标识为第二标识时,第二设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个时间单元。
在一个设计方案中,当计算得到的PF包括四个PO时,第二设备可以获取第二设备的 PO标识,当第二设备的PO标识为第一标识时,第二设备可以确定PO位于计算得到的PF中第一至第n个时间单元;当第二设备的PO标识为第二标识时,第二设备可以确定PO位于计算得到的PF中第10*k*m/4+1至第10*k*m/4+n个时间单元;当第二设备的PO标识为第三标识时,第二设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个时间单元;当第二设备的PO标识为第四标识时,第二设备可以确定PO位于计算得到的PF中第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元。
在一个设计方案中,当时间单元为子帧时,第二设备可以将第一数量确定为第二数量。
在一个设计方案中,当时间单元为时隙时,第二设备可以确定预先配置的每个子帧所包含时隙的第三数量,将第一数量除以第三数量,并将得到的商向上取整,得到第二数量。
在一个设计方案中,第二设备可以确定PO位于PF中第10*k*s+1个时间单元,第10*k*s+5个时间单元,第10*k*s+6个时间单元,或者第10*k*s+10个时间单元,其中s=0,1,2…m-1,m为第二数量,k为正整数。
在该技术方案中,当时间单元为子帧时,k=1;当时间单元为时隙时,k为预先配置的每个子帧所包含时隙的第三数量。第二设备可以以PF所包含的每个帧为单位,使用LTE系统中PO的配置方法确定PO的信息,PO的信息的确定方法简单,可节省开销。例如,若k=1,m=2,n=2,第二设备确定PO所包含的第一个子帧位于PF中第十个子帧,则第二设备可以确定PO所包含的第二个子帧位于PF中第二十个子帧,即PO位于PF中第十个子帧和第二十个子帧。
在一个设计方案中,当计算得到的PF包括一个PO时,第二设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第二设备可以确定PO位于计算得到的PF中第10*k*s+10个时间单元。
在一个设计方案中,当计算得到的PF包括两个PO时,第二设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第二设备可以确定PO位于计算得到的PF中第10*k*s+5个时间单元;当第二设备的PO标识为第二标识时,第二设备可以确定PO位于计算得到的PF中第10*k*s+10个时间单元。
在一个设计方案中,当计算得到的PF包括四个PO时,第二设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第二设备可以确定PO位于计算得到的PF中第10*k*s+1个时间单元;当第二设备的PO标识为第二标识时,第二设备可以确定PO位于计算得到的PF中第10*k*s+5个时间单元;当第二设备的PO标识为第三标识时,第二设备可以确定PO位于计算得到的PF中第10*k*s+6个时间单元;当第二设备的PO标识为第四标识时,第二设备可以确定PO位于计算得到的PF中第10*k*s+10个时间单元。
第三方面,本申请实施例提供一种计算机存储介质,所述计算机存储介质用于储存计算机程序指令,所述计算机程序指令被上述第一设备执行时,使得第一设备执行第一方面所述的通信方法。
第四方面,本申请实施例提供一种计算机存储介质,所述计算机存储介质用于储存计算机程序指令,所述计算机程序指令被上述第二设备执行时,使得第二设备执行第二方面 所述的通信方法。
第五方面,本申请实施例提供一种第一设备,该第一设备具有实现第一方面所述的通信方法示例中第一设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一个设计方案中,第一设备的结构中可包括处理模块和发送模块,所述处理模块被配置为支持第一设备执行第一方面所述通信方法中相应的功能。所述发送模块用于支持第一设备与其他设备之间的通信。所述第一设备还可以包括存储模块,所述存储模块用于与处理模块耦合,其保存第一设备必要的程序指令和数据。作为示例,处理模块可以为处理器,发送模块可以为发射器。存储模块可以为存储器。
在一个设计方案中,第一设备的结构中还可以包括接收模块,接收模块用于支持第一设备与其他设备之间的通信。另一个示例中,接收模块可以为接收器,接收模块和发送模块可以由一个收发器实现。
第六方面,本申请实施例提供一种第二设备,该第二设备具有实现第二方面所述的通信方法示例中第二设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一个设计方案中,第二设备的结构中可包括处理模块和接收模块,所述处理模块被配置为支持第二设备执行第二方面所述通信方法中相应的功能。接收模块用于支持第二设备与其他设备之间的通信。所述第二设备还可以包括存储模块,所述存储模块用于与处理模块耦合,其保存第二设备必要的程序指令和数据。作为示例,处理模块可以为处理器,发送模块可以为发射器。存储模块可以为存储器。
在一个设计方案中,第二设备的结构中还可以包括发送模块,发送模块用于支持第二设备与其他设备之间的通信。另一个示例中,发送模块可以为发射器,接收模块和发送模块可以由一个收发器实现。
第七方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面所述的通信方法。
第八方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第二方面所述的通信方法。
第九方面,本申请实施例提供了一种通信系统,该系统包括上述方面所述的第一设备和第二设备。
第十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于第一设备实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。
在一个设计方案中,所述芯片系统还包括存储器,所述存储器,用于保存第一设备必 要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持第二设备实现上述方面中所涉及的功能,例如,例如接收或处理上述方法中所涉及的数据和/或信息。
在一个设计方案中,所述芯片系统还包括存储器,所述存储器,用于保存第二设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例公开的一种通信系统的架构示意图;
图2是本申请实施例公开的一种通信方法的流程示意图;
图3是本申请另一实施例公开的一种通信方法的流程示意图;
图4是本申请另一实施例公开的一种通信方法的流程示意图;
图5是本申请另一实施例公开的一种通信方法的流程示意图;
图6是本申请另一实施例公开的一种通信方法的流程示意图;
图7是本申请另一实施例公开的一种通信方法的流程示意图;
图8A是本申请实施例公开的一种PF的结构示意图;
图8B是本申请实施例公开的一种PO的结构示意图;
图8C是本申请另一实施例公开的一种PO的结构示意图;
图8D是本申请另一实施例公开的一种PO的结构示意图;
图8E是本申请另一实施例公开的一种PO的结构示意图;
图8F是本申请另一实施例公开的一种PO的结构示意图;
图8G是本申请另一实施例公开的一种PO的结构示意图;
图9是本申请实施例公开的一种第一设备的结构示意图;
图10是本申请另一实施例公开的一种第一设备的结构示意图;
图11是本申请实施例公开的一种第二设备的结构示意图;
图12是本申请另一实施例公开的一种第二设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
为了更好的理解本申请实施例公开的一种通信方法、装置以及系统,下面首先对本申请实施例适用的网络架构进行描述。请参见图1,图1是本申请实施例公开的一种通信系统的架构示意图。如图1所示,该通信系统可以包括第一设备101以及至少一个第二设备102。其中,第一设备和第二设备可以建立数据通信,第一设备可以通过数据通信向第二设备发送PO所包含时间单元的第一数量,第一设备可以根据PO所包含时间单元的第一数量 和PF所包含帧的第二数量,得到PO的信息,并在PO的信息所指示的PO向第二设备发送寻呼消息,则第二设备可以从第一设备接收PO所包含时间单元的第一数量,根据PO所包含时间单元的第一数量和PF所包含帧的第二数量,得到PO的信息,并在PO的信息所指示的PO接收寻呼消息。
其中,第一设备可以是用于与移动台通信的设备,具体可以是无线局域网(Wireless Local Area Networks,WLAN)中的接入点(Access Point,AP)、全球移动通信系统(Global System for Mobile Communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站收发信台(Base Transceiver Station,BTS)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB)、LTE系统中的演进型基站(Evolutional Node B,eNB)、中继站或接入点、车载设备、可穿戴设备、未来5G网络中的接入网设备以及未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的接入网设备等中的任意一种。需要说明的是,本申请具体实施例将第一设备以一般意义上的基站为例进行描述。
其中,第二设备也可以称为终端设备、UE、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理或用户装置等,其具体可以是WLAN中的站点(Station,ST)、蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的PLMN网络中的终端设备等中的任意一种。需要说明的是,本申请具体实施例将第二设备以一般意义上的UE为例进行描述。
在介绍本申请的具体实施例之前,首先对本申请中可能涉及到的DRX、PF、PO等概念进行一些简单说明。第二设备的寻呼接收遵循DRX原则,即小区向该小区内所有第二设备发送该小区的DRX周期,每个第二设备可以基于自身的电量与寻呼系统来设置该第二设备的DRX。在同一个DRX周期内,第一设备需要在不同PO向不同第二设备发送寻呼消息,并且第一设备在这个DRX周期内只有一个PO向一个第二设备发送寻呼消息。其中,一个DRX周期可以包括至少一个PF,PF为用于传输寻呼消息的一个帧或者多个连续帧,PF所包含帧的数量是可配置的。一个PF可以包括至少一个PO,PO为用于传输寻呼消息的时间单元,PO所包含时间单元的数量是可配置的。需要说明的是,PO指的是一个时间段,例如在PF中的第一个帧所包含的时间段,或者在PF中的第41个时隙至第48个时隙之间的时间段。本发明中提到的小区可以是基站对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)以及毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务的场景。
第一设备可以根据PF所包含帧的数量,得到PF的信息。PF的信息可以包括PF的时间信息,包括而不限于起始时刻,帧号,时隙号,结束时刻,持续时间,等等。其中帧号可以为PF所包含各个帧的帧号,或者帧号可以为PF所包含起始帧的帧号以及PF所包含结束帧的帧号。
第一设备可以根据PF所包含帧的数量和PO所包含时间单元的数量,得到PO的信息。PO的信息可以包括PO的时间信息,包括而不限于起始时刻,子帧号,时隙号,结束时刻,持续时间,等等。其中子帧号可以为PO所包含各个子帧的子帧号,或者子帧号可以为PO所包含起始子帧的子帧号以及PO所包含结束子帧的子帧号。其中时隙号可以为PO所包含各个时隙的时隙号,或者时隙号可以为PO所包含起始时隙的时隙号以及PO所包含结束时隙的时隙号。
时间单元可以包括子帧或者时隙。其中,一个帧可以包括10个子帧,在LTE系统中,一个子帧可以包括2个时隙;在NR中,一个子帧可以包括2个时隙、4个时隙、6个时隙或者8个时隙等。
基于图1所示的通信系统的架构示意图,请参见图2,图2是本申请实施例提供的一种通信方法,该方法包括但不限于如下步骤:
步骤S201:基站通过高层信令或者广播消息向UE发送PO所包含子帧的第一数量和PF所包含帧的第二数量。
其中,第一数量和第二数量是基站独立配置的。
步骤S202:基站根据第二数量,得到PF的信息。
基站可以确定PF所包含的起始帧,将起始帧及其之后的至少一个帧确定为PF,起始帧及其之后的至少一个帧的数量与第二数量相同。例如,第二数量为3个,PF所包含的起始帧的帧号为0,若PF的信息包括所包含帧的帧号,则基站可以确定该帧号为0,1,2;若PF的信息包括所包含起始帧的帧号,以及结束帧的帧号,则基站可以确定该帧号为0,2。需要说明的是,本申请实施例中PF所包含帧的第二数量可以为一个,也可以为多个,具体不受本申请实施例的限定,当PF所包含帧的第二数量为多个时,PF所包含帧为连续帧,例如两个连续帧或者两个以上连续帧。
具体地,基站可以基于UE的相关参数确定PF所包含帧的起始帧,示例性的,基站可以通过如下公式计算PF所包含帧的起始帧:
SFNmodT=(TdivN)*(UE_IDmodN)
其中,SFN表示起始帧的帧号,T表示DRX周期,N=min(T,nB),nB可以为4T、2T、T、T/2、T/4、T/8、T/16或者T/32,UE_ID=IMSI mod 1024,IMSI表示UE的国际移动用户识别码(International Mobile Subscriber Identification Number,IMSI)。
以图8A所示的PF的结构示意图为例,T=16帧,nB=T/4,m=2,则基站基于上述公式可以确定N=4,T div N=4。若UE_ID mod N=0,则基站可以确定(TdivN)*(UE_IDmodN)=0,PF所包含帧的起始帧的帧号为0,即起始帧位于DRX周期内的第一个帧,则基站可以确定用于传输该UE的寻呼消息的PF位于DRX周期内的第一个帧和第二个帧。若UE_ID mod N=1,则基站可以确定(TdivN)*(UE_IDmodN)=4,PF所包含帧的起始帧的帧号为4,即起始帧位于DRX周期内的第五个帧,则基站可以确定用于传输该UE的寻呼消息的PF位于DRX周期内的第五个帧和第六个帧。若UE_IDmodN=2,则基站可以确定(TdivN)*(UE_IDmodN)=8,PF所包含帧的起始帧的帧号为8,即起始帧位于DRX周期内的第九个帧,则基站可以确定用于传输该UE的寻呼消息的PF位于DRX周期 内的第九个帧和第十个帧。若UE_ID mod N=3,则基站可以确定(TdivN)*(UE_IDmodN)=12,PF所包含帧的起始帧的帧号为12,即起始帧位于DRX周期内的第十三个帧,则基站可以确定用于传输该UE的寻呼消息的PF位于DRX周期内的第十三个帧和第十四个帧。
在一个设计方案中,DRX周期所包含帧的数量大于等于第二数量与DRX周期所包含PF的数量的乘积。以图8A为例,T=16帧,即DRX所包含帧的数量为16,若第二数量为2,则DRX周期所包含PF的数量需小于等于8个。
步骤S203:基站根据第一数量,得到在PF的信息所指示PF内PO的信息,PO是连续非均匀分布的。
具体地,PO在PF中可以是连续分布的,也可以是非连续分布的,且PO在PF中可以是均匀分布的,也可以是非均匀分布的。为了便于在PF中设置特殊子帧,基站可以通过连续且非均匀分布的方式配置PO。PO可以位于PF中第一至第n个子帧,第10*k*m/2-n+1至第10*k*m/2个子帧,第10*k*m/2+1至第10*k*m/2+n个子帧,或者第10*k*m-n+1至第10*k*m个子帧,其中n为第一数量,m为第二数量,k=1。以图8B所示的PO的结构示意图为例,若m=2,n=2,PO的信息包括PO所包含子帧的子帧号,该子帧号为0,1,则基站可以确定PO位于PF中第一个子帧和第二个子帧。若该子帧号为8,9,则基站可以确定PO位于PF中第九个子帧和第十个子帧。若该子帧号为10,11,则基站可以确定PO位于PF中第十一个子帧或者第十二个子帧。若该子帧号为18,19,则基站可以确定PO位于PF中第十九个子帧或者第二十个子帧。需要说明的是,PO的信息包含但不限定于PO所包含子帧的子帧号,也可以为PO所包含起始子帧的子帧号,以及结束子帧的子帧号,等等。需要说明的是,本申请实施例中PO所包含子帧的第一数量可以为一个,也可以为多个,具体不受本申请实施例的限定。
在一个设计方案中,第一数量与预设第一数值之间的乘积小于等于第二数量与预设第二数值之间的乘积。示例性的,一个帧可以包括10个子帧,一个PF中最多可以包括4个PO,则预设第一数值可以为4,预设第二数值可以为10,即4*n≤10*m。
在一个设计方案中,当计算得到的PF包括一个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个子帧。其中,k=1。
在一个设计方案中,当计算得到的PF包括两个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个子帧;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个子帧。其中,k=1。
在一个设计方案中,当计算得到的PF包括四个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个子帧;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2-n+1至第10*k*m/2个子帧;当第二设备的PO标识为第三标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个子帧;当第二设备的PO标识为第四标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个子帧。其中,k=1。
具体地,基站可以基于UE的相关参数确定PO标识,示例性的,基站可以通过如下公式计算PO标识:
i_s=floor(UE_ID/N)mod Ns
其中,i_s表示UE的PO标识,UE_ID=IMSI mod 1024,IMSI表示UE的IMSI,N=min(T,nB),T表示DRX周期,nB可以为4T、2T、T、T/2、T/4、T/8、T/16或者T/32,Ns=max(1,nB/T),Ns可以表示为一个PF中所包含PO的数量。
示例性的,PO标识和PO的信息之间的对应关系可以如表一所示:
表一
Figure PCTCN2018115378-appb-000001
其中,当PF包含一个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*m-n+1至第10*m个子帧。当PF包含两个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第一至第n个子帧;当PO标识为1时,PO的信息可以为PF中第10*m-n+1至第10*m个子帧。当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*m/2+1至第10*m/2+n个子帧;当PO标识为1时,PO的信息可以为PF中第10*m/2-n+1至第10*m/2个子帧;当PO标识为2时,PO的信息可以为PF中第一至第n个子帧;当PO标识为3时,PO的信息可以为PF中第10*m-n+1至第10*m个子帧。
需要说明的是,本申请实施例中PO标识和PO的信息之间的对应关系包含但不局限于上述方式,例如当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*m-n+1至第10*m个子帧;当PO标识为1时,PO的信息可以为PF中第一至第n个子帧;当PO标识为2时,PO的信息可以为PF中第10*m/2-n+1至第10*m/2个子帧;当PO标识为3时,PO的信息可以为PF中第10*m/2+1至第10*m/2+n个子帧。
步骤S204:UE根据第二数量,得到PF的信息。
UE接收寻呼消息之前,需要获取PO的信息,进而在PO的信息所指示的PO接收寻呼消息。需要说明的是,本申请实施例中UE获取PF的信息的实施方式和基站获取PF的信息的实施方式相同,则步骤S204具体可以参见步骤S202的描述,本申请实施例不再赘述。
步骤S205:UE根据第一数量,得到在PF的信息所指示PF内PO的信息。
需要说明的是,本申请实施例中UE获取PO的信息的实施方式和基站获取PO的信息的实施方式相同,则步骤S205具体可以参见步骤S203的描述,本申请实施例不再赘述。
需要说明的是,本申请实施例不限定步骤S204和步骤S205在图2中的执行顺序,UE从基站接收到PO所包含子帧的第一数量和PF所包含帧的第二数量之后,可以执行步骤 S204和步骤S205,例如,步骤S204和步骤S205可以在步骤S202之前或者之后执行,也可以在步骤S203之前或者之后执行,还可以在步骤S206之前或者之后执行。
步骤S206:基站在PO的信息所指示PO向UE发送寻呼消息,其中PO是连续非均匀分布的。
基站得到PO的信息之后,可以在PO的信息所指示的PO向UE发送寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第十九个子帧和第二十个子帧,则基站可以在DRX周期内第十九个子帧和第二十个子帧向UE发送寻呼消息。
通过本申请实施例,基站可以在UE的至少一个beam方向上向UE发送寻呼消息,以确保UE可准确接收到该寻呼消息,提高寻呼消息的传输可靠性。
在一个设计方案中,UE得到PO的信息之后,可以在PO的信息所指示的PO接收寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第十九个子帧和第二十个子帧,则UE可以在DRX周期内第十九个子帧和第二十个子帧接收寻呼消息。
在图2所描述的方法中,基站通过高层信令或者广播消息向UE发送PO所包含子帧的第一数量和PF所包含帧的第二数量,基站根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO向UE发送寻呼消息,则UE可根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO接收寻呼消息,可便于第二设备准确识别PO的位置。
基于图1所示的通信系统的架构示意图,请参见图3,图3是本申请实施例提供的一种通信方法,该方法包括但不限于如下步骤:
步骤S301:基站通过高层信令或者广播消息向UE发送PO所包含时隙的第一数量和PF所包含帧的第二数量。
其中,第一数量和第二数量是基站独立配置的。
步骤S302:基站根据第二数量,得到PF的信息。
需要说明的是,步骤S302具体可参见步骤S202的描述,本申请实施例不再赘述。
步骤S303:基站根据第一数量,得到在PF的信息所指示PF内PO的信息。
具体地,PO在PF中可以是连续分布的,也可以是非连续分布的,且PO在PF中可以是均匀分布的,也可以是非均匀分布的。为了便于在PF中设置特殊子帧,基站可以通过连续且非均匀分布的方式配置PO。PO可以位于PF中第一至第n个时隙,第10*k*m/2-n+1至第10*k*m/2个时隙,第10*k*m/2+1至第10*k*m/2+n个时隙,或者第10*k*m-n+1至第10*k*m个时隙,其中n为第一数量,m为第二数量,k用于表示每个子帧所包含时隙的第三数量,例如当一个子帧包括两个时隙时,k=2;当一个子帧包括4个时隙时,k=4;当一个子帧包括6个时隙时,k=6;当一个子帧包括8个时隙时,k=8。以图8C所示的PO的结构示意图为例,若m=1,k=2,n=2,PO的信息包括PO所包含时隙的时隙号,该时隙号为0,1,则基站可以确定PO位于PF中第一个时隙和第二个时隙。若该时隙号为8,9,则基站可以确定PO位于PF中第九个时隙和第十个时隙。若该时隙号为10,11,则基站可以确定PO位于PF中第十一个时隙或者第十二个时隙。若该时隙号为18,19,则基站可以确定PO位于PF中第十九个时隙或者第二十个时隙。需要说明的是,PO的信息包含但不限定于PO所包含时隙的时隙号,也可以为PO所包含起始时隙的时隙号,以及结束时隙的时隙号, 等等。需要说明的是,本申请实施例中PO所包含时隙的第一数量可以为一个,也可以为多个,具体不受本申请实施例的限定。
在一个设计方案中,第一数量与预设第一数值之间的乘积小于等于第二数量与预设第二数值之间的乘积。示例性的,一个帧可以包括10个子帧,一个子帧可以包括k个时隙,一个PF中最多可以包括4个PO,则预设第一数值可以为4,预设第二数值可以为10*k,即4*n≤10*k*m。
在一个设计方案中,当计算得到的PF包括一个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个时隙。其中,k为每个子帧所包含时隙的第三数量。
在一个设计方案中,当计算得到的PF包括两个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个时隙;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个时隙。其中,k为每个子帧所包含时隙的第三数量。
在一个设计方案中,当计算得到的PF包括四个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个时隙;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2-n+1至第10*k*m/2个时隙;当第二设备的PO标识为第三标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个时隙;当第二设备的PO标识为第四标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m-n+1至第10*k*m个时隙。其中,k为每个子帧所包含时隙的第三数量。
具体地,基站可以基于UE的相关参数确定PO标识,示例性的,基站可以通过如下公式计算PO标识:
i_s=floor(UE_ID/N)mod Ns
其中,i_s表示UE的PO标识,UE_ID=IMSI mod 1024,IMSI表示UE的IMSI,N=min(T,nB),T表示DRX周期,nB可以为4T、2T、T、T/2、T/4、T/8、T/16或者T/32,Ns=max(1,nB/T),Ns可以表示为一个PF中所包含PO的数量。
示例性的,PO标识和PO的信息之间的对应关系可以如表二所示:
表二
Figure PCTCN2018115378-appb-000002
其中,当PF包含一个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*k*m-n+1至第10*k*m个时隙。当PF包含两个PO,且PO标识为0时,PO的 信息可以包括持续时间,例如PF中第一至第n个时隙;当PO标识为1时,PO的信息可以为PF中第10*k*m-n+1至第10*k*m个时隙。当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*k*m/2+1至第10*k*m/2+n个时隙;当PO标识为1时,PO的信息可以为PF中第10*k*m/2-n+1至第10*k*m/2个时隙;当PO标识为2时,PO的信息可以为PF中第一至第n个时隙;当PO标识为3时,PO的信息可以为PF中第10*k*m-n+1至第10*k*m个时隙。
需要说明的是,本申请实施例中PO标识和PO的信息之间的对应关系包含但不局限于上述方式,例如当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*k*m-n+1至第10*k*m个时隙;当PO标识为1时,PO的信息可以为PF中第一至第n个时隙;当PO标识为2时,PO的信息可以为PF中第10*k*m/2-n+1至第10*k*m/2个时隙;当PO标识为3时,PO的信息可以为PF中第10*k*m/2+1至第10*k*m/2+n个时隙。
步骤S304:UE根据第二数量,得到PF的信息。
UE接收寻呼消息之前,需要获取PO的信息,进而在PO的信息所指示的PO接收寻呼消息。需要说明的是,本申请实施例中UE获取PF的信息的实施方式和基站获取PF的信息的实施方式相同,则步骤S304具体可以参见步骤S202的描述,本申请实施例不再赘述。
步骤S305:UE根据第一数量,得到在PF的信息所指示PF内PO的信息。
需要说明的是,本申请实施例中UE获取PO的信息的实施方式和基站获取PO的信息的实施方式相同,则步骤S305具体可以参见步骤S303的描述,本申请实施例不再赘述。
需要说明的是,本申请实施例不限定步骤S304和步骤S305在图3中的执行顺序,UE从基站接收到PO所包含时隙的第一数量和PF所包含帧的第二数量之后,可以执行步骤S304和步骤S305,例如,步骤S304和步骤S305可以在步骤S302之前或者之后执行,也可以在步骤S303之前或者之后执行,还可以在步骤S306之前或者之后执行。
步骤S306:基站在PO的信息所指示PO向UE发送寻呼消息,其中PO是连续非均匀分布的。
基站得到PO的信息之后,可以在PO的信息所指示的PO向UE发送寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第十九个时隙和第二十个时隙,则基站可以在DRX周期内第十九个时隙和第二十个时隙向UE发送寻呼消息。
通过本申请实施例,基站可以在UE的至少一个beam方向上向UE发送寻呼消息,以确保UE可准确接收到该寻呼消息,提高寻呼消息的传输可靠性。
在一个设计方案中,UE得到PO的信息之后,可以在PO的信息所指示的PO接收寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第十九个时隙和第二十个时隙,则UE可以在DRX周期内第十九个时隙和第二十个时隙接收寻呼消息。
在图3所描述的方法中,基站通过高层信令或者广播消息向UE发送PO所包含时隙的第一数量和PF所包含帧的第二数量,基站根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO向UE发送寻呼消息,则UE可根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO接收寻呼消息,可便于第二设备准确识别PO的位置。
基于图1所示的通信系统的架构示意图,请参见图4,图4是本申请实施例提供的一种通信方法,该方法包括但不限于如下步骤:
步骤S401:基站通过高层信令或者广播消息向UE发送PO所包含子帧的第一数量和PF所包含帧的第二数量。
其中,第一数量和第二数量是基站独立配置的。
步骤S402:基站根据第二数量,得到PF的信息。
需要说明的是,步骤S402具体可参见步骤S202的描述,本申请实施例不再赘述。
步骤S403:基站根据第一数量,得到在PF的信息所指示PF内PO的信息。
具体地,PO在PF中可以是连续分布的,也可以是非连续分布的,且PO在PF中可以是均匀分布的,也可以是非均匀分布的。若不考虑特殊子帧的设置,基站可以通过连续且均匀分布的方式配置PO。PO可以位于PF中第一至第n个子帧,第10*k*m/4+1至第10*k*m/4+n个子帧,第10*k*m/2+1至第10*k*m/2+n个子帧,或者第10*k*m*3/4+1至第10*k*m*3/4+n个子帧,其中n为第一数量,m为第二数量,k=1。以图8D所示的PO的结构示意图为例,若m=2,n=2,PO的信息包括PO所包含子帧的子帧号,该子帧号为0,1,则基站可以确定PO位于PF中第一个子帧和第二个子帧。若该子帧号为5,6,则基站可以确定PO位于PF中第六个子帧和第七个子帧。若该子帧号为10,11,则基站可以确定PO位于PF中第十一个子帧或者第十二个子帧。若该子帧号为15,16,则基站可以确定PO位于PF中第十六个子帧或者第十七个子帧。需要说明的是,PO的信息包含但不限定于PO所包含子帧的子帧号,也可以为PO所包含起始子帧的子帧号,以及结束子帧的子帧号,等等。需要说明的是,本申请实施例中PO所包含子帧的第一数量可以为一个,也可以为多个,具体不受本申请实施例的限定。
在一个设计方案中,第一数量与预设第一数值之间的乘积小于等于第二数量与预设第二数值之间的乘积。示例性的,一个帧可以包括10个子帧,一个PF中最多可以包括4个PO,则预设第一数值可以为4,预设第二数值可以为10,即4*n≤10*m。
在一个设计方案中,当计算得到的PF包括一个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个子帧。
在一个设计方案中,当计算得到的PF包括两个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个子帧;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个子帧。其中,k=1。
在一个设计方案中,当计算得到的PF包括四个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个子帧;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/4+1至第10*k*m/4+n个子帧;当第二设备的PO标识为第三标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个子帧;当第二设备的PO标识为第四标识时,第一设备可以确定PO位于计算得到的PF中第 10*k*m*3/4+1至第10*k*m*3/4+n个子帧。其中,k=1。
具体地,基站可以基于UE的相关参数确定PO标识,示例性的,基站可以通过如下公式计算PO标识:
i_s=floor(10*m div Ns)*(floor(UE_ID/N)mod Ns)
其中,i_s表示UE的PO标识,m表示第二数量,Ns=max(1,nB/T),Ns可以表示为一个PF中所包含PO的数量,UE_ID=IMSI mod 1024,IMSI表示UE的IMSI,N=min(T,nB),T表示DRX周期,nB可以为4T、2T、T、T/2、T/4、T/8、T/16或者T/32。
示例性的,PO标识和PO的信息之间的对应关系可以如表三所示:
表三
Figure PCTCN2018115378-appb-000003
其中,当PF包含一个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第一至第n个子帧。当PF包含两个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第一至第n个子帧;当PO标识为1时,PO的信息可以为PF中第10*m/2+1至第10*m/2+n个子帧。当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第一至第n个子帧;当PO标识为1时,PO的信息可以为PF中第10*m/4+1至第10*m/4+n个子帧;当PO标识为2时,PO的信息可以为PF中第10*m/2+1至第10*m/2+n个子帧;当PO标识为3时,PO的信息可以为PF中第10*m*3/4+1至第10*m*3/4+n个子帧。
需要说明的是,本申请实施例中PO标识和PO的信息之间的对应关系包含但不局限于上述方式,例如当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*m*3/4+1至第10*m*3/4+n个子帧;当PO标识为1时,PO的信息可以为PF中第10*m/2+1至第10*m/2+n个子帧;当PO标识为2时,PO的信息可以为PF中第10*m/4+1至第10*m/4+n个子帧;当PO标识为3时,PO的信息可以为PF中第一至第n个子帧。
步骤S404:UE根据第二数量,得到PF的信息。
UE接收寻呼消息之前,需要获取PO的信息,进而在PO的信息所指示的PO接收寻呼消息。需要说明的是,本申请实施例中UE获取PF的信息的实施方式和基站获取PF的信息的实施方式相同,则步骤S405具体可以参见步骤S202的描述,本申请实施例不再赘述。
步骤S405:UE根据第一数量,得到在PF的信息所指示PF内PO的信息。
需要说明的是,本申请实施例中UE获取PO的信息的实施方式和基站获取PO的信息的实施方式相同,则步骤S406具体可以参见步骤S403的描述,本申请实施例不再赘述。
需要说明的是,本申请实施例不限定步骤S404和步骤S405在图4中的执行顺序,UE 从基站接收到PO所包含子帧的第一数量和PF所包含帧的第二数量之后,可以执行步骤S404和步骤S405,例如,步骤S404和步骤S405可以在步骤S402之前或者之后执行,也可以在步骤S403之前或者之后执行,还可以在步骤S406之前或者之后执行。
步骤S406:基站在PO的信息所指示PO向UE发送寻呼消息,PO是连续均匀分布的。
基站得到PO的信息之后,可以在PO的信息所指示的PO向UE发送寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第一个子帧和第二个子帧,则基站可以在DRX周期内第一个子帧和第二个子帧向UE发送寻呼消息。
通过本申请实施例,基站可以在UE的至少一个beam方向上向UE发送寻呼消息,以确保UE可准确接收到该寻呼消息,提高寻呼消息的传输可靠性。
在一个设计方案中,UE得到PO的信息之后,可以在PO的信息所指示的PO接收寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第一个子帧和第二个子帧,则UE可以在DRX周期内第一个子帧和第二个子帧接收寻呼消息。
在图4所描述的方法中,基站通过高层信令或者广播消息向UE发送PO所包含子帧的第一数量和PF所包含帧的第二数量,基站根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO向UE发送寻呼消息,则UE可根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO接收寻呼消息,可便于第二设备准确识别PO的位置。
基于图1所示的通信系统的架构示意图,请参见图5,图5是本申请实施例提供的一种通信方法,该方法包括但不限于如下步骤:
步骤S501:基站通过高层信令或者广播消息向UE发送PO所包含时隙的第一数量和PF所包含帧的第二数量。
其中,第一数量和第二数量是基站独立配置的。
步骤S502:基站根据第二数量,得到PF的信息。
需要说明的是,步骤S502具体可参见步骤S202的描述,本申请实施例不再赘述。
步骤S503:基站根据第一数量,得到在PF的信息所指示PF内PO的信息。
具体地,PO在PF中可以是连续分布的,也可以是非连续分布的,且PO在PF中可以是均匀分布的,也可以是非均匀分布的。若不考虑特殊子帧的设置,基站可以通过连续且均匀分布的方式配置PO。PO可以位于PF中第一至第n个时隙,第10*k*m/4+1至第10*k*m/4+n个时隙,第10*k*m/2+1至第10*k*m/2+n个时隙,或者第10*k*m*3/4+1至第10*k*m*3/4+n个时隙,其中n为第一数量,m为第二数量,k为每个子帧所包含时隙的第三数量。以图8E所示的PO的结构示意图为例,若m=1,k=2,n=2,PO的信息包括PO所包含时隙的时隙号,该时隙号为0,1,则基站可以确定PO位于PF中第一个时隙和第二个时隙。若该时隙号为5,6,则基站可以确定PO位于PF中第六个时隙和第七个时隙。若该时隙号为10,11,则基站可以确定PO位于PF中第十一个时隙或者第十二个时隙。若该时隙号为15,16,则基站可以确定PO位于PF中第十六个时隙或者第十七个时隙。需要说明的是,PO的信息包含但不限定于PO所包含时隙的时隙号,也可以为PO所包含起始时隙的时隙号,以及结束时隙的时隙号,等等。需要说明的是,本申请实施例中PO所包含时隙的第一数量可以为一个,也可以为多个,具体不受本申请实施例的限定。
在一个设计方案中,第一数量与预设第一数值之间的乘积小于等于第二数量与预设第二数值之间的乘积。示例性的,一个帧可以包括10个子帧,一个子帧可以包括k个时隙,一个PF中最多可以包括4个PO,则预设第一数值可以为4,预设第二数值可以为10*k,即4*n≤10*k*m。
在一个设计方案中,当计算得到的PF包括一个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个时隙。
在一个设计方案中,当计算得到的PF包括两个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个时隙;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个时隙。其中,k为每个子帧所包含时隙的第三数量。
在一个设计方案中,当计算得到的PF包括四个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第一至第n个时隙;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/4+1至第10*k*m/4+n个时隙;当第二设备的PO标识为第三标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m/2+1至第10*k*m/2+n个时隙;当第二设备的PO标识为第四标识时,第一设备可以确定PO位于计算得到的PF中第10*k*m*3/4+1至第10*k*m*3/4+n个时隙。其中,k为每个子帧所包含时隙的第三数量。
具体地,基站可以基于UE的相关参数确定PO标识,示例性的,基站可以通过如下公式计算PO标识:
i_s=floor(10*m div Ns)*(floor(UE_ID/N)mod Ns)
其中,i_s表示UE的PO标识,m表示第二数量,Ns=max(1,nB/T),Ns可以表示为一个PF中所包含PO的数量,UE_ID=IMSI mod 1024,IMSI表示UE的IMSI,N=min(T,nB),T表示DRX周期,nB可以为4T、2T、T、T/2、T/4、T/8、T/16或者T/32。
示例性的,PO标识和PO的信息之间的对应关系可以如表四所示:
表四
Figure PCTCN2018115378-appb-000004
其中,当PF包含一个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第一至第n个时隙。当PF包含两个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第一至第n个时隙;当PO标识为1时,PO的信息可以为PF中第 10*k*m/2+1至第10*k*m/2+n个时隙。当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第一至第n个时隙;当PO标识为1时,PO的信息可以为PF中第10*k*m/4+1至第10*k*m/4+n个时隙;当PO标识为2时,PO的信息可以为PF中第10*k*m/2+1至第10*k*m/2+n个时隙;当PO标识为3时,PO的信息可以为PF中第10*k*m*3/4+1至第10*k*m*3/4+n个时隙。
需要说明的是,本申请实施例中PO标识和PO的信息之间的对应关系包含但不局限于上述方式,例如当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*k*m*3/4+1至第10*k*m*3/4+n个时隙;当PO标识为1时,PO的信息可以为PF中第10*k*m/2+1至第10*k*m/2+n个时隙;当PO标识为2时,PO的信息可以为PF中第10*k*m/4+1至第10*k*m/4+n个时隙;当PO标识为3时,PO的信息可以为PF中第一至第n个时隙。
步骤S504:UE根据第二数量,得到PF的信息。
UE接收寻呼消息之前,需要获取PO的信息,进而在PO的信息所指示的PO接收寻呼消息。需要说明的是,本申请实施例中UE获取PF的信息的实施方式和基站获取PF的信息的实施方式相同,则步骤S505具体可以参见步骤S202的描述,本申请实施例不再赘述。
步骤S505:UE根据第一数量,得到在PF的信息所指示PF内PO的信息。
需要说明的是,本申请实施例中UE获取PO的信息的实施方式和基站获取PO的信息的实施方式相同,则步骤S506具体可以参见步骤S503的描述,本申请实施例不再赘述。
需要说明的是,本申请实施例不限定步骤S504和步骤S505在图5中的执行顺序,UE从基站接收到PO所包含时隙的第一数量和PF所包含帧的第二数量之后,可以执行步骤S504和步骤S505,例如,步骤S504和步骤S505可以在步骤S502之前或者之后执行,也可以在步骤S503之前或者之后执行,还可以在步骤S506之前或者之后执行。
步骤S506:基站在PO的信息所指示PO向UE发送寻呼消息,PO是连续均匀分布的。
基站得到PO的信息之后,可以在PO的信息所指示的PO向UE发送寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第一个时隙和第二个时隙,则基站可以在DRX周期内第一个时隙和第二个时隙向UE发送寻呼消息。
通过本申请实施例,基站可以在UE的至少一个beam方向上向UE发送寻呼消息,以确保UE可准确接收到该寻呼消息,提高寻呼消息的传输可靠性。
在一个设计方案中,UE得到PO的信息之后,可以在PO的信息所指示的PO接收寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第一个时隙和第二个时隙,则UE可以在DRX周期内第一个时隙和第二个时隙接收寻呼消息。
在图5所描述的方法中,基站通过高层信令或者广播消息向UE发送PO所包含时隙的第一数量和PF所包含帧的第二数量,基站根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO向UE发送寻呼消息,则UE可根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO接收寻呼消息,可便于第二设备准确识别PO的位置。
基于图1所示的通信系统的架构示意图,请参见图6,图6是本申请实施例提供的一 种通信方法,该方法包括但不限于如下步骤:
步骤S601:基站通过高层信令或者广播消息向UE发送PO所包含子帧的第一数量。
其中,第一数量是基站独立配置的。
步骤S602:基站将第一数量确定为PF所包含帧的第二数量。
具体地,本申请实施例中PO在PF中是非连续分布的,PO在PF所包含的每个帧中的配置方式和LTE系统中PO的配置方式相同。其中,LTE系统中PO包含一个子帧,则基站可以确定PO在PF所包含的每个帧中包含一个子帧,即PF所包含帧的第二数量和PO所包含子帧的数量相同,基站可以将第一数量确定为PF所包含帧的第二数量。
步骤S603:基站根据第二数量,得到PF的信息。
需要说明的是,步骤S603具体可参见步骤S202的描述,本申请实施例不再赘述。
步骤S604:基站根据第一数量,得到在PF的信息所指示PF内PO的信息。
具体地,基站可以通过非连续且非均匀分布的方式配置PO。PO可以位于PF中第10*k*s+1个子帧,第10*k*s+5个子帧,第10*k*s+6个子帧,或者第10*k*s+10个子帧。其中s=0,1,2…m-1,m为第二数量,k=1。以图8F所示的PO的结构示意图为例,若m=2,n=2,PO的信息包括PO所包含子帧的子帧号,该子帧号为0,10,则基站可以确定PO位于PF中第一个子帧和第十一个子帧。若该子帧号为4,14,则基站可以确定PO位于PF中第五个子帧和第十五个子帧。若该子帧号为5,15,则基站可以确定PO位于PF中第六个子帧或者第十六个子帧。若该子帧号为9,19,则基站可以确定PO位于PF中第十个子帧或者第二十个子帧。需要说明的是,PO的信息包含但不限定于PO所包含子帧的子帧号,也可以为PO所包含起始子帧的子帧号,以及结束子帧的子帧号,等等。需要说明的是,本申请实施例中PO所包含子帧的第一数量可以为一个,也可以为多个,具体不受本申请实施例的限定。
在一个设计方案中,第一数量与预设第一数值之间的乘积小于等于第二数量与预设第二数值之间的乘积。示例性的,一个帧可以包括10个子帧,一个PF中最多可以包括4个PO,则预设第一数值可以为4,预设第二数值可以为10,即4*n≤10*m。
在一个设计方案中,当计算得到的PF包括一个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+10个子帧。其中,k=1。
在一个设计方案中,当计算得到的PF包括两个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+5个子帧;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+10个子帧。其中,k=1。
在一个设计方案中,当计算得到的PF包括四个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+1个子帧;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+5个子帧;当第二设备的PO标识为第三标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+6个子帧;当第二设备的PO标识为第四标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+10个子帧。其中,k=1。
具体地,基站可以基于UE的相关参数确定PO标识,示例性的,基站可以通过如下公式计算PO标识:
i_s=floor(UE_ID/N)mod Ns
其中,i_s表示UE的PO标识,UE_ID=IMSI mod 1024,IMSI表示UE的IMSI,N=min(T,nB),T表示DRX周期,nB可以为4T、2T、T、T/2、T/4、T/8、T/16或者T/32,Ns=max(1,nB/T),Ns可以表示为一个PF中所包含PO的数量。
示例性的,PO标识和PO的信息之间的对应关系可以如表五所示:
表五
Figure PCTCN2018115378-appb-000005
其中,当PF包含一个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*s+10个子帧。当PF包含两个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*s+5个子帧;当PO标识为1时,PO的信息可以为PF中第10*s+10个子帧。当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*s+1个子帧;当PO标识为1时,PO的信息可以为PF中第10*s+5个子帧;当PO标识为2时,PO的信息可以为PF中第10*s+6个子帧;当PO标识为3时,PO的信息可以为PF中第10*s+10个子帧。
需要说明的是,本申请实施例中PO标识和PO的信息之间的对应关系包含但不局限于上述方式,例如当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*s+10个子帧;当PO标识为1时,PO的信息可以为PF中第10*s+1个子帧;当PO标识为2时,PO的信息可以为PF中第10*s+5个子帧;当PO标识为3时,PO的信息可以为PF中第10*s+6个子帧。
步骤S605:UE将第一数量确定为PF所包含帧的第二数量。
需要说明的是,本申请实施例中UE获取第二数量的实施方式和基站获取第二数量的实施方式相同,则步骤S606具体可以参见步骤S602的描述,本申请实施例不再赘述。
步骤S606:UE根据第二数量,得到PF的信息。
UE接收寻呼消息之前,需要获取PO的信息,进而在PO的信息所指示的PO接收寻呼消息。需要说明的是,本申请实施例中UE获取PF的信息的实施方式和基站获取PF的信息的实施方式相同,则步骤S607具体可以参见步骤S202的描述,本申请实施例不再赘述。
步骤S607:UE根据第一数量,得到在PF的信息所指示PF内PO的信息。
需要说明的是,本申请实施例中UE获取PO的信息的实施方式和基站获取PO的信息的实施方式相同,则步骤S608具体可以参见步骤S604的描述,本申请实施例不再赘述。
需要说明的是,本申请实施例不限定步骤S605-S607在图6中的执行顺序,UE从基站接收到PO所包含子帧的第一数量之后,可以执行步骤S605-S607,例如,步骤S605-S607 可以在步骤S602之前或者之后执行,也可以在步骤S603之前或者之后执行,也可以在步骤S604之前或者之后执行,还可以在步骤S608之前或者之后执行。
步骤S608:基站在PO的信息所指示PO向UE发送寻呼消息。
基站得到PO的信息之后,可以在PO的信息所指示的PO向UE发送寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第十个子帧和第二十个子帧,则基站可以在DRX周期内第十个子帧和第二十个子帧向UE发送寻呼消息。
通过本申请实施例,基站可以在UE的至少一个beam方向上向UE发送寻呼消息,以确保UE可准确接收到该寻呼消息,提高寻呼消息的传输可靠性。
在一个设计方案中,UE得到PO的信息之后,可以在PO的信息所指示的PO接收寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第十个子帧和第二十个子帧,则UE可以在DRX周期内第十个子帧和第二十个子帧接收寻呼消息。
在图6所描述的方法中,基站通过高层信令或者广播消息向UE发送PO所包含子帧的第一数量,基站将第一数量确定为PF所包含帧的第二数量,基站根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO向UE发送寻呼消息,则UE可将第一数量确定为PF所包含帧的第二数量,根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO接收寻呼消息,可便于第二设备准确识别PO的位置。
基于图1所示的通信系统的架构示意图,请参见图7,图7是本申请实施例提供的一种通信方法,该方法包括但不限于如下步骤:
步骤S701:基站通过高层信令或者广播消息向UE发送PO所包含时隙的第一数量。
其中,第一数量是基站独立配置的。
步骤S702:基站确定预先配置的每个子帧所包含时隙的第三数量。
在LTE系统中,一个子帧可以包括2个时隙;在NR中,一个子帧可以包括2个时隙,4个时隙,6个时隙或者8个时隙。基于此,基站可以确定预先配置的每个子帧所包含时隙的第三数量。
步骤S703:基站将第一数量除以第三数量,并将得到的商向上取整,得到第二数量。
具体地,本申请实施例中PO在PF中是非连续分布的,PO在PF所包含的每个帧中的配置方式和LTE系统中PO的配置方式相同。其中,LTE系统中PO包含一个子帧,则基站可以确定PO在PF所包含的每个帧中包含的时隙的数量小于等于第三数量。基于此,基站可以将第一数量除以第三数量,并将得到的商向上取整,得到第二数量。示例性的,PO所包含时隙的第一数量为10个,预先配置的每个子帧包含4个时隙,则基站可以确定
Figure PCTCN2018115378-appb-000006
即PF所包含帧的数量为3个。
步骤S704:基站根据第二数量,得到PF的信息。
需要说明的是,步骤S704具体可参见步骤S202的描述,本申请实施例不再赘述。
步骤S705:基站根据第一数量,得到在PF的信息所指示PF内PO的信息。
具体地,基站可以通过非连续且非均匀分布的方式配置PO。PO可以位于PF中第10*k*s+1个时隙,第10*k*s+5个时隙,第10*k*s+6个时隙,或者第10*k*s+10个时隙。其中s=0,1,2…m-1,m为第二数量,k为每个子帧所包含时隙的第三数量。以图8G所 示的PO的结构示意图为例,若m=1,k=2,n=2,PO的信息包括PO所包含时隙的时隙号,该时隙号为0,10,则基站可以确定PO位于PF中第一个时隙和第十一个时隙。若该时隙号为4,14,则基站可以确定PO位于PF中第五个时隙和第十五个时隙。若该时隙号为5,15,则基站可以确定PO位于PF中第六个时隙或者第十六个时隙。若该时隙号为9,19,则基站可以确定PO位于PF中第十个时隙或者第二十个时隙。需要说明的是,PO的信息包含但不限定于PO所包含时隙的时隙号,也可以为PO所包含起始时隙的时隙号,以及结束时隙的时隙号,等等。需要说明的是,本申请实施例中PO所包含时隙的第一数量可以为一个,也可以为多个,具体不受本申请实施例的限定。
在一个设计方案中,第一数量与预设第一数值之间的乘积小于等于第二数量与预设第二数值之间的乘积。示例性的,一个帧可以包括10个子帧,一个子帧可以包括k个时隙,一个PF中最多可以包括4个PO,则预设第一数值可以为4,预设第二数值可以为10*k,即4*n≤10*k*m。
在一个设计方案中,当计算得到的PF包括一个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+10个时隙。其中,k为每个子帧所包含时隙的第三数量。
在一个设计方案中,当计算得到的PF包括两个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+5个时隙;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+10个时隙。其中,k为每个子帧所包含时隙的第三数量。
在一个设计方案中,当计算得到的PF包括四个PO时,第一设备可以获取第二设备的PO标识,当第二设备的PO标识为第一标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+1个时隙;当第二设备的PO标识为第二标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+5个时隙;当第二设备的PO标识为第三标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+6个时隙;当第二设备的PO标识为第四标识时,第一设备可以确定PO位于计算得到的PF中第10*k*s+10个时隙。其中,k为每个子帧所包含时隙的第三数量。
具体地,基站可以基于UE的相关参数确定PO标识,示例性的,基站可以通过如下公式计算PO标识:
i_s=floor(UE_ID/N)mod Ns
其中,i_s表示UE的PO标识,UE_ID=IMSI mod 1024,IMSI表示UE的IMSI,N=min(T,nB),T表示DRX周期,nB可以为4T、2T、T、T/2、T/4、T/8、T/16或者T/32,Ns=max(1,nB/T),Ns可以表示为一个PF中所包含PO的数量。
示例性的,PO标识和PO的信息之间的对应关系可以如表六所示:
表六
Figure PCTCN2018115378-appb-000007
Figure PCTCN2018115378-appb-000008
其中,当PF包含一个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*k*s+10个时隙。当PF包含两个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*k*s+5个时隙;当PO标识为1时,PO的信息可以为PF中第10*k*s+10个时隙。当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*k*s+1个时隙;当PO标识为1时,PO的信息可以为PF中第10*k*s+5个时隙;当PO标识为2时,PO的信息可以为PF中第10*k*s+6个时隙;当PO标识为3时,PO的信息可以为PF中第10*k*s+10个时隙。
需要说明的是,本申请实施例中PO标识和PO的信息之间的对应关系包含但不局限于上述方式,例如当PF包含四个PO,且PO标识为0时,PO的信息可以包括持续时间,例如PF中第10*k*s+10个时隙;当PO标识为1时,PO的信息可以为PF中第10*k*s+1个时隙;当PO标识为2时,PO的信息可以为PF中第10*k*s+5个时隙;当PO标识为3时,PO的信息可以为PF中第10*k*s+6个时隙。
步骤S706:UE确定预先配置的每个子帧所包含时隙的第三数量。
步骤S707:UE将第一数量除以第三数量,并将得到的商向上取整,得到第二数量。
需要说明的是,本申请实施例中UE获取第二数量的实施方式和基站获取第二数量的实施方式相同,则步骤S708具体可以参见步骤S703的描述,本申请实施例不再赘述。
步骤S708:UE根据第二数量,得到PF的信息。
UE接收寻呼消息之前,需要获取PO的信息,进而在PO的信息所指示的PO接收寻呼消息。需要说明的是,本申请实施例中UE获取PF的信息的实施方式和基站获取PF的信息的实施方式相同,则步骤S709具体可以参见步骤S202的描述,本申请实施例不再赘述。
步骤S709:UE根据第一数量,得到在PF的信息所指示PF内PO的信息。
需要说明的是,本申请实施例中UE获取PO的信息的实施方式和基站获取PO的信息的实施方式相同,则步骤S710具体可以参见步骤S705的描述,本申请实施例不再赘述。
需要说明的是,本申请实施例不限定步骤S706-S709在图7中的执行顺序,UE从基站接收到PO所包含时隙的第一数量之后,可以执行步骤S706-S709,例如,步骤S706-S709可以在步骤S702-S705中任一步骤之前或者之后执行,还可以在步骤S710之前或者之后执行。
步骤S710:基站在PO的信息所指示PO向UE发送寻呼消息。
基站得到PO的信息之后,可以在PO的信息所指示的PO向UE发送寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第十个时隙和第二十个时隙,则基站可以在DRX周期内第十个时隙和第二十个时隙向UE发送寻呼消息。
通过本申请实施例,基站可以在UE的至少一个beam方向上向UE发送寻呼消息,以确保UE可准确接收到该寻呼消息,提高寻呼消息的传输可靠性。
在一个设计方案中,UE得到PO的信息之后,可以在PO的信息所指示的PO接收寻呼消息。例如,PF为DRX周期内的第一个帧和第二个帧,PO的信息为PF中第十个时隙 和第二十个时隙,则UE可以在DRX周期内第十个时隙和第二十个时隙接收寻呼消息。
在图7所描述的方法中,基站通过高层信令或者广播消息向UE发送PO所包含时隙的第一数量,基站根据第一数量得到第二数量,根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO向UE发送寻呼消息,则UE可根据第一数量得到第二数量,并根据第一数量和第二数量,得到PO的信息,并在PO的信息所指示PO接收寻呼消息,可便于第二设备准确识别PO的位置。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图9,图9是本申请实施例提供的一种第一设备的结构示意图,用于实现图2-图7实施例中基站的功能,该第一设备可以包括处理模块901以及发送模块902,其中,各个模块的详细描述如下。
处理模块901,用于获取PO所包含时间单元的第一数量,以及PF所包含帧的第二数量,所述时间单元为子帧或者时隙;
所述处理模块901,还用于根据所述第一数量和所述第二数量,得到PO的信息;
发送模块902,用于在所述PO的信息所指示的PO向第二设备发送寻呼消息。
在一个设计方案中,所述处理模块901,还用于在获取所述PF所包含帧的第二数量之后,确定PF所包含的起始帧;
所述处理模块901,还用于将所述起始帧及其之后的至少一个帧确定为所述PF,所述起始帧及其之后的至少一个帧的数量与所述第二数量相同。
在一个设计方案中,所述处理模块901根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
确定所述PO位于PF中第一至第n个时间单元,第10*k*m/2-n+1至第10*k*m/2个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m-n+1至第10*k*m个时间单元;
其中n为所述第一数量,m为所述第二数量,k为正整数。
在一个设计方案中,所述处理模块901根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
确定所述PO位于PF中第一至第n个时间单元,第10*k*m/4+1至第10*k*m/4+n个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元;
其中m为所述第二数量,n为所述第一数量,k为正整数。
在一个设计方案中,所述处理模块901获取PF所包含帧的第二数量,具体用于:
当所述时间单元为子帧时,将所述第一数量确定为所述第二数量。
在一个设计方案中,所述处理模块901获取PF所包含帧的第二数量,具体用于:
当所述时间单元为时隙时,确定预先配置的每个子帧所包含时隙的第三数量;
将所述第一数量除以所述第三数量,并将得到的商向上取整,得到所述第二数量。
在一个设计方案中,所述处理模块901根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
确定所述PO位于PF中第10*k*s+1个时间单元,第10*k*s+5个时间单元,第10*k*s+6个时间单元,或者第10*k*s+10个时间单元;
其中s=0,1,2…m-1,m为所述第二数量,k为正整数。
需要说明的是,各个模块的实现还可以对应参照图2-图7所示的实施例的相应描述。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。本申请实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
请参见图10,图10是本发明另一实施例公开的一种第一设备的结构示意图。如图10所示,该第一设备可以包括:处理器1001、存储器1002以及发射器1003,存储器1002可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器1002还可以是至少一个位于远离前述处理器1001的存储装置。其中:
处理器1001,用于获取PO所包含时间单元的第一数量,以及PF所包含帧的第二数量,所述时间单元为子帧或者时隙;
所述处理器1001,还用于根据所述第一数量和所述第二数量,得到PO的信息;
发射器1003,用于在所述PO的信息所指示的PO向第二设备发送寻呼消息。
在一个设计方案中,所述处理器1001,还用于在获取所述PF所包含帧的第二数量之后,确定PF所包含的起始帧;
所述处理器1001,还用于将所述起始帧及其之后的至少一个帧确定为所述PF,所述起始帧及其之后的至少一个帧的数量与所述第二数量相同。
在一个设计方案中,所述处理器1001根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
确定所述PO位于PF中第一至第n个时间单元,第10*k*m/2-n+1至第10*k*m/2个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m-n+1至第10*k*m个时间单元;
其中n为所述第一数量,m为所述第二数量,k为正整数。
在一个设计方案中,所述处理器1001根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
确定所述PO位于PF中第一至第n个时间单元,第10*k*m/4+1至第10*k*m/4+n个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元;
其中m为所述第二数量,n为所述第一数量,k为正整数。
在一个设计方案中,所述处理器1001获取PF所包含帧的第二数量,具体用于:
当所述时间单元为子帧时,将所述第一数量确定为所述第二数量。
在一个设计方案中,所述处理器1001获取PF所包含帧的第二数量,具体用于:
当所述时间单元为时隙时,确定预先配置的每个子帧所包含时隙的第三数量;
将所述第一数量除以所述第三数量,并将得到的商向上取整,得到所述第二数量。
在一个设计方案中,所述处理器1001根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
确定所述PO位于PF中第10*k*s+1个时间单元,第10*k*s+5个时间单元,第10*k*s+6个时间单元,或者第10*k*s+10个时间单元;
其中s=0,1,2…m-1,m为所述第二数量,k为正整数。
具体的,本发明实施例中介绍的第一设备可以用以实施本发明结合图2~图7介绍的方法实施例中的部分或全部流程。
请参见图11,图11是本申请实施例提供的一种第二设备的结构示意图,用于实现图2-图7实施例中UE的功能,该第二设备可以包括处理模块1101以及接收模块1102,其中,各个模块的详细描述如下。
处理模块1101,用于获取PO所包含时间单元的第一数量,以及PF所包含帧的第二数量,所述时间单元为子帧或者时隙;
所述处理模块1101,还用于根据所述第一数量和所述第二数量,得到PO的信息;
接收模块1102,用于在所述PO的信息所指示的PO接收寻呼消息。
在一个设计方案中,所述处理模块1101,还用于在获取PF所包含帧的第二数量之后,确定PF所包含的起始帧;
所述处理模块1101,还用于将所述起始帧及其之后的至少一个帧确定为所述PF,所述起始帧及其之后的至少一个帧的数量与所述第二数量相同。
在一个设计方案中,所述处理模块1101根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
确定所述PO位于PF中第一至第n个时间单元,第10*k*m/2-n+1至第10*k*m/2个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m-n+1至第10*k*m个时间单元;
其中n为所述第一数量,m为所述第二数量,k为正整数。
在一个设计方案中,所述处理模块1101根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
确定所述PO位于PF中第一至第n个时间单元,第10*k*m/4+1至第10*k*m/4+n个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元;
其中m为所述第二数量,n为所述第一数量,k为正整数。
在一个设计方案中,所述处理模块1101获取PF所包含帧的第二数量,具体用于:
当所述时间单元为子帧时,将所述第一数量确定为所述第二数量。
在一个设计方案中,所述处理模块1101获取PF所包含帧的第二数量,具体用于:
当所述时间单元为时隙时,确定预先配置的每个子帧所包含时隙的第三数量;
将所述第一数量除以所述第三数量,并将得到的商向上取整,得到所述第二数量。
在一个设计方案中,所述处理模块1101根据所述第一数量和所述第二数量,得到PO 的信息,具体用于:
确定所述PO位于PF中第10*k*s+1个时间单元,第10*k*s+5个时间单元,第10*k*s+6个时间单元,或者第10*k*s+10个时间单元;
其中s=0,1,2…m-1,m为所述第二数量,k为正整数。
需要说明的是,各个模块的实现还可以对应参照图2-图7所示的实施例的相应描述。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。本申请实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
请参见图12,图12是本发明另一实施例公开的一种第二设备的结构示意图。如图12所示,该第二设备可以包括:处理器1201、存储器1202以及接收器1203,存储器1202可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器1202还可以是至少一个位于远离前述处理器1201的存储装置。其中:
处理器1201,用于获取PO所包含时间单元的第一数量,以及PF所包含帧的第二数量,所述时间单元为子帧或者时隙;
处理器1201,还用于根据所述第一数量和所述第二数量,得到PO的信息;
接收器1203,用于在所述PO的信息所指示的PO接收寻呼消息。
在一个设计方案中,所述处理器1201,还用于在获取PF所包含帧的第二数量之后,确定PF所包含的起始帧;
所述处理器1201,还用于将所述起始帧及其之后的至少一个帧确定为所述PF,所述起始帧及其之后的至少一个帧的数量与所述第二数量相同。
在一个设计方案中,所述处理器1201根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
确定所述PO位于PF中第一至第n个时间单元,第10*k*m/2-n+1至第10*k*m/2个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m-n+1至第10*k*m个时间单元;
其中n为所述第一数量,m为所述第二数量,k为正整数。
在一个设计方案中,所述处理器1201根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
确定所述PO位于PF中第一至第n个时间单元,第10*k*m/4+1至第10*k*m/4+n个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元;
其中m为所述第二数量,n为所述第一数量,k为正整数。
在一个设计方案中,所述处理器1201获取PF所包含帧的第二数量,具体用于:
当所述时间单元为子帧时,将所述第一数量确定为所述第二数量。
在一个设计方案中,所述处理器1201获取PF所包含帧的第二数量,具体用于:
当所述时间单元为时隙时,确定预先配置的每个子帧所包含时隙的第三数量;
将所述第一数量除以所述第三数量,并将得到的商向上取整,得到所述第二数量。
在一个设计方案中,处理器1201根据第一数量和第二数量,得到PO的信息,具体用于:
确定所述PO位于PF中第10*k*s+1个时间单元,第10*k*s+5个时间单元,第10*k*s+6个时间单元,或者第10*k*s+10个时间单元;
其中s=0,1,2…m-1,m为所述第二数量,k为正整数。
具体的,本发明实施例中介绍的第二设备可以用以实施本发明结合图2~图7介绍的方法实施例中的部分或全部流程。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (33)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一设备获取寻呼时刻PO所包含时间单元的第一数量,以及寻呼帧PF所包含帧的第二数量,所述时间单元为子帧或者时隙;
    所述第一设备根据所述第一数量和所述第二数量,得到PO的信息;
    所述第一设备在所述PO的信息所指示的PO向第二设备发送寻呼消息。
  2. 如权利要求1所述的方法,其特征在于,所述PF包括两个或者两个以上连续帧。
  3. 如权利要求1所述的方法,其特征在于,所述第一设备获取PF所包含帧的第二数量之后,还包括:
    所述第一设备确定PF所包含的起始帧;
    所述第一设备将所述起始帧及其之后的至少一个帧确定为所述PF,所述起始帧及其之后的至少一个帧的数量与所述第二数量相同。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一设备根据所述第一数量和所述第二数量,得到PO的信息,包括:
    所述第一设备确定所述PO位于PF中第一至第n个时间单元,第10*k*m/2-n+1至第10*k*m/2个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m-n+1至第10*k*m个时间单元;
    其中n为所述第一数量,m为所述第二数量,k为正整数。
  5. 如权利要求1-3任一项所述的方法,其特征在于,所述第一设备根据所述第一数量和所述第二数量,得到PO的信息,包括:
    所述第一设备确定所述PO位于PF中第一至第n个时间单元,第10*k*m/4+1至第10*k*m/4+n个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元;
    其中m为所述第二数量,n为所述第一数量,k为正整数。
  6. 如权利要求1所述的方法,其特征在于,所述第一设备获取PF所包含帧的第二数量,包括:
    当所述时间单元为子帧时,所述第一设备将所述第一数量确定为所述第二数量。
  7. 如权利要求1所述的方法,其特征在于,所述第一设备获取PF所包含帧的第二数量,包括:
    当所述时间单元为时隙时,所述第一设备确定预先配置的每个子帧所包含时隙的第三数量;
    所述第一设备将所述第一数量除以所述第三数量,并将得到的商向上取整,得到所述第二数量。
  8. 如权利要求6或7所述的方法,其特征在于,所述第一设备根据所述第一数量和所述第二数量,得到PO的信息,包括:
    所述第一设备确定所述PO位于PF中第10*k*s+1个时间单元,第10*k*s+5个时间单元,第10*k*s+6个时间单元,或者第10*k*s+10个时间单元;
    其中s=0,1,2…m-1,m为所述第二数量,k为正整数。
  9. 一种通信方法,其特征在于,所述方法包括:
    第二设备获取寻呼时刻PO所包含时间单元的第一数量,以及寻呼帧PF所包含帧的第二数量,所述时间单元为子帧或者时隙;
    所述第二设备根据所述第一数量和所述第二数量,得到PO的信息;
    所述第二设备在所述PO的信息所指示的PO接收寻呼消息。
  10. 如权利要求9所述的方法,其特征在于,所述第二数量是通过高层信令/广播消息获得的,或者所述第二数量是预配置的,或者所述第二数量是根据所述第一数量得到的。
  11. 如权利要求9所述的方法,其特征在于,所述PF包括两个或者两个以上连续帧。
  12. 如权利要求9所述的方法,其特征在于,所述第二设备获取PF所包含帧的第二数量之后,还包括:
    所述第二设备确定PF所包含的起始帧;
    所述第二设备将所述起始帧及其之后的至少一个帧确定为所述PF,所述起始帧及其之后的至少一个帧的数量与所述第二数量相同。
  13. 如权利要求9-12任一项所述的方法,其特征在于,所述第二设备根据所述第一数量和所述第二数量,得到PO的信息,包括:
    所述第二设备确定所述PO位于PF中第一至第n个时间单元,第10*k*m/2-n+1至第10*k*m/2个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m-n+1至第10*k*m个时间单元;
    其中n为所述第一数量,m为所述第二数量,k为正整数。
  14. 如权利要求9-12任一项所述的方法,其特征在于,所述第二设备根据所述第一数量和所述第二数量,得到PO的信息,包括:
    所述第二设备确定所述PO位于PF中第一至第n个时间单元,第10*k*m/4+1至第10*k*m/4+n个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元;
    其中m为所述第二数量,n为所述第一数量,k为正整数。
  15. 如权利要求9所述的方法,其特征在于,所述第二设备获取PF所包含帧的第二数量,包括:
    当所述时间单元为子帧时,所述第二设备将所述第一数量确定为所述第二数量。
  16. 如权利要求9所述的方法,其特征在于,所述第二设备获取PF所包含帧的第二数量,包括:
    当所述时间单元为时隙时,所述第二设备确定预先配置的每个子帧所包含时隙的第三数量;
    所述第二设备将所述第一数量除以所述第三数量,并将得到的商向上取整,得到所述第二数量。
  17. 如权利要求15或16所述的方法,其特征在于,所述第二设备根据所述第一数量和所述第二数量,得到PO的信息,包括:
    所述第二设备确定所述PO位于PF中第10*k*s+1个时间单元,第10*k*s+5个时间单元,第10*k*s+6个时间单元,或者第10*k*s+10个时间单元;
    其中s=0,1,2…m-1,m为所述第二数量,k为正整数。
  18. 一种第一设备,其特征在于,所述第一设备包括:
    处理模块,用于获取寻呼时刻PO所包含时间单元的第一数量,以及寻呼帧PF所包含帧的第二数量,所述时间单元为子帧或者时隙;
    所述处理模块,还用于根据所述第一数量和所述第二数量,得到PO的信息;
    发送模块,用于在所述PO的信息所指示的PO向第二设备发送寻呼消息。
  19. 如权利要求18所述的第一设备,其特征在于,
    所述处理模块,还用于在获取所述PF所包含帧的第二数量之后,确定PF所包含的起始帧;
    所述处理模块,还用于将所述起始帧及其之后的至少一个帧确定为所述PF,所述起始帧及其之后的至少一个帧的数量与所述第二数量相同。
  20. 如权利要求18或19所述的第一设备,其特征在于,所述处理模块根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
    确定所述PO位于PF中第一至第n个时间单元,第10*k*m/2-n+1至第10*k*m/2个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m-n+1至第10*k*m个时间单元;
    其中n为所述第一数量,m为所述第二数量,k为正整数。
  21. 如权利要求18或19所述的第一设备,其特征在于,所述处理模块根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
    确定所述PO位于PF中第一至第n个时间单元,第10*k*m/4+1至第10*k*m/4+n个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元;
    其中m为所述第二数量,n为所述第一数量,k为正整数。
  22. 如权利要求18所述的第一设备,其特征在于,所述处理模块获取PF所包含帧的第二数量,具体用于:
    当所述时间单元为子帧时,将所述第一数量确定为所述第二数量。
  23. 如权利要求18所述的第一设备,其特征在于,所述处理模块获取PF所包含帧的第二数量,具体用于:
    当所述时间单元为时隙时,确定预先配置的每个子帧所包含时隙的第三数量;
    将所述第一数量除以所述第三数量,并将得到的商向上取整,得到所述第二数量。
  24. 如权利要求22或23所述的第一设备,其特征在于,所述处理模块根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
    确定所述PO位于PF中第10*k*s+1个时间单元,第10*k*s+5个时间单元,第10*k*s+6个时间单元,或者第10*k*s+10个时间单元;
    其中s=0,1,2…m-1,m为所述第二数量,k为正整数。
  25. 一种第二设备,其特征在于,所述第二设备包括:
    处理模块,用于获取寻呼时刻PO所包含时间单元的第一数量,以及寻呼帧PF所包含帧的第二数量,所述时间单元为子帧或者时隙;
    所述处理模块,还用于根据所述第一数量和所述第二数量,得到PO的信息;
    接收模块,用于在所述PO的信息所指示的PO接收寻呼消息。
  26. 如权利要求25所述的第二设备,其特征在于,
    所述处理模块,还用于在获取PF所包含帧的第二数量之后,确定PF所包含的起始帧;
    所述处理模块,还用于将所述起始帧及其之后的至少一个帧确定为所述PF,所述起始帧及其之后的至少一个帧的数量与所述第二数量相同。
  27. 如权利要求25或26所述的第二设备,其特征在于,所述处理模块根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
    确定所述PO位于PF中第一至第n个时间单元,第10*k*m/2-n+1至第10*k*m/2个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m-n+1至第10*k*m个时间单元;
    其中n为所述第一数量,m为所述第二数量,k为正整数。
  28. 如权利要求25或26所述的第二设备,其特征在于,所述处理模块根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
    确定所述PO位于PF中第一至第n个时间单元,第10*k*m/4+1至第10*k*m/4+n个时间单元,第10*k*m/2+1至第10*k*m/2+n个时间单元,或者第10*k*m*3/4+1至第10*k*m*3/4+n个时间单元;
    其中m为所述第二数量,n为所述第一数量,k为正整数。
  29. 如权利要求25所述的第二设备,其特征在于,所述处理模块获取PF所包含帧的第二数量,具体用于:
    当所述时间单元为子帧时,将所述第一数量确定为所述第二数量。
  30. 如权利要求25所述的第二设备,其特征在于,所述处理模块获取PF所包含帧的第二数量,具体用于:
    当所述时间单元为时隙时,确定预先配置的每个子帧所包含时隙的第三数量;
    将所述第一数量除以所述第三数量,并将得到的商向上取整,得到所述第二数量。
  31. 如权利要求29或30所述的第二设备,其特征在于,所述处理模块根据所述第一数量和所述第二数量,得到PO的信息,具体用于:
    确定所述PO位于PF中第10*k*s+1个时间单元,第10*k*s+5个时间单元,第10*k*s+6个时间单元,或者第10*k*s+10个时间单元;
    其中s=0,1,2…m-1,m为所述第二数量,k为正整数。
  32. 一种计算机存储介质,所述计算机存储介质用于储存计算机程序指令,所述计算机程序指令被第一设备执行时,使得所述第一设备执行如权利要求1-8任一项所述的通信方法。
  33. 一种计算机存储介质,所述计算机存储介质用于储存计算机程序指令,所述计算机程序指令被第二设备执行时,使得所述第二设备执行如权利要求9-17任一项所述的通信方法。
PCT/CN2018/115378 2017-11-14 2018-11-14 通信方法及设备 WO2019096152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711125770.9 2017-11-14
CN201711125770.9A CN109788532B (zh) 2017-11-14 2017-11-14 通信方法及设备

Publications (1)

Publication Number Publication Date
WO2019096152A1 true WO2019096152A1 (zh) 2019-05-23

Family

ID=66494163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115378 WO2019096152A1 (zh) 2017-11-14 2018-11-14 通信方法及设备

Country Status (2)

Country Link
CN (1) CN109788532B (zh)
WO (1) WO2019096152A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113826425B (zh) * 2019-05-29 2023-07-18 华为技术有限公司 一种链路检测的方法、装置及相关设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103778A1 (zh) * 2011-01-31 2012-08-09 华为技术有限公司 分组寻呼的方法、装置及系统
CN106792868A (zh) * 2015-11-25 2017-05-31 中国联合网络通信集团有限公司 一种获取寻呼量的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098783B (zh) * 2007-12-03 2012-12-12 华为技术有限公司 确定寻呼时刻的设备
CN102917444B (zh) * 2011-08-01 2016-08-17 华为技术有限公司 空闲状态下非连续接收的方法及装置
CN108271248B (zh) * 2013-02-27 2021-09-14 华为技术有限公司 一种寻呼优化方法、装置及系统
CN104811279B (zh) * 2014-01-23 2018-05-22 电信科学技术研究院 一种寻呼消息传输方法及装置
CN106550454A (zh) * 2015-09-17 2017-03-29 中兴通讯股份有限公司 一种降低寻呼消息传输时延的方法和装置
CN106954258A (zh) * 2016-01-07 2017-07-14 中兴通讯股份有限公司 一种寻呼处理方法、装置和寻呼系统
WO2017171454A1 (en) * 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd. Methods for determining paging occasions in edrx cycle and monitoring paging occasions based on cel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103778A1 (zh) * 2011-01-31 2012-08-09 华为技术有限公司 分组寻呼的方法、装置及系统
CN106792868A (zh) * 2015-11-25 2017-05-31 中国联合网络通信集团有限公司 一种获取寻呼量的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT SHANGHAI BELL ET AL.: "Supporting Extended Long DRX Cycle for Idle Mode MTC Device Power Saving", 3GPP TSG RAN WG2 MEETING #81 BIS, R2-131343, vol. RAN WG2, 15 April 2013 (2013-04-15) - 19 April 2013 (2013-04-19), XP050699491 *
QUALCOMM INCORPORATED: "System Information and Paging", 3GPP TSG RAN WGI NB-IOT AD-HOC MEETING, RL-161935, vol. RAN WG1, 22 March 2016 (2016-03-22) - 24 March 2016 (2016-03-24), XP051081051 *

Also Published As

Publication number Publication date
CN109788532A (zh) 2019-05-21
CN109788532B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2020164334A1 (zh) 信号传输的方法与装置
CN110971326B (zh) 一种时间同步的方法和装置
US20190052996A1 (en) Provision and use of gaps for reference signal time difference measurements
JP2021153329A (ja) ネットワークスライスのための無線通信方法およびシステム
EP2866498B1 (en) Method and device for data transmission and communication system
US20200022185A1 (en) Signal transmission method and device
WO2019213841A1 (zh) 无线通信的方法、终端设备和网络设备
EP3536066B1 (en) Conditional termination of rstd measurements
EP2965113B1 (en) Communication station and method for time-of-flight positioning using cooperating stations
EP3731431B1 (en) Beam configuration method and device
WO2019052168A1 (zh) 配置anr的方法、终端设备、基站和核心网设备
WO2020063110A1 (zh) 定位方法及装置
KR102491526B1 (ko) 이중 연결을 위한 자동 이웃 관계 개선 기법
EP2854468A1 (en) Communication control method, user equipment, network server, and system
CN114513832B (zh) 终端设备定位方法、装置、设备及存储介质
WO2019137422A1 (zh) 同步指示方法和设备
WO2018059151A1 (zh) 资源管理指示方法及装置
US10863549B2 (en) Random access method, terminal device, and network device
US20220030654A1 (en) Locating method in multi-connectivity network, terminal device and location management function entity
EP3661311A1 (en) Resource indication method, communication device and network device
WO2019096152A1 (zh) 通信方法及设备
CN109417470B (zh) 密钥协商方法及装置
CN111194072B (zh) 多波束场景下监听寻呼的方法及装置
CN110913386B (zh) 通信方法、终端设备和接入网设备
WO2022153748A1 (ja) ユーザ機器及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879232

Country of ref document: EP

Kind code of ref document: A1