RU2204434C2 - Катализатор и способ получения смеси водорода и оксида углерода - Google Patents

Катализатор и способ получения смеси водорода и оксида углерода Download PDF

Info

Publication number
RU2204434C2
RU2204434C2 RU2001112828/04A RU2001112828A RU2204434C2 RU 2204434 C2 RU2204434 C2 RU 2204434C2 RU 2001112828/04 A RU2001112828/04 A RU 2001112828/04A RU 2001112828 A RU2001112828 A RU 2001112828A RU 2204434 C2 RU2204434 C2 RU 2204434C2
Authority
RU
Russia
Prior art keywords
mixture
catalyst
hydrogen
carbon monoxide
hydrocarbons
Prior art date
Application number
RU2001112828/04A
Other languages
English (en)
Other versions
RU2001112828A (ru
Inventor
В.Н. Пармон
С.Н. Павлова
В.А. Садыков
Р.В. Бунина
Н.Ф. Сапутина
О.И. Снегуренко
А.В. Симаков
С.А. Белошапкин
И.А. Золотарский
В.А. Кузьмин
З.Ю. Востриков
Л.Л. Гогин
Original Assignee
Институт катализа им. Г.К. Борескова СО РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт катализа им. Г.К. Борескова СО РАН filed Critical Институт катализа им. Г.К. Борескова СО РАН
Priority to RU2001112828/04A priority Critical patent/RU2204434C2/ru
Application granted granted Critical
Publication of RU2204434C2 publication Critical patent/RU2204434C2/ru
Publication of RU2001112828A publication Critical patent/RU2001112828A/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к процессу получения смесей водорода и оксида углерода путем каталитического превращения углеводородов в присутствии кислородсодержащих газов и/или паров воды. Описан катализатор, являющийся сложным композитом и содержащий смешанные оксиды со структурой перовксита или флюорита и переходные и/или благородные металлы, который дополнительно содержит компоненты с низким коэффициентом термического расширения. Описан способ каталитического превращения смеси, содержащей углеводород, или смесь углеводородов и/или воздух, или СО2, или пар, или их смесь, а также, необязательно, серусодержащие соединения. Технический результат: получен катализатор с улучшенной термостабильностью, устойчивый к зауглероживанию и отравлению серусодержащими соединениями. 2 с. и 4 з.п.ф-лы, 4 табл.

Description

Изобретение относится к процессу получения смесей водорода и оксида углерода путем каталитического превращения углеводородов в присутствии кислородсодержащих газов и/или паров воды и к катализаторам для этого процесса.
Смеси водорода и оксида углерода (синтез-газ) широко используются в крупнотоннажных химических процессах, таких как синтез метанола и высших спиртов и альдегидов, процесс Фишера-Тропша и других. Для каждого из этих процессов необходим синтез-газ с определенным соотношением концентраций водорода и оксида углерода (H2/CO). Для получения смесей водорода и оксида углерода с тем или иным соотношением Н2/СО используют различные реакции каталитического превращения парафинов [J.R.Rostrup-Nielsen, Production of synthesis gas. Catalysis Today, 1993, v.18, 305-324; B.C. Арутюнов, О.В. Крылов// Окислительные превращения метана. Москва, Наука, 1998]. Наиболее широко используется паровая конверсия природного газа (метана), при которой образуется синтез-газ с соотношением Н2/СО≥3, что удобно только для процесса синтеза аммиака. Кроме того, недостатками этого процесса являются высокая стоимость перегретого пара и образование избыточных количеств двуокиси углерода. При углекислотной конверсии метана можно получать смесь водорода и оксида углерода с соотношением Н2/СО~1, требующимся для реакций гидроформилирования, получения формальдегида и др. Реакции паровой и углекислотной конверсии метана являются эндотермическими, сопровождаются процессами коксообразования и требуют больших энергетических затрат.
Известен также способ получения синтез-газа с соотношением Н2/СО~2 путем селективного каталитического окисления углеводородов кислородом (СКО) [S.C. Tsang, J. B. Claridge and M.L.H.Green, Recent advances in the conversion of methane to synthesis gas, Catalysis Today, 1995, v.23, 3-15]. В отличие от паровой и углекислотной конверсии СКО имеет большую селективность, является экзотермичным процессом и эффективно протекает при малых временах контакта, что дает возможность проводить его в автотермическом режиме и уменьшить размеры реактора [D.A.Hickman, L.D.Schmidt, Synthesis gas formation by direct oxidation of methane, in "Catalytic Selective Oxidation", ACS Symposium series, 1993, p.416-426; P.M.Torniainen, X.Chu and L.D.Schmidt, Comparison of monolith-supported metals for the direct oxidation of methane to syngas. J. Catal., 1994, v.146, 1-10] и тем самым снизить как энергозатраты, так и капитальные вложения. Проведение одновременно экзотермической реакции СКО и эндотермической паровой конверсии природного газа на одном катализаторе позволяет осуществлять процесс получения смесей водорода и оксида углерода, обогащенных водородом, в автотермическом режиме [J.W.Jenkins and E. Shutt, The Hot SpotТМ Reactor, Platinum Metals Review, 1989, 33 (3), 118-127].
Изучение процесса СКО метана в пилотной установке на блочном катализаторе, содержащем Pt-Pd [J.К. Hoshmuth, Catalytic partial oxidation of methane over monolith supported catalyst, Appl. Catal., B: Environmental, v.1 (1992) 89], показало, что при времени контакта ~0.02 с в лобовом слое блока протекает полное окисление метана, а в последующих слоях - паровая и углекислотная конверсия метана. Поэтому для получения максимальных выходов целевого продукта - синтез-газа катализатор должен быть активным одновременно в этих трех реакциях. В соответствии с этим для эффективного протекания медленных реакций конверсии метана требуется катализатор с развитой поверхностью. Одновременно вследствие большого градиента температуры по длине блока катализатор должен иметь высокую термическую устойчивость.
Для проведения процесса СКО при малых временах контакта ~10-2 с используют Pt-Rh сетки или 10% Rh/блочный носитель, что очень дорого и экономически невыгодно [D.A.Hickman. L.D.Schmidt, Synthesis gas formation by direct oxidation of methane, in "Catalytic Selective Oxidation", ACS Symposium series, 1993, p.416-426. P.M.Torniainen, X.Chu and L.D.Schmidt, Comparison of monolith-supported metals for the direct oxidation of methane to syngas, J.Catal., 1994, v.146, 1-10].
Известен способ получения водорода [WO 99/48805, С 01 В 3/40, опубл. 30.09.00] путем проведения СКО и паровой конверсии углеводородов на одном катализаторе в автотермическом режиме: паровую конверсию проводят при введении пара в смесь углеводорода и кислородсодержащего газа после того, как начался процесс СКО и установился автотермический режим. В качестве катализаторов используют родий, нанесенный на термостойкий носитель, содержащий смесь оксидов церия и циркония при весовом отношении Ce/Zr от 0.05 до 19.
Известен способ СКО метана для получения оксида углерода и водорода [US 5149464, С 01 В 3/26, 1992] при температуре 650-900oС и объемной скорости 40000-80000 ч-1 (0,05-0,09 с) в присутствии катализатора, представляющего собой либо переходный металл или его оксид, нанесенный на термостабильный оксид одного из элементов (М): Mg, В, Al, Ln, Ga, Si, Ti, Zr, Hf, либо перовскитоподобный смешанный оксид общей формулы MxM'yOz со структурой пирохлора, где М' - переходный металл, в том числе элементы 8 группы. Атомное отношение элемента 8 группы к сумме неблагородных элементов в этих соединениях 1: 1 или 3:1 и содержание благородных металлов составляет 32,9-48 мас.%. Конверсия метана в присутствии смешанных оксидов Pr2Ru2O7, Eu2Ir2O7, La2MgPtO6 при объемной скорости 40000 ч-1 и 777o не превышает 94%, а увеличение объемной скорости до 80000 ч-1 приводит к снижению конверсии метана до 73% и селективности по СО и водороду до 82 и 90% соответственно.
В европейском патенте [ЕР 303438, С 01 В 3/38, 15.02.89] для получения смеси водорода и оксида углерода предлагают способ СКО углеводородов при контакте реакционной смеси, содержащей углеводород, кислород или кислородсодержащий газ и, необязательно, пары воды, с катализатором в зоне селективного каталитического окисления. Зона СКО содержит катализатор с соотношением: геометрическая поверхность/объем не менее 5 см2/см3. Катализатор может содержать благородные металлы, никель, кобальт, хром, церий, лантан и их смесь, нанесенные на термостойкий оксидный носитель, в том числе кордиерит, муллит, титанат алюминия, циркониевую шпинель, оксид алюминия. В то же время в патенте ЕР 303438 утверждают, что скорость реакции парциального окисления лимитируется скоростью массообмена и не зависит от химической природы катализатора, что позволяет в этом случае использовать материалы, не проявляющие каталитическую активность, но обеспечивающие необходимое соотношение: геометрическая поверхность/объем. Процесс проводят при температурах в интервале 760-1090oС и объемной скорости от 20000 до 500000 ч-1.
В патентах [RU 2115617, С 01 В 3/38, 20.07.98, RU 2136581, С 01 В 3/38, 10.09.99, RU 2137702, С 01 В 3/38, 20.09.99, RU 2123471, С 01 В 3/38, 20.12.98, US 5486313, С 07 С 1/02. 23.01.1996 и US 5639401, С 07 С 1/02, 17.06.97] предлагается способ СКО углеводородов, в том числе серусодержащих (0.05-100 ррм) [RU 2132299, С 01 В 3/38, 27.06.99, US 5720901, C 07 C 1/02, 24.04.98], в синтез-газ с использованием катализаторов, содержащих благородные металлы (до 10 мас.% Pt, Pd, Rh, Os), нанесенные на термостойкий носитель. В качестве носителей используют, например, α-Аl2О3, гексаалюминат бария (зерно размером ~1 мм) или ZrO2, термостабилизированный оксидами элементов групп III В или II А Периодической таблицы (пористые блоки в виде пенокерамики, устойчивые к термоударам). Процесс проводят в реакторе с неподвижным слоем катализатора, имеющим большую извилистость - отношение длины пути газа при прохождении через блок к его длине - в пределах 1.1-10 при температурах 950-1300oС и скорости потока газовой смеси 2-104-108 л/кг-ч. Недостатками такого способа являются большое гидравлическое сопротивление слоя катализатора с высокой извилистостью и высокая стоимость катализаторов вследствие большого содержания благородных металлов и использования в качестве носителя дорогостоящей пенокерамики на основе циркония, ограничивающая их практическое применение.
Известен процесс получения синтез-газа [US 5989457, С 07 С 1/02, 23.11.99] при взаимодействии метана или углеводородов или их смеси с двуокисью углерода в присутствии катализатора, содержащего от 0.1 до 7 мас.% Pt, Ni, Pd или Со на термостойком носителе, в состав которого входит не менее 80 мас. % ZrO2 и по крайней мере 0.5-10 мол.% одного из оксидов Y, La, Al, Са, Се или Sc. Процесс проводят на катализаторе с размером зерна 0.3-0.6 мм при 700-800oС и объемной скорости потока 12750 ч-1. При этих условиях конверсия метана составляет ~60-70%, выход СО ~30%.
Известен также способ получения смеси водорода и оксида углерода [US 5500149, С 07 С 1/02, 19.03.96] при контакте смеси, содержащей метан, кислород и СО2, при температурах 600-1000oС и объемной скорости ~5000-20000 ч-1 с твердым катализатором в виде зерен ~0.3 мм, отвечающим следующей формуле: MxM'yOz или MxOz или M'yOz на термостойком носителе, где М и М' представляют широкий круг щелочных, щелочноземельных, переходных и других элементов. Предлагаемые катализаторы эффективны как в углекислотной конверсии метана, так и при сочетании реакций селективного каталитического окисления и углекислотной конверсии метана. Вариация состава реакционной смеси позволяет варьировать состав получаемого синтез-газа и регулировать тепловой баланс процесса.
В патенте [US 5741440, С 01 В 3/38, 21.04.98] предлагают способ получения смеси водорода и оксида углерода при контакте реакционной смеси, содержащей двуокись углерода, водород, по крайней мере один углеводород и, необязательно, пар, с катализатором на основе Pt или Ni, нанесенных на термостабильный оксид (Аl2О3, MgO) при температурах 650-1450oС. Замена в исходной смеси, по крайней мере, части паров воды водородом позволяет увеличить количество синтез-газа и снизить содержание двуокиси углерода в конечном газе, а вариация состава исходной смеси - получать смесь водорода и оксида углерода с соотношением Н2/СО от 0.7 до 3. Отметим, что для смесей без воды для получения синтез-газа с Н2/СО≥2 необходима высокая концентрация водорода в исходной смеси, что увеличивает затраты на производство конечного продукта.
В патенте [US 5855815, С 07 С 1/02, 05.01.99] предлагают получать синтез-газ путем восстановления двуокиси углерода смесью природного газа, кислорода и пара в присутствии катализатора, содержащего никель и промоторы - щелочные или щелочно-земельные элементы, нанесенные на кремний-содержащий носитель, такой как силикагель, силикат, алюмосиликат или цеолит (пентасил). Последний носитель имеет поверхность от 300 до 600 м2/г. Процесс проводят при 600-1000oС и объемной скорости 1000-500000 ч-1, отношение Н2/СО изменяется в пределах 1/3-3/1.
Таким образом, для получения смеси водорода и оксида углерода с различным соотношением Н2/СО используют как процесс СКО, так и его комбинацию с эндотермическими процессами конверсии углеводородов при малых временах контакта реакционной смеси с катализатором, который должен отвечать жестким требованиям: иметь малое гидравлическое сопротивление, высокую термостабильность, обеспечивать высокие конверсии углеводородов и селективность по водороду и оксиду углерода и при этом не дезактивироваться из-за образования углерода на поверхности. Кроме того, природный газ часто содержит серусодержащие примеси и катализатор должен быть устойчивым к ним.
Известно, что высокая термостабильность и устойчивость к тепловым ударам материалов тем выше, чем ниже их коэффициент термического расширения [D.L. Trimm, Catalytic combustion (Review), Appl.Catal. 7(1983), 249-282]. Известные катализаторы процессов получения смеси водорода и оксида углерода, как правило, содержат оксиды, например α-Аl2О3, имеющий положительный коэффициент термического расширения. Известен способ снижения объемного коэффициента термического расширения (КТР) материалов [US 5919720, С 04 В 035/10, 06.07.99] , в котором используются композиции, включающие вещества с отрицательным или близким к нулю КТР общей формулы
А2-x3+Аy4+Мz3+М3-y6+РyО12,
где А3+ и М3+ - металл, имеющий состояние окисления 3+ (Al, Cr, Fe, Er, Ga, In, Lu, Sc, Tm, Y, Yb и их смесь, А4+ - металл, имеющий состояние окисления 4+ (Hf, Zr), M6+ - металл, имеющий состояние окисления 6+(W, Мо и их смесь), у - изменяется от 0 до 2, х=y+z и изменяется от 0,1 до 1,9.
Наиболее близким к заявленному по технической сущности и достигаемому эффекту является способ СКО для получения синтез-газа в присутствии катализаторов на основе смешанных оксидов со структурой перовскитов [Пат. РФ 2144844, B 01 J 23/10, С 01 В 31/18, 27.01.2000]. Процесс СКО метана проводят в присутствии перовскитов общей формулы АВОx или AB1-yMyOx, где А - редкоземельный элемент (например, La), В - переходный элемент (например, Ni), М - благородный металл, нанесенных на блоки сотовой структуры из α-Al2O3, при объемной скорости 25000-200000 ч-1. При температурах 700-850oС достигаются высокие конверсии метана и селективность по синтез-газу. Однако перовскиты - сложные оксиды, содержащие переходные металлы, в большой степени подвержены отравлению серусодержащими соединениями. Кроме того, носитель сотовой структуры подвержен растрескиванию вследствие положительного КТР корунда.
Изобретение решает задачу создания термостабильного катализатора для получения смеси водорода и оксида углерода, эффективного при малых временах контакта как в реакциях селективного каталитического окисления углеводородов кислородом, так и паровой и углекислотной конверсии углеводородов, в том числе в присутствии серусодержащих соединений, и процесса получения смеси водорода и оксида углерода с использованием этого катализатора.
Задача решается за счет использования катализатора, являющегося сложным композитом и содержащего смешанные оксиды со структурой перовскита или флюорита и переходные и/или благородные металлы и дополнительно компоненты с низким коэффициентом термического расширения и осуществления каталитического превращения смеси, содержащей углеводород или смесь углеводородов и/или воздух, или СО2, или пар, или их смесь, а также, необязательно, серусодержащие соединения, в присутствии этого катализатора. При этом сохраняются высокие конверсия метана и селективность, термостабильность катализатора, отсутствует его зауглероживание и отравление серусодержащими соединениями.
Указанный технический результат достигается использованием катализатора, имеющего состав, мас.%:
Переходный или благородный элемент - Не более 10
Смешанный оксид - Не менее 1
Материал с ультранизким коэффициентом термического расширения не выше 8•10-6 град-1 - Не более 95
Al2O3 - Остальное
Смешанный оксид включает оксид со структурой перовскита M1B1-yMyOz и/или оксид со структурой флюорита M1xM21-xOz, где:
М - элемент 8 группы (Pt, Rh, Ir),
М1 - редкоземельный или щелочноземельный элемент,
М2 - элемент IV b группы Периодической системы (Zr, Hf),
В - переходный элемент - 3d элементы 4-го периода,
0,01<х<1,0≤y<1, z определяется степенью окисления катионов и их стехиометрическим соотношением.
Под термином "редкоземельный элемент" подразумевают элементы, относящиеся к группе редкоземельных элементов, включающей элементы группы III b Периодической системы и 4f элементы, например La, Ce, Nd.
Под термином щелочноземельный элемент подразумевают элементы группы II а Периодической системы, например Sr, Ca.
Введение в состав высокотемпературных катализаторов компонентов с низким или отрицательным КТР позволяет регулировать их коэффициент термического расширения и тем самым получать катализаторы с высокой термоустойчивостью. В качестве компонентов, имеющих низкий или отрицательный коэффициент термического расширения, используют кордиерит, муллит, сложные фосфаты циркония со структурой NZP, вольфраматы (M2W3O12, MW2O8), молибдаты, ванадаты (MV2O7), титанат алюминия.
Полученный сложный композит - катализатор имеет поверхность 2-200 м2/г. Катализатор имеет форму таблеток, колец, сфер, блоков сотовой структуры.
Процесс проводят путем последовательного пропускания газовой смеси, содержащей углеводород, или смесь углеводородов и/или воздух, или пар, или их смесь с температурой 20-500oС через неподвижный слой катализатора, который состоит из 1-20 рядов.
Для получения необходимого состава смеси водорода и оксида углерода варьируют состав исходной смеси. Исходная смесь содержит углеводород или смесь углеводородов и/или воздух, или СО2, или пар, или их смесь, а также, необязательно, серусодержащие соединения, процесс проводят при температурах 500-1000oС. В качестве углеводородного сырья используют, например, природный газ, метан, пропан-бутановую смесь, смесь более тяжелых углеводородов, керосин и т.д. В качестве кислородсодержащего газа - кислород, воздух, двуокись углерода, воду.
Предлагаемые катализаторы готовят с использованием методов смешения и пропитки с последующей сушкой и прокалкой. Процесс получения смеси водорода и оксида углерода проводят в проточном реакторе при температуре 550-1000oС, вариации времени контакта и состава реакционной смеси. Состав исходной реакционной смеси и продукты реакции анализируют хроматографически. Эффективность работы катализатора характеризуют степенью превращения метана, селективностью по СО и водороду, количеством полученной смеси водорода и оксида углерода и их соотношением. Материальный баланс по углероду во всех случаях составлял 100±2%.
Сущность изобретения иллюстрируется следующими примерами.
Пример. 1. Для приготовления блоков из Аl2О3 в лопастном смесителе объемом 5 л смешивают порошки гидроксида алюминия, содержащего 70 мас.% псевдобемита, и высокотемпературного оксида, содержащего 35 мас.% корунда, в количестве по 1000 г с добавлением 25 г структурообразующей добавки (древесной муки)* и 6 г поверхностноактивного вещества (глицерина)* в присутствии пептизатора - 6% азотной кислоты. Полученную пасту формуют в виде черенков или блоков сотовой структуры через специальную насадку. Далее Аl2О3 сушат и прокаливают при 800-1300oС. Удельная поверхность - 2-200 м2/г. Для определения КТР формуют трубочки с наружным диаметром 6 мм, внутренним - 2,5 мм и прокаливают при 1300oС. Средний КТР в интервале температур 20-1000oС составляет 5•10-6 град-1.
Пример 2. Для приготовления смешанного каркасного фосфата циркония, кальция и стронция со структурой NZP смешивают стехиометрические количества растворов нитратов кальция, стронция и оксинитрата циркония. Медленно, при непрерывном перемешивании приливают стехиометрическое количество раствора фосфорной кислоты. Полученный гель сушат и прокаливают при температуре 1300oС. Полученный порошок фосфата имеет состав Ca0,5Sr0,5Zr4P6O24 и структуру типа NZP. Этот порошок помещают в смеситель, добавляют исходный гель и перемешивают. Полученную массу формуют в виде блоков, сушат и прокаливают при 1300oС. Для определения КТР формуют трубочки с наружным диаметром 6 мм, внутренним - 2,5 мм. Средний КТР в интервале температур 20-1000oС составляет ~1•10-6 град-1.
Пример 3. В лопастном смесителе в присутствии азотной кислоты смешивают порошки Са0,5Sr0,5Zr4Р6O24, полученного, как в примере 2, и гидроксида алюминия, взятые в равном количестве. Полученную массу формуют, сушат и прокаливают при 1300oС. Для определения КТР формуют трубочки с наружным диаметром 6 мм, внутренним 2,5 мм. Средний КТР в интервале температур 20-1000oС составляет ~1•10-6 град-6.
Пример 4. Al2O3 в виде микроблока с поверхностью 100 м2/г, приготовленный, как в 1, прокаливают при 800oС, пропитывают с учетом влагоемкости смешанным раствором солей церия и циркония с атомным соотношением Ce/Zr=0,8: 0,2. После пропитки катализатор сушат и прокаливают на воздухе при 900oС 2 часа. Полученный образец пропитывают раствором H2PtCl6, сушат и прокаливают при 900oС. Полученный катализатор, содержащий 10 мас.% смешанного оксида церия и циркония и 0,3 мас.% Pt, испытывают в проточном реакторе при составе реакционной смеси: СН4 - 25%, O2 - 12.5%, остальное - N2 и времени контакта ~0,09 с, активность приведена в табл. 1.
Пример 5. Аl2O3 в виде микроблока с поверхностью 100 м2/г, приготовленный, как в 1, пропитывают с учетом влагоемкости смешанным раствором солей церия и циркония с мольным соотношением церия и циркония 0,8:0,2. После пропитки катализатор сушат и прокаливают на воздухе при 900oС 2 часа. Процедуру пропитки повторяют. Полученный образец пропитывают совместным раствором H2PtCl6 и RhCl3, сушат и прокаливают при 900oС. Полученный образец содержит, мас. %: 16 смешанного оксида церия и циркония, 0,3 Pt, 0,3 Rh. Испытания проводят, как в 4, активность приведена в табл. 1.
Пример 6. Катализатор готовят, как в примере 4, за исключением того, что образец пропитывают раствором солей церия и циркония с мольным соотношением церия и циркония 0,5: 0,5. Полученный образец содержит 7 мас.% смешанного оксида церия и циркония, 0,3 мас.% Pt. Испытания проводят, как в примере 4, активность приведена в табл.1.
Пример 7. Аl2О3 в виде микроблока с поверхностью 2 м2/г, приготовленный, как в 1, прокаливают при 1300oС и пропитывают с учетом влагоемкости смешанным раствором солей с мольным соотношением церия и циркония 0,2:0,8. После пропитки катализатор сушат и прокаливают на воздухе при 900oС 2 часа. Полученный образец пропитывают раствором H2PtCl6, сушат, прокаливают и испытывают, как в примере 4, активность приведена в табл.1. Полученный образец содержит 8,5 мас.% смешанного оксида церия и циркония, 1 мас.% Pt.
Пример 8. Катализатор готовят, как в примере 7, за исключением того, что для пропитки используют смешанный раствор солей кальция и циркония с мольным соотношением Ca: Zr= 0,05: 0,95. Полученный образец содержит 7,5 мас.% смешанного оксида кальция и циркония, 1 мас.% Pt. Испытывают, как в примере 4, активность приведена в табл. 1.
Пример 9. Катализатор готовят и испытывают, как в примере 7, за исключением того, что для пропитки используют блок, приготовленный, как в 2. Полученный образец содержит 8 мас.% смешанного оксида церия и циркония, 1 мас.% Pt. Испытывают, как в примере 4, активность приведена в табл. 1.
Пример 10. Катализатор готовят и испытывают, как в примере 7, за исключением того, что для пропитки используют блок, приготовленный, как в 3. Полученный образец содержит 7,8 мас.% смешанного оксида церия и циркония, 1 мас.% Pt. Испытывают, как в примере 4, активность приведена в табл. 1.
Пример 11. Катализатор готовят, как в примере 7, за исключением того, что для пропитки используют вместо H2PtCl6 раствор нитрата никеля. Образец содержит 8 мас.% смешанного оксида церия и циркония и 2,5 мас.% Ni и испытывают в реакции углекислотной конверсии метана. Условия испытаний и активность приведены в табл. 2.
Пример 12. Катализатор готовят, как в примере 4, и испытывают в реакции селективного окисления метана в присутствии паров воды. Условия испытаний и активность приведены в табл. 2.
Пример 13. Катализатор готовят, как в примере 7, и испытывают в реакции паровой конверсии метана. Условия испытаний и активность приведены в табл. 2.
Пример 14. Катализатор готовят, как в примере 7, за исключением того, что для пропитки вместо H2PtCl6 используют смешанный раствор H2PtCl6, нитратов лантана и никеля с атомным отношением катионов La:Ni:Pt=1:0,994:0,006. Полученный катализатор содержит 7 мас.% перовскита LaNi0,994Pt0,006 и 10 мас. % смешанного оксида церия и циркония. Катализатор испытывают в реакции селективного окисления природного газа в присутствии SO2. Активность приведена в табл. 3.
Пример 15. В реактор загружают два слоя катализатора: 1 слой - катализатор готовят, как в примере 14, второй слой - катализатор готовят, как в примере 7. Проводят реакцию селективного окисления природного газа. Активность приведена в табл. 4.
Пример 16. В лопастном смесителе в присутствии азотной кислоты смешивают порошки кордиерита и гидроксида алюминия, взятые в равном количестве. Полученную массу формуют в тонкостенные микроблоки, сушат и прокаливают при 1300oС. Для определения КТР формуют трубочки с наружным диаметром 6 мм, внутренним - 2,5 мм. Средний КТР в интервале температур 20-1000oС составляет ~0,9•10-6 град-1.
Пример 17. Катализатор готовят, как в примере 4, за исключением того, что в качестве носителя используют блок, приготовленный, как в примере 16. Полученный образец содержит 7 мас.% смешанного оксида церия и циркония, 0,3 мас. % Pt. Испытания проводят, как в примере 4, активность приведена в табл. 1.
Пример 18. В лопастном смесителе в присутствии азотной кислоты смешивают порошки высокодисперсного Al2TiO5, предварительно отожженного при 1500o, и гидроксида алюминия, взятые в равном количестве. Полученную массу формуют, сушат и прокаливают при 1300oС. Для определения КТР формуют трубочки с наружным диаметром 6 мм, внутренним - 2,5 мм. Средний КТР в интервале температур 20-1000oС составляет ~0,5•10-6 град-1.
Пример 19. Катализатор готовят, как в примере 4, за исключением того, что в качестве носителя используют блок, приготовленный, как в примере 18. Полученный образец содержит 7 мас.% смешанного оксида церия и циркония, 0,3 мас. % Pt. Испытания проводят, как в примере 4, активность приведена в табл. 1.
Пример 20. Носитель готовят, как в примере 16, за исключением того, что используют муллит и гидроксид алюминия. Средний КТР в интервале температур 20-1000oС составляет ~1•10-6 град-1.
Пример 21. Катализатор готовят, как в примере 4, за исключением того, что в качестве носителя используют блок, приготовленный, как в примере 20. Полученный образец содержит 7 мас.% смешанного оксида церия и циркония, 0,3 мас. % Pt. Испытания проводят, как в примере 4, активность приведена в табл. 1.
Пример 22. Носитель готовят, как в примере 16, за исключением того, что используют вольфрамат циркония и гидроксид алюминия. Средний КТР в интервале температур 20-1000oС составляет ~5•10-7 град-1.
Пример 23. Катализатор готовят, как в примере 4, за исключением того, что в качестве носителя используют блок, приготовленный, как в примере 22. Полученный образец содержит 7 мас.% смешанного оксида церия и циркония, 0,3 мас. % Pt. Испытания проводят, как в примере 4, активность приведена в табл. 1.
Пример 24. Носитель готовят, как в примере 16, за исключением того, что используют молибдат скандия и гидроксид алюминия. Средний КТР в интервале температур 20-1000oС составляет ~2•10-7 град-1.
Пример 25. Катализатор готовят, как в примере 4, за исключением того, что в качестве носителя используют блок, приготовленный, как в примере 24. Полученный образец содержит 7 мас.% смешанного оксида церия и циркония, 0,3 мас. % Pt. Испытания проводят, как в примере 4, активность приведена в табл. 1.
Пример 26. Носитель готовят, как в примере 16, за исключением того, что используют ванадат циркония и гидроксид алюминия. Средний КТР в интервале температур 20-1000oС составляет ~6•10-7 град-1.
Пример 27. Катализатор готовят, как в примере 4, за исключением того, что в качестве носителя используют блок, приготовленный, как в примере 26. Полученный образец содержит 7 мас.% смешанного оксида церия и циркония, 0,3 мас. % Pt. Испытания проводят, как в примере 4, активность приведена в табл. 1.
Как видно из приведенных примеров и таблицы, разработан термостабильный катализатор для получения смеси водорода и оксида углерода, эффективный при малых временах контакта как в реакциях селективного каталитического окисления углеводородов кислородом, так и паровой и углекислотной конверсии углеводородов, в том числе в присутствии серусодержащих соединений.

Claims (6)

1. Катализатор получения смеси водорода и оксида углерода путем каталитического превращения смеси, содержащей углеводород, или смесь углеводородов, и/или воздух, или СО2, или пар, или их смесь, на основе оксида алюминия, смешанных оксидов, включающих редкоземельные и переходные элементы и металлы VIII группы, отличающийся тем, что катализатор является сложным композитом и дополнительно содержит компоненты с ультранизким коэффициентом термического расширения не выше 8•10-6 см/град и имеет следующий состав, мас. %:
Переходный элемент и/или благородный элемент - Не более 10
Смешанный оксид - Не менее 1
Материал с ультранизким коэффициентом термического расширения не выше 8•10-6 см/град - Не более 95
Al2O3 - Остальное
при этом материал с ультранизким коэффициентом термического расширения выбран из группы: кордиерит, сложные фосфаты циркония со структурой NZP, титанат алюминия, муллит, вольфраматы, молибдаты, ванадаты, смешанный оксид включает оксид со структурой перовксита
M1B1-yMyOz
и/или оксид со структурой флюорита
Мx1М1-x2Оz,
где М - элемент 8 группы, например Pt, Rh, Ir;
М1 - редкоземельный элемент, например La, Ce, Nd или щелочноземельный, например Са, Sr;
М2 - элемент IVb группы Периодической системы, например Zr, Hf;
В - переходный элемент - 3d элементы 4-го периода, например Ni, Co;
0,01<х<1;
0<у<1;
z определяется степенью окисления катионов и их стехиометрическим соотношением.
2. Катализатор по п. 1, отличающийся тем, что катализатор содержит переходный элемент, например Ni, Сo, и/или благородный металл - элемент 8 группы, например Pt, Rh, Ir.
3. Катализатор по пп. 1 и 2, отличающийся тем, что имеет форму гранул, экструдатов, черенков или сотовую структуру с поверхностью 2-200 м2/г.
4. Способ получения смеси водорода и оксида углерода путем каталитического превращения смеси, содержащей углеводород, или смесь углеводородов и/или воздух, или СO2, или пар, или их смесь, с использованием катализатора на основе смешанных оксидов, включающих редкоземельные и переходные элементы и металлы VIII группы, отличающийся тем, что процесс проводят путем последовательного пропускания газовой смеси, содержащей углеводород, или смесь углеводородов, и/или воздух, или пар, или их смесь, с температурой 20-500oС через неподвижный слой катализатора по любому из пп. 1-5.
5. Способ по п. 4, отличающийся тем, что неподвижный слой катализатора состоит из 1-20 рядов сотового катализатора.
6. Способ по п. 4, отличающийся тем, что процесс проводят в присутствии серусодержащих соединений в газовой смеси.
RU2001112828/04A 2001-05-08 2001-05-08 Катализатор и способ получения смеси водорода и оксида углерода RU2204434C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001112828/04A RU2204434C2 (ru) 2001-05-08 2001-05-08 Катализатор и способ получения смеси водорода и оксида углерода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001112828/04A RU2204434C2 (ru) 2001-05-08 2001-05-08 Катализатор и способ получения смеси водорода и оксида углерода

Publications (2)

Publication Number Publication Date
RU2204434C2 true RU2204434C2 (ru) 2003-05-20
RU2001112828A RU2001112828A (ru) 2003-08-10

Family

ID=20249508

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001112828/04A RU2204434C2 (ru) 2001-05-08 2001-05-08 Катализатор и способ получения смеси водорода и оксида углерода

Country Status (1)

Country Link
RU (1) RU2204434C2 (ru)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA012595B1 (ru) * 2005-11-15 2009-10-30 Чавдар Ангелов Ангелов Способ переработки природного газа в моторные топлива
RU2446010C2 (ru) * 2006-10-19 2012-03-27 Вестел Электроник Санайи Ве Тикарет А.С. Способ получения водорода прямым разложением природного газа и снг
RU2453366C1 (ru) * 2010-11-29 2012-06-20 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Катализатор и способ получения синтез-газа
WO2014031222A1 (en) * 2012-08-21 2014-02-27 Uop Llc The production of butanediol from a methane conversion process
US8927769B2 (en) 2012-08-21 2015-01-06 Uop Llc Production of acrylic acid from a methane conversion process
US8933275B2 (en) 2012-08-21 2015-01-13 Uop Llc Production of oxygenates from a methane conversion process
WO2015005819A1 (ru) 2013-07-10 2015-01-15 Общество с ограниченной ответственностью "Газохим Техно" Катализатор окислительной конверсии углеводородных газов с получением оксида углерода и водорода
US8937186B2 (en) 2012-08-21 2015-01-20 Uop Llc Acids removal and methane conversion process using a supersonic flow reactor
US9023255B2 (en) 2012-08-21 2015-05-05 Uop Llc Production of nitrogen compounds from a methane conversion process
US9308513B2 (en) 2012-08-21 2016-04-12 Uop Llc Production of vinyl chloride from a methane conversion process
US9327265B2 (en) 2012-08-21 2016-05-03 Uop Llc Production of aromatics from a methane conversion process
US9346039B2 (en) 2013-11-19 2016-05-24 Obshchestvo S Ogranichennoy Otvetstvennost'yu, “Gazokhim Tekhno” Method for preparing refractory alloy-based polymetallic oxide catalysts for the partial oxidation of hydrocarbons into synthesis gas
US9370757B2 (en) 2012-08-21 2016-06-21 Uop Llc Pyrolytic reactor
US9434663B2 (en) 2012-08-21 2016-09-06 Uop Llc Glycols removal and methane conversion process using a supersonic flow reactor
US9656229B2 (en) 2012-08-21 2017-05-23 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US9689615B2 (en) 2012-08-21 2017-06-27 Uop Llc Steady state high temperature reactor
US9707530B2 (en) 2012-08-21 2017-07-18 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA012595B1 (ru) * 2005-11-15 2009-10-30 Чавдар Ангелов Ангелов Способ переработки природного газа в моторные топлива
RU2446010C2 (ru) * 2006-10-19 2012-03-27 Вестел Электроник Санайи Ве Тикарет А.С. Способ получения водорода прямым разложением природного газа и снг
RU2453366C1 (ru) * 2010-11-29 2012-06-20 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Катализатор и способ получения синтез-газа
US9023255B2 (en) 2012-08-21 2015-05-05 Uop Llc Production of nitrogen compounds from a methane conversion process
US9308513B2 (en) 2012-08-21 2016-04-12 Uop Llc Production of vinyl chloride from a methane conversion process
US8933275B2 (en) 2012-08-21 2015-01-13 Uop Llc Production of oxygenates from a methane conversion process
US9707530B2 (en) 2012-08-21 2017-07-18 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US8937186B2 (en) 2012-08-21 2015-01-20 Uop Llc Acids removal and methane conversion process using a supersonic flow reactor
WO2014031222A1 (en) * 2012-08-21 2014-02-27 Uop Llc The production of butanediol from a methane conversion process
US9205398B2 (en) 2012-08-21 2015-12-08 Uop Llc Production of butanediol from a methane conversion process
US8927769B2 (en) 2012-08-21 2015-01-06 Uop Llc Production of acrylic acid from a methane conversion process
US9327265B2 (en) 2012-08-21 2016-05-03 Uop Llc Production of aromatics from a methane conversion process
US9689615B2 (en) 2012-08-21 2017-06-27 Uop Llc Steady state high temperature reactor
US9370757B2 (en) 2012-08-21 2016-06-21 Uop Llc Pyrolytic reactor
US9434663B2 (en) 2012-08-21 2016-09-06 Uop Llc Glycols removal and methane conversion process using a supersonic flow reactor
US9656229B2 (en) 2012-08-21 2017-05-23 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
WO2015005819A1 (ru) 2013-07-10 2015-01-15 Общество с ограниченной ответственностью "Газохим Техно" Катализатор окислительной конверсии углеводородных газов с получением оксида углерода и водорода
US9346039B2 (en) 2013-11-19 2016-05-24 Obshchestvo S Ogranichennoy Otvetstvennost'yu, “Gazokhim Tekhno” Method for preparing refractory alloy-based polymetallic oxide catalysts for the partial oxidation of hydrocarbons into synthesis gas

Similar Documents

Publication Publication Date Title
RU2204434C2 (ru) Катализатор и способ получения смеси водорода и оксида углерода
Choudhary et al. Catalysts for combustion of methane and lower alkanes
JP4768619B2 (ja) マイクロチャネル技術を用いる酸化方法およびそのために有用な新規触媒
JP4216067B2 (ja) 水素に富んだガスを発生させる方法
US4844837A (en) Catalytic partial oxidation process
US20020009407A1 (en) Reticulated ceramic foam catalysts for synthesis gas production
CN101160170B (zh) 具有以稀土元素改性氧化物载体的贵金属水煤气轮换催化剂
RU2123471C1 (ru) Способ каталитического частичного окисления углеводородов
US20070111884A1 (en) Catalyst support, supported catalyst, and methods of making and using the same
AU2004241941B2 (en) Oxidation process using microchannel technology and novel catalyst useful in same
WO2001036323A2 (en) Cobalt-based catalysts and process for producing synthesis gas
JP2005529824A (ja) 水−気体転化用白金族金属触媒のメタン化活性の抑制
RU2292237C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа
RU2491118C1 (ru) Способ приготовления катализатора для получения синтез-газа, катализатор, приготовленный по этому способу, и способ получения синтез-газа с его использованием
RU2144844C1 (ru) Катализатор (его варианты) и процесс получения синтез-газа
RU2248932C1 (ru) Катализатор (варианты), способ его приготовления (варианты) и способ получения синтез-газа
RU2185239C1 (ru) Катализатор и способ получения синтез-газа паровой конверсией углеводородов
JPS63248444A (ja) 炭化水素の水蒸気改質および/または部分酸化用触媒
Ismagilov et al. Development and study of metal foam heat-exchanging tubular reactor: Catalytic combustion of methane combined with methane steam reforming
RU2248240C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа
BG109348A (bg) Метод за преработване на природен газ в горива
RU2244589C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа
Pavlova et al. Monolith composite catalysts based on ceramometals for partial oxidation of hydrocarbons to synthesis gas
US20240116817A1 (en) Ceramic monolith composition
US20240139702A1 (en) Passive temperature control in cyclic flow reactors

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090509