RU2198897C1 - Способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата - Google Patents
Способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата Download PDFInfo
- Publication number
- RU2198897C1 RU2198897C1 RU2001133161/04A RU2001133161A RU2198897C1 RU 2198897 C1 RU2198897 C1 RU 2198897C1 RU 2001133161/04 A RU2001133161/04 A RU 2001133161/04A RU 2001133161 A RU2001133161 A RU 2001133161A RU 2198897 C1 RU2198897 C1 RU 2198897C1
- Authority
- RU
- Russia
- Prior art keywords
- polymerization
- dimethyl
- molecular weight
- methyl sulfate
- monomer
- Prior art date
Links
Images
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
Изобретение относится к получению водорастворимых высокомолекулярных катионных полиэлектролитов, которые используются в целлюлозно-бумажной промышленности при производстве бумаги, для ускорения процессов осаждения и фильтрования суспензий при очистке промышленных оборотных вод и бытовых сточных вод. Описывается способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата с молекулярной массой (2,7-3,4)•106 полимеризацией 1,2-диметил-5-винилпиридинийметилсульфата в водной среде в присутствии инициатора трет-бутилпероксипропанола-2 и α-аминокислоты, причем в качестве α-аминокислоты используют глицин, лейцин или метионин в количестве 2,5-30 ммоль/кг мономера. Техническим результатом является сокращение времени протекания полимеризации, снижение количества непрореагировавшего мономера и повышение молекулярной массы поли-1,2-диметил-5-винилпиридинийметилсульфата. 1 табл.
Description
Изобретение относится к получению водорастворимых высокомолекулярных катионных полиэлектролитов, которые используются в целлюлозно-бумажной промышленности при производстве бумаги, для ускорения процессов осаждения и фильтрования суспензий при очистке промышленных оборотных вод и бытовых сточных вод.
Известен способ получения полимеров солей 2-метил-5-винилпиридина или сополимеров этих солей с виниловыми мономерами в присутствии инициатора (авт. св. СССР 364631, С 08 F 7/12, опубл. 26.03.1973).
Процесс осуществляют в органическом растворителе - метаноле, этаноле. В качестве инициатора используют триацетилацетонат марганца, процесс проводят при температуре 5-35oС, по окончании полимеризации полимер осаждают ацетоном, промывают хлороформом и сушат.
Недостатком данного способа является сложность процесса получения полимера, связанная с использованием растворителя и осадителя, которые необходимо регенерировать. Полученный таким образом полимер имеет низкую молекулярню массу, а следовательно, низкую флокулирующую активность. Наличие в полимере остаточных ионов марганца отрицательно влияет на экологические показатели полиэлектролита.
Известен способ получения высокомолекулярного катионного флокулянта полимеризацией 1,2-диметил-5-винилпиридинийметилсульфата или его сополимеризацией с акриламидом суспензионным методом (авт. св. 395409, С 08 F 7/12, опубл. 28.11.1973). Процесс осуществляют путем диспергирования мономера в ароматическом углеводороде с добавлением воды, стабилизатора и проведения суспензионной полимеризации при инициировании персульфатом аммония с дальнейшим выделением гранулированного полимера.
Описанный процесс приводит к получению полиэлектролита, обладающего сравнительно низкой характеристической вязкостью и молекулярной массой, который не может обладать высокой флокулирующей способностью.
Известны способы получения полиэлектролитов на основе солей диметиламиноэтилметакрилата в присутствии инициирующей системы, включающей ион Со3+ и α-аминокислоту (авт. св. СССР 1464438, C 08 F 120/56, опубл. 17.06.86) или, дополнительно, сорбит или глюкозу (пат. РФ 1748420, C 08 F 120/34, 2/04, опубл. 22.01.90; пат. РФ 1750183, C 08 F 120/34, опубл. 22.01.90).
Однако α-аминокислоты в указанных изобретениях входят в состав окислительно-восстановительной системы, имеющей многокомпонетный состав, и служат для генерирования радикалов при получении полиэлектролитов класса солей аминоалкиловых эфиров.
Наиболее близким техническим решением к заявляемому является способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата полимеризацией мономера в водной среде в присутствии инициатора трет.-бутилпероксипропанола-2 с введением метионина в количестве 0,008-0,03% от массы мономера (0,5-2,0 ммоль/кг мономера), как детоксиканта остаточного винилпиридина (пат. РФ 2048479, С 08 F 26/06, 4/40, опубл. 20.11.95). В этом случае продуктом реакции является концентрированный водный раствор полиэлектролита, который может быть использован в качестве флокулянта без выделения полимера.
Недостатками данного способа являются недостаточно высокая скорость полимеризации, наличие остаточного мономера и недостаточно высокая молекулярная масса образующегося полимера.
Задачей настоящего изобретения является повышение скорости полимеризации, сокращение времени проведения процесса и содержания остаточного мономера, а также повышение молекулярной массы поли-1,2-диметил-5-винилпиридинийметилсульфата для увеличения его флокулирующей способности.
Техническим результатом при использовании предлагаемого способа получения является сокращение времени протекания полимеризации, снижение количества непрореагировавшего мономера и повышение молекулярной массы поли-1,2-диметил-5-винилпиридинийметилсульфата.
Технический результат достигается тем, что способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата с молекулярной массой 2,7-3,4•106 осуществляют полимеризацией 1,2-диметил-5-винилпиридинийметилсульфата в водной среде в присутствии инициатора трет.-бутилпероксипропанола-2 и α-аминокислоты, причем в качестве α-аминокислоты используют глицин, лейцин или метионин в количестве 2,5-30 ммоль/кг мономера.
Повышение скорости полимеризации и молекулярной массы образующегося полиэлектролита связано с использованием α-аминокислот как агентов передачи радикального активного центра. Так при гомолитическом распаде оксиалкилпероксидов и инициирования полимеризации в их присутствии активной частицей, участвующей в зарождении цепи, является метильный радикал. Также кроме метильного образуется кислород-центрированный трет.-бутоксирадикал, его участие в реакциях, протекающих в системе, может быть двояким. С одной стороны, он может отрывать атом водорода от субстрата и быть источником радикалов другой природы. С другой стороны, кислород-центрированные радикалы участвуют в обрыве цепи, что более вероятно. Скорость обрыва цепи за счет реакции растущего радикала с кислород-центрированными радикалами высока из-за высоких коэффициентов диффузии последних даже в системе с высокой вязкостью. Влияние аминокислот на процесс полимеризации связано с взаимодействием с кислород-центрированным (первичным) радикалом с образованием углерод-центрированного инициирующего радикала. При этом снижается скорость обрыва цепи, что ведет к увеличению скорости полимеризации, сокращению времени реакции и количества остаточного мономера, а также к повышению молекулярной массы полимера.
При этом влияние вводимых аминокислот - глицина, лейцина и метионина на процесс полимеризации проявляется различным образом. Так добавление глицина в количестве 6,6-13,4 ммоль/кг мономера приводит к резкому росту скорости полимеризации. В результате время реакции сокращается в 2,7 раза, а степень превращения мономера увеличивается до 99,91%, что значительно повышает технологические показатели процесса и экологичность готового продукта. Молекулярная масса образующегося полимера при этом возрастает на 10%. Активность глицина связана с высокой реакционной способностью в реакции передачи цепи от радикалов с отрывом атома водорода от молекулы глицина. По-видимому, глицин очень эффективно взаимодействует с первичными кислород-центрированными радикалами, предотвращает их участие в обрыве цепи. В результате наблюдается значительный рост скорости полимеризации. Однако возможное участие глицина в реакции передачи цепи от растущего макрорадикала приводит к сравнительно малому росту молекулярной массы образующегося полимера.
Введение лейцина оказывается наиболее эффективным, так как добавление такой аминокислоты в количестве 2,5-30 ммоль/кг мономера приводит к сокращению времени полимеризации в 2 раза, повышению степени превращения мономера; до 99,95%. При этом достигается наибольший эффект повышения молекулярной массы в 1,3 раза. Высокая активность лейцина связана с наличием в структуре молекулы третичного атома углерода. Такой реакционный центр обладает значительной реакционной способностью в реакции отрыва атома водорода при взаимодействии с кислород-центрированными радикалами. Образующийся радикальный центр на третичном атоме углерода является относительно стабильным и легко вступает в реакцию присоединения по двойной связи мономера. В результате наблюдается рост как скорости полимеризации, так и молекулярной массы образующегося полимера.
Добавление в реакционную массу метионина приводит к проявлению положительного эффекта, однако этот эффект выражен в меньшей степени, чем в случае других аминокислот. Так время полимеризации сокращается в 1,6 раза, степень превращения увеличивается до 99,68%, а молекулярная масса возрастает на 10%. Меньшая активность метионина связана с наличем в структуре молекулы сульфидной группы, которая может служить реакционным центром при передаче цепи как от кислород-центрированных первичных радикалов, так и от растущего макрорадикала. Образующейся сера-центрированный радикал менее активен в реакции реинициирования, чем углерод-центрированные радикалы. В результате скорость полимеризации и молекулярная масса полимера увеличиваются в меньшей степени, чем при добавлении глицина и лейцина.
Повышение количества вводимой аминокислоты свыше 30 ммоль/кг мономера или снижение ниже 2,5 ммоль/кг мономера приводит к снижению скорости полимеризации и молекулярной массы полимера.
Способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата осуществляют следующим образом. В реактор загружают 1,2-диметил-5- винилпиридинийметилсульфат, аминокислоту в количестве 2,5-30 ммоль/кг и добавляют необходимое количество воды. После растворения при перемешивании реакционную массу продувают аргоном в течение 1-2 минут и вводят инициатор трет.-бутилпероксипропанол-2 в количестве 1,8 ммоль/кг мономера. Полимеризация проходит в изотермическом режиме. Полученный полимер полностью растворим в воде и имеет высокую молекулярную массу.
Пример 1
В химический стакан загружается 10,0 г 1,2-диметил-5- винилпиридинийметилсульфат, 0,005 г глицина и 8,22 мл дистиллированной воды, смесь перемешивается на магнитной мешалке до полного растворения мономеров. В системе создается инертная атмосфера путем кратковременной продувки (1-2 мин) аргоном. Затем в раствор вводится 1,78 мл раствора ТБПП в воде концентрацией 0,01 моль/л. Смесь интенсивно перемешивается и помещается в ампулу. Реакционная масса выдерживается 1,5 часа при 20±0,5oС. После завершения реакции определяется остаточное содержание мономера в полимеризате фотометрическим методом и рассчитывается степень превращения. Степень превращения составляет 99,85%. Характеристическая вязкость, измеренная в вискозиметре Убеллоде в 0,05 М растворе бромида калия при 25oС, составляет 4,1 дл/г. Молекулярная масса, рассчитанная по уравнению [η] = 0,285•10-4•M0,8, составила 2,8•106.
В химический стакан загружается 10,0 г 1,2-диметил-5- винилпиридинийметилсульфат, 0,005 г глицина и 8,22 мл дистиллированной воды, смесь перемешивается на магнитной мешалке до полного растворения мономеров. В системе создается инертная атмосфера путем кратковременной продувки (1-2 мин) аргоном. Затем в раствор вводится 1,78 мл раствора ТБПП в воде концентрацией 0,01 моль/л. Смесь интенсивно перемешивается и помещается в ампулу. Реакционная масса выдерживается 1,5 часа при 20±0,5oС. После завершения реакции определяется остаточное содержание мономера в полимеризате фотометрическим методом и рассчитывается степень превращения. Степень превращения составляет 99,85%. Характеристическая вязкость, измеренная в вискозиметре Убеллоде в 0,05 М растворе бромида калия при 25oС, составляет 4,1 дл/г. Молекулярная масса, рассчитанная по уравнению [η] = 0,285•10-4•M0,8, составила 2,8•106.
Примеры 2-9 осуществляются аналогичным образом с варьированием аминокислоты и ее концентрации. Пример 10 осуществляется без добавления аминокислот. Пример 11 осуществляется при введении метионина в количестве 2,0 ммоль/ кг мономера (прототип). Данные по примерам 1-11 приведены в таблице.
Как следует из данных таблицы, проведение полимеризации 1,2-диметил-5-винилпиридинийметилсульфата в присутствии α-аминокислоты в количестве 2,5-30 ммоль/кг мономера приводит к сокращению времени полимеризации в 1,6-2,7 раза, снижению содержания остаточного мономера на 0,10-0,45% и повышению молекулярной массы образующегося полимера в 1,1-1,3 раза.
Claims (1)
- Способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата с молекулярной массой (2,7-3,4)•106 полимеризацией 1,2-диметил-5-винилпиридинийметилсульфата в водной среде в присутствии инициатора трет-бутилпероксипропанола-2 и α-аминокислоты, отличающийся тем, что в качестве α-аминокислоты используют глицин, лейцин или метионин в количестве 2,5-30 ммоль/кг мономера.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001133161/04A RU2198897C1 (ru) | 2001-12-06 | 2001-12-06 | Способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001133161/04A RU2198897C1 (ru) | 2001-12-06 | 2001-12-06 | Способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2198897C1 true RU2198897C1 (ru) | 2003-02-20 |
Family
ID=20254628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2001133161/04A RU2198897C1 (ru) | 2001-12-06 | 2001-12-06 | Способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2198897C1 (ru) |
-
2001
- 2001-12-06 RU RU2001133161/04A patent/RU2198897C1/ru not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4138446A (en) | Water-soluble high polymers and their preparation | |
US4075183A (en) | Preparation of water-soluble high polymers | |
JP3385586B2 (ja) | 改良された性能を示す四級化されている第三級アミノメチルアクリルアミドポリマーのミクロエマルジヨン | |
CN108359103B (zh) | 一种疏水改性壳聚糖絮凝剂及其制备方法和应用 | |
JPH10110033A (ja) | 生分解性ポリ(アミノ酸)ポリマー | |
EP1311553A1 (fr) | Polymeres cationiques de haut poids moleculaire, procede pour leur preparation, et leurs applications | |
RU2198897C1 (ru) | Способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата | |
JPS608689B2 (ja) | アクリルアミド系重合体の製造法 | |
AU742527B2 (en) | Process for the preparation of dispersions of water-soluble polymers | |
JP3071364B2 (ja) | 含水ゲルの製造方法、重金属イオン吸着剤、色素吸着剤、微生物担体および酵素固定用担体 | |
CA1103274A (en) | PREPARATION OF N-(AMINOMETHYL)-.alpha.,.beta.-ETHYLENICALLY UNSATURATED CARBOXAMIDES AND THEIR POLYMERS | |
RU2236418C2 (ru) | Способ получения поли-1,2-диметил-5-винилпиридинийметилсульфата | |
US6569968B1 (en) | Polymer of a water-soluble radical-polymerizable monomer, process for producing the polymer and flocculant comprising the polymer | |
CN1597550A (zh) | 一种阳离子型高分子絮凝剂及其制备方法 | |
JP4109145B2 (ja) | 高分子凝集剤及びその製造方法 | |
JPS5823429B2 (ja) | 新規な水溶性高分子金属捕捉剤 | |
JP4807647B2 (ja) | (亜)硝酸性窒素低減剤の製造方法及び該製造方法で得られた(亜)硝酸性窒素低減剤による水中の(亜)硝酸性窒素濃度の低減方法 | |
JP3945067B2 (ja) | 水性分散液及びその製造方法 | |
FR2468628A1 (fr) | Composition pour la preparation de polymeres d'acrylamide et d'acides acryliques ameliores contenant une 1,3 dione et procede de preparation de ces polymeres | |
JPS5836697A (ja) | スラツジボリユ−ム改良剤 | |
JPH0326206B2 (ru) | ||
JPS6355528B2 (ru) | ||
JP2003041141A (ja) | 水溶性高分子分散液及びその製造方法 | |
RU2223975C2 (ru) | Водорастворимые сополимеры, содержащие в своем составе атомы азота, композиции на основе водорастворимых гомополимеров и сополимеров, содержащих в своем составе атомы азота, и способ получения композиций водорастворимых гомополимеров и сополимеров | |
JPH03118804A (ja) | カチオン性高分子凝集剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20031207 |