RU2185239C1 - Катализатор и способ получения синтез-газа паровой конверсией углеводородов - Google Patents

Катализатор и способ получения синтез-газа паровой конверсией углеводородов Download PDF

Info

Publication number
RU2185239C1
RU2185239C1 RU2001111600/04A RU2001111600A RU2185239C1 RU 2185239 C1 RU2185239 C1 RU 2185239C1 RU 2001111600/04 A RU2001111600/04 A RU 2001111600/04A RU 2001111600 A RU2001111600 A RU 2001111600A RU 2185239 C1 RU2185239 C1 RU 2185239C1
Authority
RU
Russia
Prior art keywords
catalyst
solution
carrier
synthesis gas
zro
Prior art date
Application number
RU2001111600/04A
Other languages
English (en)
Inventor
А.С. Иванова
И.А. Золотарский
И.И. Боброва
Е.И. Смирнов
В.А. Кузьмин
А.С. Носков
В.Н. Пармон
Original Assignee
Институт катализа им.Г.К.Борескова СО РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт катализа им.Г.К.Борескова СО РАН filed Critical Институт катализа им.Г.К.Борескова СО РАН
Priority to RU2001111600/04A priority Critical patent/RU2185239C1/ru
Application granted granted Critical
Publication of RU2185239C1 publication Critical patent/RU2185239C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к катализаторам и способу паровой конверсии углеводородов, в частности метана, для получения синтез-газа. Описывается катализатор получения синтез-газа паровой конверсией углеводородов, включающий оксиды никеля, лантана, нанесенные на алюмомагниевый оксидный носитель, и дополнительно содержащий диоксид циркония при соотношении компонентов, мас. %: оксид никеля 3,7-16,0; оксид лантана 0,1-4,1; диоксид циркония 0,1-2,2; алюмомагниевый носитель остальное. Алюмомагниевый носитель имеет форму 3-листника с тремя цилиндрическими отверстиями с равной толщиной стенки в сечении. Описан также способ получения синтез-газа паровой конверсии углеводородов при 750-950oС в присутствии катализатора согласно изобретению. Технический результат - повышение длительности работы катализатора при высокой активности и увеличение степени использования активного компонента. 2 с. и 1 з.п. ф-лы, 1 ил., 1 табл.

Description

Изобретение относится к катализаторам паровой конверсии углеводородов, в частности метана, для получения синтез-газа.
Процесс каталитической конверсии углеводородов с водяным паром традиционно применяется в промышленности для получения синтез-газа, используемого при производстве аммиака, метанола, водорода, а также в водородной энергетике.
Химический состав катализатора неоднократно являлся предметом анализа в большом числе работ. Известно [В. В. Веселов, Н.П. Галенко. Катализаторы конверсии углеводородов. Киев: Наукова Думка, 1979, с.56-190], что первое место в ряду активности металлов в реакции паровой конверсии углеводородов занимают Ru и Rh, а именно:
Ru, Rh>Ni, Pt, Pd>Re>Co
Однако наибольшее распространение в промышленности получили катализаторы, содержащие в качестве активного компонента металлический никель благодаря его доступности и относительно невысокой стоимости. Кроме того, активный компонент на основе металлического никеля отличается наименьшей склонностью к окислению, осернению и зауглероживанию. Поэтому большинство катализаторов паровой конверсии углеводородов представляют собой металлический никель, нанесенный на носитель, в качестве которого используют либо оксиды металлов: MgO, Аl2О3, ZrO2 [A.C. СССР, N 383347, 25.02.1979; Ч. Саттерфелд. Практический курс гетерогенного катализа, М.: Мир, 1984, с. 361-371; A.C. СССР, N 1734820, 23.05.1992;], либо бинарные оксидные композиции: Al-Ca-O, Al-Mg-O, Y-Zr-O и др. [В.В. Веселов, Н.П. Галенко. Катализаторы конверсии углеводородов. Киев: Наукова Думка, 1979, с.56-190; Ч. Саттерфелд. Практический курс гетерогенного катализа, М. : Мир, 1984, с.361-371; А.С. Иванова, И.И. Боброва, Э. М. Мороз, В.А. Собянин, В.Ю. Гаврилов. Приготовление и активность Ni/Y-Zr-O - катализаторов паровой конверсии метана.//Кинетика и катализ, 38 (1997) 114-118], либо композитные материалы типа Аlo/Аl2О3 [L.L. Kuznetsova, V. N. Ananin, A.V. Pashis, V.V. Belyaev. Studies of composite catalysts of nickel on metal-ceramic substrates. //React.Rinet.and Catal.Lett., 43 (1991) 545-558].
Однако вследствие относительно высоких температур процесса конверсии углеводородов, наличия водяного пара, природы используемых углеводородов продолжаются поиски каталитических композиций, различающихся прежде всего наличием промоторов в активном компоненте. В промышленных процессах паровой конверсии природного газа и метана хорошо зарекомендовали себя катализаторы типа ГИАП-16, 17, 18, представляющие собой промотированный оксид никеля, нанесенный на предварительно сформированный высокотемпературный оксид алюминия, имеющего форму кольца [А.С. СССР. N 383347, B 01 J 11/32, 25.02.1979] .
Анализ существующих катализаторов конверсии углеводородов показывает, что помимо никельсодержащего активного компонента в их состав входят различные структурообразующие добавки (каолин, цемент, глина, графит, и др.). Катализаторы готовят различными методами: соосаждением соответствующих компонентов, смешением порошков или паст с последующими стадиями таблетирования или экструзионного формования; пропиткой носителя растворами соответствующих солей. При этом содержание никеля в катализаторах варьируется в пределах 10-60 мас.%.
Перечисленные катализаторы характеризуются высокими значениями механической прочности и устойчивости. Тем не менее исследования, связанные с повышением стабильности, термостойкости катализаторов, продолжаются. В последние годы в ряде стран широкое применение получили катализаторы, для синтеза которых используют носители сложной геометрической формы. Это обусловлено тем, что при проведении сильно эндотермических реакций, к которым относится реакция паровой конверсии углеводородов, в трубчатых реакторах возможно возникновение неоднородности температуры по сечению трубы реактора. Параметры теплопередачи неподвижного слоя с протекающей газовой фазой можно существенно повысить за счет формы и структуры зерна, поскольку это определяет режим течения потока газовой фазы. Так, в частности, катализаторы паровой конверсии углеводородов фирмы Topsoe представляют собой цилиндр с семью отверстиями [Ч. Саттерфелд. Практический курс гетерогенного катализа, М.: Мир, 1984, с.361-371]; катализаторы, полученные согласно [US Pat. RE 32,044, B 01 J 021/04; B 01 J 023/74; 03.12.1985], представляют собой также цилиндры, но уже с множеством каналов, ориентированных параллельно их оси, имеющих форму сегмента, круга, квадрата, гексаугольника, овала или синусоиды.
Наиболее близким к предлагаемому катализатору является никельсодержащий катализатор конверсии углеводородов [US Pat. N 3993459, C 01 B 2/16; B 01 J 23/10; 23.11.1976]. Катализатор получают путем пропитки оксидного алюмомагниевого носителя, представляющего собой пластину с приблизительно параллельными каналами, раствором азотнокислых солей лантана, кобальта, никеля, урана, церия и/или тория с последующими стадиями сушки при 80-180oС и прокаливания при 500-900oС. Катализатор имеет состав, мас.%: (2,0-13,0) активный компонент - (98-87) носитель. При этом, в состав активного компонента входят, мас. %: - (54-90)Lа2О3, (2-29)СоО, (1-10)NiO, (0,1-8)UO2, (0,1-9)CeO2 (ThO2); в состав носителя: (0-50)MgO, (100-50)Аl2О3.
К недостаткам этого катализатора относится:
1. Сложная оксидная комбинация активного компонента, включающая относительно дорогое и редкое сырье, содержащее кобальт, уран, торий.
2. Относительно высокое содержание оксидов кобальта и лантана.
Изобретение решает задачу повышения длительности стабильной работы катализатора при высокой активности и увеличенной степени использования активного компонента.
Задача решается катализатором получения синтез-газа паровой конверсией углеводородов, включающим оксиды никеля, лантана, нанесенные на алюмомагниевый оксидный носитель, и дополнительно содержащим диоксид циркония при соотношении компонентов, мас.%:
Оксид никеля - 3,7-16,0
Оксид лантана - 0,1-4,1
Диоксид циркония - 0,1-2,2
Алюмомагниевый носитель - Остальное
Алюмомагниевый носитель имеет форму 3-листника с тремя цилиндрическими отверстиями с равной толщиной стенки в сечении.
Задача решается также способом получения синтез-газа паровой конверсией углеводородов при температуре 750-950oС в присутствии вышеуказанного катализатора.
Способ получения катализатора включает получение алюмомагниевого носителя, имеющего форму трехлистника с тремя цилиндрическими отверстиями (чертеж), и пропитку его раствором азотнокислых солей никеля, циркония и лантана с последующими стадиями сушки при 110-130oС и прокаливания при 500-900oС в течение 4 часов. Полученные катализаторы характеризуются высокой активностью в реакции паровой конверсии метана при 750oС. При использовании предлагаемых катализаторов скорость конверсии метана либо больше, либо сопоставима со скоростью конверсии метана на известных катализаторах. Так, константа скорости паровой конверсии метана на предлагаемых катализаторах составляет 8,0-9,5 см3/гс атм на натуральном зерне и 26-30 см3/гс атм на фракции 0,25-0,5 мм; в то же время на катализаторах ГИАП-8, 16 (кольцо) она составляет 2,0-2,3 см3/гс атм на натуральном зерне и 14-27 см3/гс атм на фракции 0,25-0,5 мм; на катализаторе фирмы TOPSOE (цилиндр с семью отверстиями: одно в центре и шесть по периферии) она составляет 8,0 см3/гс атм на натуральном зерне и 20,0 см3/гс атм на фракции 0,25-0,5 мм.
Отличительными признаками предлагаемого катализатора являются:
1. Состав активного компонента катализатора, включающий, мас.%: (3,7-16,0)NiO, (0,1-2,2)ZrO2, (0,1-4,1)Lа2О3.
2. Форма гранулы, представляющая собой трехлистник с тремя цилиндрическими отверстиями (чертеж), позволяющая повысить степень использования активного компонента. Кроме того, предлагаемая форма гранулы позволяет добиться высокой турбулизации потока реакционного газа в промышленных трубчатых реакторах, обеспечивая минимальный перепад давления по высоте слоя при осуществлении турбулентного режима, а это в свою очередь способствует значительному увеличению теплоотдачи от стенки реактора к слою катализатора и наоборот.
Каталитические свойства предлагаемых катализаторов в реакции паровой конверсии метана исследуют в проточно-циркуляционной установке при атмосферном давлении. Исходная смесь содержит 33 об.% СН4 и 67 об.% H2O. Состав исходной реакционной смеси и продуктов анализируют хроматографически. Катализаторы перед проведением экспериментов восстанавливают в потоке водорода при 750oС, 1-2 часа. Активность катализаторов характеризуют величиной К= r/РCH4, где r - скорость паровой конверсии метана, РCH4 - давление метана в реакционной смеси. Катализатор используют как в виде фракции 0,25-0,5 мм, так в виде натурального зерна и испытания проводят при 750oС.
Сущность предлагаемого изобретения иллюстрируется следующими примерами.
Пример 1. 4,5г MgO смешивают с 72,5 г АlOOН, 40,6 г Аl2О3, 8,3 мл 66%-ного раствора НNО3 и 80 мл Н2O в течение 40-60 минут в Z-образном смесителе, затем формуют в виде 3-листника с 3-мя цилиндрическими отверстиями. Алюмомагниевый носитель сушат на воздухе 12-15 часов, затем в сушильном шкафу при 110-130oС, после чего прокаливают при температуре 800-1400oС. Полученный носитель имеет состав, мас.%: 4,2 MgO-95,8 Аl2О3.
10 г гранул носителя пропитывают по влагоемкости водным раствором, полученным смешением 2,6 мл раствора Ni(NО3)2 с концентрацией 154 г NiO/л, 1,0 мл раствора Lа(NО3)3 с концентрацией 173 г Lа2О3/л и 0,06 мл раствора ZrO(NО3)2 с концентрацией 118,8 г ZrO2/л. Образец сушат при температуре 110-130oС и затем прокаливают в печи при температуре 500-900oС в течение 4-6 часов. Полученный катализатор имеет состав, мас.%: 3,7 NiO-0,1 ZrO2-1,8 Lа2О3-94,4 Mg-Al-O. Катализатор в виде гранулы испытан в реакции паровой конверсии метана при 750oС; каталитические свойства приведены в таблице.
Пример 2. Аналогичен примеру 1. Отличие состоит в том, что носитель пропитывают раствором, полученным смешением 2,6 мл раствора Ni(NО3)2 с концентрацией 154 г NiO/л, 1,0 мл раствора Lа(NО3)3 с концентрацией 173 г Lа2О3/л и 0,06 мл раствора ZrO(NO3)2 с концентрацией 118,8 г ZrO2/л. Образец сушат при температуре 110-130oС и затем прокаливают в печи при температуре 500oС и затем подвергают повторной пропитке раствором азотнокислых солей. После второй пропитки образец также сушат в сушильном шкафу при 110-130oС и прокаливают в печи при температуре 500-900oС в течение 4-6 часов. Полученный катализатор имеет состав, мас.%: 7,4 NiO-0,2 ZrO2-3,6 Lа2О3-88,8 Mg-Al-O. Катализатор в виде гранулы испытан в реакции паровой конверсии метана при 750oС; каталитические свойства приведены в таблице.
Пример 3. Аналогичен примеру 1. Отличие состоит в том, что носитель пропитывают раствором, полученным смешением 3,0 мл раствора Ni(NO3)2 с концентрацией 154 г NiO/л, 0,2 мл раствора Lа(NО3)3 с концентрацией 173 г Lа2О3/л и 0,5 мл раствора ZrO(NО3)2 с концентрацией 118,8 г ZrO2/л. Полученный катализатор имеет состав, мас. %: 4,0 NiO-0,7 ZrO2-0,2 Lа2О3-95,1 Mg-Al-O. Катализатор в виде гранулы испытан в реакции паровой конверсии метана при 750oС; каталитические свойства приведены в таблице.
Пример 4. Аналогичен примеру 1. Отличие состоит в том, что носитель пропитывают раствором, полученным смешением 3,0 мл раствора Ni(NО3)2 с концентрацией 154 г NiO/л, 0,2 мл раствора Lа(NО3)3 с концентрацией 173 г Lа2О3/л и 0,5 мл раствора ZrO(NО3)2 с концентрацией 118,8 г ZrО2/л. Образец сушат при температуре 110-130oС, затем прокаливают в печи при температуре 500oС и подвергают повторной пропитке раствором азотнокислых солей. После второй пропитки образец также сушат в сушильном шкафу при 110-130oС и прокаливают в печи при температуре 500-900oС в течение 4-6 часов. Полученный катализатор имеет состав, мас. %: 7,8 NiO-1,6 ZrO2-0,36 Lа2О3-90,24 Mg-Al-O. Катализатор в виде гранулы испытан в реакции паровой конверсии метана при 750oС; каталитические свойства приведены в таблице.
Пример 5. Аналогичен примеру 1. Отличие состоит в том, что носитель пропитывают раствором, полученным смешением 2,3 мл раствора Ni(NO3)2 с концентрацией 250 г NiO/л, 1,5 мл раствора Lа(NО3)3 с концентрацией 173 г La2O3/л и 0,2 мл раствора ZrO(NО3)2 с концентрацией 118,8 г ZrO2/л. Образец сушат при температуре 110-130oС, затем прокаливают в печи при температуре 500oС и подвергают повторной пропитке раствором азотнокислых солей. После второй пропитки образец также сушат в сушильном шкафу при 110-130oС и прокаливают в печи при температуре 500-900oС в течение 4-6 часов. Полученный катализатор имеет состав, мас.%: 10,3 NiO-0,3 ZrO2-4,1 Lа2О3-85,3 Mg-Al-O. Катализатор в виде гранулы испытан в реакции паровой конверсии метана при 750oС; каталитические свойства приведены в таблице.
Пример 6. Аналогичен примеру 1. Отличие состоит в том, что носитель пропитывают раствором, полученным смешением 2,9 мл раствора Ni(NO3)2 с концентрацией 250 г NiO/л, 0,1 мл раствора Lа(NО3)3 с концентрацией 173 г Lа2О3/л и 1,0 мл раствора ZrO(NО3)2 с концентрацией 118,8 г ZrO2/л. Образец сушат при температуре 110-130oС, затем прокаливают в печи при температуре 500oС и подвергают повторной пропитке раствором азотнокислых солей. После второй пропитки образец также сушат в сушильном шкафу при 110-130oС и прокаливают в печи при температуре 500-900oС в течение 4-6 часов. Полученный катализатор имеет состав, мас.%: 11,5 NiO-2,2 ZrO2-0,3 Lа2О3-86,0 Mg-Al-O. Катализатор в виде гранулы испытан в реакции паровой конверсии метана при 750oС; каталитические свойства приведены в таблице.
Пример 7. Аналогичен примеру 6. Отличие состоит в том, что катализатор испытан в реакции паровой конверсии метана при 750oС на фракции 0,25-0,50 мм; каталитические свойства приведены в таблице.
Пример 8. 4,5 г MgO смешивают с 62,5 г АlOOН, 48,4 г Аl2О3, 11 мл 73%-ного раствора НNО3 и 70-75мл H2O в течение 40-60 минут в Z-образном смесителе, затем формуют в виде 3-листника с 3-мя цилиндрическими отверстиями. Алюмомагниевый носитель сушат на воздухе 12-15 часов, затем в сушильном шкафу при 110-130oС, после чего прокаливают при температуре 800-1400oС. Полученный носитель имеет состав, мас.%: 4,1 MgO-95,9 Аl2О3.
10 г гранул носителя пропитывают по влагоемкости водным раствором, полученным смешением 2,7 мл раствора Ni(NО3)2 с концентрацией 250 г NiO/л, 0,1 мл раствора Lа(NО3)3 с концентрацией 173 г Lа2О3/л и 0,9 мл раствора ZrO(NО3)2 с концентрацией 118,8 г ZrO2/л. Образец сушат при температуре 110-130oС, затем прокаливают в печи при температуре 500oС и подвергают повторной пропитке раствором азотнокислых солей. После второй пропитки образец также сушат в сушильном шкафу при 110-130oС и прокаливают в печи при температуре 500-900oС в течение 4-6 часов. Полученный катализатор имеет состав, мас. %: 10,3 NiO-1,9 ZrO2-0,1 Lа2О3-87,7 Mg-Al-O. Катализатор в виде гранулы испытан в реакции паровой конверсии метана при 750oС; каталитические свойства приведены в таблице.
Пример 9. 9,5 г MgO смешивают с 68,9 г АlOOН, 38,6 г Аl2O3, 7 мл 73%-ного раствора HNО3 и 76 мл Н2О в течение 40-60 минут в Z-образном смесителе, затем формуют в виде 3-листника с 3-мя цилиндрическими отверстиями. Алюмомагниевый носитель сушат на воздухе 12-15 часов, затем в сушильном шкафу при 110-130oС, после чего прокаливают при температуре 800-1400oС. Полученный носитель имеет состав, мас.%: 8,9 MgO-91,1 Аl2О3.
10 г гранул носителя пропитывают по влагоемкости водным раствором, полученным смешением 2,9 мл раствора Ni(NО3)2 с концентрацией 250 г NiO/л, 0,1 мл раствора Lа(NО3)3 с концентрацией 173 г Lа2О3/л и 1,0 мл раствора ZrO(NО3)2 с концентрацией 118,8 г ZrO2/n. Образец сушат при температуре 110-130oС, затем прокаливают в печи при температуре 500oС и подвергают повторной пропитке раствором азотнокислых солей. После второй пропитки образец также сушат в сушильном шкафу при 110-130oС и прокаливают в печи при температуре 500-900oС в течение 4-6 часов. Полученный катализатор имеет состав, мас. %: 10,0 NiO-2,0 ZrO2-0,2 Lа2О3-87,8 Mg-Al-O. Катализатор в виде гранулы испытан в реакции паровой конверсии метана при 750oС; каталитические свойства приведены в таблице.
Пример 10. Аналогичен примеру 9. Отличие состоит в том, что катализатор испытан в реакции паровой конверсии метана при 750oС на фракции 0,25-0,50 мм; каталитические свойства приведены в таблице.
Как видно из приведенных примеров и данных таблицы, предлагаемое изобретение позволяет осуществлять процесс паровой конверсии углеводородов с целью получения синтез-газа с высокой активностью, обеспечивая стабильную работу катализатора при эффективном использовании активного компонента.

Claims (2)

1. Катализатор получения синтез-газа паровой конверсией углеводородов, включающий оксиды никеля, лантана, нанесенные на алюмомагниевый оксидный носитель, отличающийся тем, что он дополнительно содержит диоксид циркония при соотношении компонентов, мас. %:
Оксид никеля - 3,7-16,0
Оксид лантана - 0,1-4,1
Диоксид циркония - 0,1-2,2
Алюмомагниевый носитель - Остальное
2. Катализатор по п. 1, отличающийся тем, что алюмомагниевый носитель имеет форму 3-листника с тремя цилиндрическими отверстиями с равной толщиной стенки в сечении.
3. Способ получения синтез-газа паровой конверсией углеводородов при температуре 750-950oС в присутствии никельсодержащего катализатора, отличающийся тем, что в качестве катализатора используют катализатор состава, мас. %:
Оксид никеля - 3,7-16,0
Оксид лантана - 0,1-4,1
Диоксид циркония - 0,1-2,2
Алюмомагниевый носитель - Остальное
при этом алюмомагниевый носитель имеет форму 3-листника с тремя цилиндрическими отверстиями с равной толщиной стенки в сечении.
RU2001111600/04A 2001-04-26 2001-04-26 Катализатор и способ получения синтез-газа паровой конверсией углеводородов RU2185239C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001111600/04A RU2185239C1 (ru) 2001-04-26 2001-04-26 Катализатор и способ получения синтез-газа паровой конверсией углеводородов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001111600/04A RU2185239C1 (ru) 2001-04-26 2001-04-26 Катализатор и способ получения синтез-газа паровой конверсией углеводородов

Publications (1)

Publication Number Publication Date
RU2185239C1 true RU2185239C1 (ru) 2002-07-20

Family

ID=20249104

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001111600/04A RU2185239C1 (ru) 2001-04-26 2001-04-26 Катализатор и способ получения синтез-газа паровой конверсией углеводородов

Country Status (1)

Country Link
RU (1) RU2185239C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107332A1 (ru) * 2009-03-20 2010-09-23 Институт Катализа Имени Г.К.Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его приготовления и способ получения синтез-газа из метана
RU2446879C1 (ru) * 2010-10-07 2012-04-10 Министерство Промышленности И Торговли Российской Федерации Катализатор парового риформинга углеводородов и способ его получения
RU2462306C1 (ru) * 2011-06-01 2012-09-27 Общество с ограниченной ответственностью "НИАП-КАТАЛИЗАТОР" Катализатор парового риформинга углеводородов метанового ряда c1-c4 и способ его приготовления
RU2549878C1 (ru) * 2013-12-17 2015-05-10 Общество с ограниченной ответственностью "Синтезин-В" Катализатор риформинга газообразного углеводородного сырья (варианты)
US10099972B2 (en) 2013-12-06 2018-10-16 Exxonmobil Upstream Research Company Methods and systems for producing liquid hydrocarbons
US11213805B2 (en) 2016-12-15 2022-01-04 Rosneft Oil Company Catalyst for the conversion of natural or associated gas into synthesis gas in an autothermal reforming process and method for preparing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107332A1 (ru) * 2009-03-20 2010-09-23 Институт Катализа Имени Г.К.Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его приготовления и способ получения синтез-газа из метана
RU2446879C1 (ru) * 2010-10-07 2012-04-10 Министерство Промышленности И Торговли Российской Федерации Катализатор парового риформинга углеводородов и способ его получения
RU2462306C1 (ru) * 2011-06-01 2012-09-27 Общество с ограниченной ответственностью "НИАП-КАТАЛИЗАТОР" Катализатор парового риформинга углеводородов метанового ряда c1-c4 и способ его приготовления
US10099972B2 (en) 2013-12-06 2018-10-16 Exxonmobil Upstream Research Company Methods and systems for producing liquid hydrocarbons
RU2549878C1 (ru) * 2013-12-17 2015-05-10 Общество с ограниченной ответственностью "Синтезин-В" Катализатор риформинга газообразного углеводородного сырья (варианты)
US11213805B2 (en) 2016-12-15 2022-01-04 Rosneft Oil Company Catalyst for the conversion of natural or associated gas into synthesis gas in an autothermal reforming process and method for preparing the same

Similar Documents

Publication Publication Date Title
US4613584A (en) Catalyst for the production of synthesis gas or hydrogen and process for the production of the catalyst
JP4768619B2 (ja) マイクロチャネル技術を用いる酸化方法およびそのために有用な新規触媒
DK177765B1 (da) Ny katalysator design og fremgangsmåde til fremstilling af damp-reformeringskatalysatorer
DK163294B (da) Fremgangsmaade til fremstilling af en hydrogenrig gas ved autotermal reformering
Tuna et al. Biogas steam reformer for hydrogen production: Evaluation of the reformer prototype and catalysts
JP5105420B2 (ja) 希土類元素で変性された酸化物担体を有する水−ガスシフト貴金属触媒
JPH0510133B2 (ru)
RU2204434C2 (ru) Катализатор и способ получения смеси водорода и оксида углерода
RU2185239C1 (ru) Катализатор и способ получения синтез-газа паровой конверсией углеводородов
RU2325219C1 (ru) Пористый керамический каталитический модуль и способ получения синтез-газа в его присутствии
RU2491118C1 (ru) Способ приготовления катализатора для получения синтез-газа, катализатор, приготовленный по этому способу, и способ получения синтез-газа с его использованием
RU2650495C1 (ru) Катализатор для паровой конверсии углеводородов
KR101480801B1 (ko) 이산화탄소 개질반응용 모노리스 촉매, 이의 제조방법 및 이를 이용한 합성가스의 제조방법
Guan et al. Catalytic combustion of methane over Pd-based catalyst supported on a macroporous alumina layer in a microchannel reactor
JPS60222145A (ja) 耐熱性触媒の使用方法
Dossumov et al. Oxidation of methane over polyoxide catalysts
KR100893547B1 (ko) 금속 구조체 촉매 및 그 제조방법
RU2412758C1 (ru) Катализатор для конверсии углеводородов, способ его приготовления и способ получения синтез-газа
RU2528988C1 (ru) Способ получения катализатора для процесса метанирования
KR20130042878A (ko) 탄화수소 개질촉매 제조방법
Pavlova et al. Monolith composite catalysts based on ceramometals for partial oxidation of hydrocarbons to synthesis gas
CN1087657C (zh) 烃类制合成气用催化剂的制备方法
CN101559375B (zh) 用于透氧膜反应器中焦炉煤气制氢的催化剂及其制备方法
RU2429072C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа
JP2019514688A (ja) 三酸化硫黄の転化のための触媒組成物及び水素生成方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080427

NF4A Reinstatement of patent

Effective date: 20101110

MM4A The patent is invalid due to non-payment of fees

Effective date: 20120427