RU2167723C1 - Method of foam separation and flotation - Google Patents

Method of foam separation and flotation Download PDF

Info

Publication number
RU2167723C1
RU2167723C1 RU99125360A RU99125360A RU2167723C1 RU 2167723 C1 RU2167723 C1 RU 2167723C1 RU 99125360 A RU99125360 A RU 99125360A RU 99125360 A RU99125360 A RU 99125360A RU 2167723 C1 RU2167723 C1 RU 2167723C1
Authority
RU
Russia
Prior art keywords
flotation
reagents
grained
pulp
foam
Prior art date
Application number
RU99125360A
Other languages
Russian (ru)
Inventor
М.Н. Злобин
Original Assignee
Злобин Михаил Николаевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Злобин Михаил Николаевич filed Critical Злобин Михаил Николаевич
Priority to RU99125360A priority Critical patent/RU2167723C1/en
Application granted granted Critical
Publication of RU2167723C1 publication Critical patent/RU2167723C1/en

Links

Images

Landscapes

  • Paper (AREA)

Abstract

FIELD: mineral concentration. SUBSTANCE: conditioning of initial material with reagents in presence of oily reagents is carried out by fractions after its preliminary hydraulic classification and dewatering. Operation of conditioning of obtained coarse-grained sand and fine-grained slime fractions is made with use of circulating flotation waters with cocurrent hydraulic removal of excessive oily reagents and fine-grained slime fractions from coarse-grained material. Supply of conditioned material onto foam layer and into pulp body is effected by directing obtained fine-grained slime fractions with excessive flotation reagents into pulp body and coarse-grained material onto foam layer. Conditioning of initial material with reagents and preparation of foam layer are made with use of pneumohydraulic aeration in which introduced preliminarily into pressure water is compressed air. Pressure water is used in the form of liquid phase from dewatering of foam product with production, after pneumohydraulic aeration of finely-dispersed agr-air mixture with ultrafine gas-air bubbles and surfactants and oily substances. Solid phase obtained after dewatering of foam product is directed for treatment with use of film flotation. EFFECT: improved conditions for formation of flotation complexes with high carrying ability. 2 cl, 2 dwg

Description

Изобретение относится к области обогащения полезных ископаемых, а именно к флотационным методам обогащения, и может быть использовано при переработке рудного и нерудного сырья. The invention relates to the field of mineral processing, and in particular to flotation concentration methods, and can be used in the processing of ore and non-metallic materials.

Известен способ пенной сепарации, включающий кондиционирование исходного сырья с реагентами, предварительную подготовку пенного слоя путем введения в пульпу пенообразователя и газа в виде пузырьков равного размера, подачу кондиционированного сырья на пенный слой и удаление продуктов разделения /1/. A known method of foam separation, including conditioning the feedstock with reagents, preliminary preparation of the foam layer by introducing into the pulp a foaming agent and gas in the form of bubbles of equal size, supplying conditioned raw materials to the foam layer and removing separation products / 1 /.

Недостатком известного способа является отсутствие в нем ряда последовательных операций, обеспечивающих повышение технологических показателей процесса. В частности, в этом способе отсутствуют условия для формирования флотокомплексов с повышенной несущей способностью, что связано с отсутствием тонкодисперсных газовых пузырьков. Кроме того, данный способ не обеспечивает дифференцированного подхода при обогащении фракций материала различной крупности, в нем нет операций для флотационного извлечения частиц полезного компонента из объема аэрированной пульпы. The disadvantage of this method is the lack of a number of sequential operations that provide an increase in technological parameters of the process. In particular, in this method there are no conditions for the formation of flotation complexes with increased bearing capacity, which is associated with the absence of finely dispersed gas bubbles. In addition, this method does not provide a differentiated approach for the enrichment of fractions of material of various sizes, it does not have operations for flotation extraction of particles of a useful component from the volume of aerated pulp.

Наиболее близким по технической сущности и достигаемому результату является способ пенной сепарации и флотации /2/, включающий кондиционирование исходного сырья с реагентами в присутствии поверхностно-активных и маслообразных веществ, приготовление пенного слоя путем введения в пульпу пенообразователя и газа в виде тонкодиспергированных пузырьков, подачу кондиционированного сырья на пенный слой и в объем пульпы, разделение в пенном слое и в объеме пульпы, получение и удаление пенного и камерного продуктов при одновременном их обезвоживании с получением твердой и жидкой фаз. The closest in technical essence and the achieved result is a method of foam separation and flotation / 2 /, including conditioning the feedstock with reagents in the presence of surface-active and oily substances, preparing a foam layer by introducing into the pulp a foaming agent and gas in the form of finely dispersed bubbles, supplying conditioned raw materials on the foam layer and in the volume of the pulp, separation in the foam layer and in the volume of the pulp, receiving and removing foam and chamber products while dehydrating them ivany with obtaining solid and liquid phases.

Данный способ во многом устраняет недостатки способа /1/. Однако и он не лишен недостатков, связанных с отсутствием ряда последовательных операций, обеспечивающих оптимальные условия для извлечения частиц полезного компонента различной крупности из объема аэрированной пульпы, а также для создания в аэрированной пульпе и в пенном слое оптимальных условий для формирования флотокомплексов с повышенной несущей способностью, что также ведет к снижению технологических показателей процесса. В нем нет раздельных операций для оптимального перемешивания пульпы с тонкодисперсными газовыми и воздушными пузырьками в комплексе с поверхностно-активными и маслообразными веществами и для последующего флотационного разделения частиц различной крупности в ламинарных режимах. This method largely eliminates the disadvantages of the method / 1 /. However, it is not without drawbacks associated with the absence of a number of sequential operations providing optimal conditions for the extraction of particles of a useful component of various sizes from the volume of aerated pulp, as well as for creating optimal conditions in aerated pulp and in a foam layer for the formation of flotation complexes with increased load-carrying capacity, which also leads to a decrease in technological parameters of the process. It does not have separate operations for optimal mixing of pulp with finely dispersed gas and air bubbles in combination with surfactants and oily substances and for subsequent flotation separation of particles of various sizes in laminar regimes.

Целью изобретения является повышение технологических показателей процесса за счет улучшения условий для формирования флотокомплексов с повышенной несущей способностью. The aim of the invention is to improve the technological parameters of the process by improving the conditions for the formation of flotation complexes with high bearing capacity.

Поставленная цель достигается тем, что в способе пенной сепарации и флотации, включающем кондиционирование исходного сырья с реагентами в присутствии поверхностно-активных и маслообразных веществ, приготовление пенного слоя путем введения в пульпу пенообразователя и газа в виде тонкодиспергированных пузырьков, подачу кондиционированного сырья на пенный слой и в объем пульпы, разделение в пенном слое и в объеме пульпы, получение и удаление пенного и камерного продуктов при одновременном их обезвоживании с получением твердой и жидкой фаз, кондиционирование исходного сырья с реагентами в присутствии маслообразных реагентов, осуществляют пофракционно после предварительной его гидравлической классификации и обезвоживания, причем операцию кондиционирования полученных при этом крупнозернистой песковой и мелкозернистой шламистой фракций осуществляют с использованием оборотных флотационных вод при одновременном гидравлическом удалении избытка маслообразных реагентов и мелкозернистых шламистых фракций из крупнозернистого материала, подачу кондиционированного сырья на пенный слой и в объем пульпы осуществляют, направляя полученные мелкозернистые шламистые фракции с избытком флотационных реагентов в объем пульпы, а крупнозернистый материал на пенный слой, кондиционирование исходного сырья с реагентами и приготовление пенного слоя осуществляют с использованием пневмогидравлической аэрации, в которой в напорную воду предварительно вводят сжатый воздух, в качестве напорной воды используют жидкую фазу от обезвоживания пенного продукта, с получением после пневмогидравлической аэрации тонкодиспергированной газоводовоздушной смеси со сверхтонкими газовоздушными пузырьками и поверхностно-активными и маслообразными веществами, полученную от обезвоживания пенного продукта твердую фазу направляют на обработку с использованием пленочной флотации. This goal is achieved by the fact that in the method of foam separation and flotation, including conditioning the feedstock with reagents in the presence of surface-active and oily substances, preparing a foam layer by introducing into the pulp a foaming agent and gas in the form of finely dispersed bubbles, supplying conditioned raw materials to the foam layer and into the volume of the pulp, separation in the foam layer and in the volume of the pulp, obtaining and removing foam and chamber products while dehydrating them to obtain solid and liquid f az, conditioning the feedstock with reagents in the presence of oily reagents, is carried out fractionally after preliminary hydraulic classification and dehydration, and the conditioning operation of the coarse-grained sand and fine-grained slurry fractions is carried out using circulating flotation water while simultaneously removing excess oily reagents and fine-grained slurry hydraulically fractions from coarse-grained material, supply of conditioned cheese It is carried out onto the foam layer and into the pulp volume by directing the obtained fine-grained slurry fractions with an excess of flotation reagents into the pulp volume, and the coarse-grained material onto the foam layer, conditioning the feedstock with reagents and preparing the foam layer is carried out using pneumohydraulic aeration, in which pressure water pre-injected compressed air, the liquid phase from the dehydration of the foam product is used as pressure water to obtain a fine dispersion after pneumohydraulic aeration rgirovannoy gazovodovozdushnoy mixture with ultrathin-gas bubbles and surfactants and the oily substance obtained by dehydration of a solid foam product phase is directed to a film processing using flotation.

При создании изобретения автор исходил из следующего. When creating the invention, the author proceeded from the following.

В промышленно освоенных пневматических флотационных машинах использование пневмогидравлических аэраторов наряду с насыщением пульпы тонкодисперсными воздушными пузырьками позволяет одновременно интенсивно насыщать ее и сверхтонкими газовоздушными пузырьками, выделяющимися из газонасыщенной водовоздушной среды высокого давления, переходящей в виде высокоскоростной струи аэраторов непосредственно в объем пульпы, находящейся в камере машины при атмосферном давлении. Пузырьки такого размера аналогично тому, как это происходит при ионной флотации, легко адсорбируют на своей поверхности гидрофобные соединения, находящиеся в пульпе в виде молекул поверхностно-активных и маслообразных веществ, которые обеспечивают флотацию находящихся в этой же пульпе гидрофобных и гидрофобизированных минералов. В результате такой адсорбции сверхтонкие воздушные пузырьки легко закрепляются на поверхности флотируемых минералов, способствуя, с одной стороны, быстрому и надежному закреплению на этой же поверхности более крупных воздушных пузырьков, а с другой стороны, увеличению скорости коалесценции уже закрепившихся воздушных пузырьков. В итоге наличие сверхтонких воздушных пузырьков во флотационной пульпе обеспечивает, с одной стороны, условия эффективной флотации мелкозернистых и шламистых частиц обогащаемого материала, с другой стороны, за счет быстрого и надежного закрепления более крупных воздушных пузырьков и их последующей коалесценции на поверхности крупных гидрофобных и гидрофобизированных частиц, обеспечивает повышение крупности извлекаемых в пену частиц полезного компонента из объема аэрированной пульпы. Учитывая при этом, что в машинах данного типа успешно реализован также процесс пенной сепарации, обеспечивающий эффективное флотационное выделение наиболее крупных и тяжелых частиц полезного компонента, то станет очевидным, что такие машины могут успешно применяться для флотационного обогащения материала весьма широкого диапазона крупности при однократном его прохождении через камеру машины. Существенно при этом не допускать избытка маслообразных реагентов в материале, поступающем на пенный слой, так как он приводит к локальному разрушению пенного сдоя в месте контакта частиц с пеной и снижению ее несущей способности. Этот избыток маслообразных реагентов рационально направлять во флотационный процесс вместе с мелкозернистым и шламистым материалом, имеющим высокоразвитую поверхность, где эти реагенты будут способствовать флотации более крупных минеральных зерен полезного компонента и повышению технологических показателей процесса. In industrially developed pneumatic flotation machines, the use of pneumohydraulic aerators along with the saturation of the pulp with fine air bubbles allows it to simultaneously intensively saturate it with ultrathin gas-air bubbles released from a gas-saturated high-pressure air medium, passing in the form of a high-speed jet of aerators directly into the volume of the pulp located in the machine’s chamber atmospheric pressure. Bubbles of this size, similarly to what happens during ion flotation, easily adsorb hydrophobic compounds on the surface that are in the pulp in the form of molecules of surface-active and oily substances that provide flotation of hydrophobic and hydrophobized minerals located in the same pulp. As a result of such adsorption, ultrathin air bubbles are easily fixed on the surface of floated minerals, contributing, on the one hand, to fast and reliable fixation of larger air bubbles on the same surface, and, on the other hand, to increase the coalescence rate of already fixed air bubbles. As a result, the presence of ultrathin air bubbles in the flotation pulp provides, on the one hand, conditions for the effective flotation of fine-grained and slimy particles of the enriched material, on the other hand, due to the fast and reliable fixing of larger air bubbles and their subsequent coalescence on the surface of large hydrophobic and hydrophobized particles , provides an increase in the size of the particles of the useful component recovered into the foam from the volume of aerated pulp. Taking into account the fact that in machines of this type a foam separation process has also been successfully implemented, which ensures effective flotation separation of the largest and heaviest particles of a useful component, it will become obvious that such machines can be successfully used for flotation enrichment of a material of a very wide range of fineness with a single passage through the car’s camera. At the same time, it is essential to prevent an excess of oily reagents in the material entering the foam layer, since it leads to local destruction of the foam stain at the point of contact of the particles with the foam and a decrease in its carrying capacity. It is rational to direct this excess of oily reagents into the flotation process together with a fine-grained and slimy material having a highly developed surface, where these reagents will facilitate the flotation of larger mineral grains of the useful component and increase the technological parameters of the process.

Насыщение пульпы сверхтонкими газовоздушными пузырьками, выделяющимися из газонасыщенной водовоздушной среды высокого давления, можно значительно интенсифицировать при условии, если насыщение пульпы воздушными пузырьками посредством пневмогидравлической аэрации осуществлять после предварительного введения в напорную воду такой аэрации сжатого воздуха, который лучше растворяется в воде при более высоком ее давлении. Во флотационном процессе в этом случае интенсифицируется коалесцентный механизм действия реагентов, который обеспечивает надежное извлечение крупных минеральных зерен как непосредственно пенным слоем, так и при флотации из объема аэрированной пульпы. Интенсифицируется при этом флотация мелкозернистых и шламистых частиц полезного компонента. В конечном итоге за счет улучшения условий для формирования флотокомплексов с повышенной несущей способностью повышаются технологические показатели процесса. The saturation of the pulp with ultrathin gas bubbles emitted from a gas-saturated high-pressure air-water medium can be significantly intensified provided that the pulp is saturated with air bubbles by means of pneumohydraulic aeration after the preliminary injection of compressed air into the pressure water that dissolves better in water at its higher pressure . In the flotation process, in this case, the coalescence mechanism of the action of the reagents is intensified, which ensures reliable extraction of large mineral grains both directly by the foam layer and during flotation from the volume of aerated pulp. At the same time, the flotation of fine-grained and slimy particles of a useful component is intensified. Ultimately, due to improved conditions for the formation of flotation complexes with increased bearing capacity, the technological parameters of the process are increased.

Таким условиям удовлетворяет предлагаемый процесс пенной сепарации и флотации, реализуемый в пневматических флотационных машинах колонного типа, с предварительной подготовкой обогащаемого материала в аппаратах для фракционирования и одновременного его кондиционирования с флотационными реагентами. Such conditions are satisfied by the proposed process of foam separation and flotation, which is implemented in pneumatic flotation machines of the column type, with preliminary preparation of the enriched material in fractionation apparatuses and its simultaneous conditioning with flotation reagents.

Предлагаемый способ пенной сепарации и флотации предусматривает раздельное получение оборотных вод от обезвоживания пенного и камерного продуктов. Но в отличие от прототипа жидкую фазу от обезвоживания пенного продукта подают в данном способе в качестве напорной воды для пневмогидравлического приготовления тонкодиспергироварной газоводовоздушной смеси со сверхтонкими газовоздушными пузырьками и поверхностно-активными и маслообразными веществами, предварительно введя в напорную воду сжатый воздух, и только после этого подученную смесь вводят в операции кондиционирования исходных продуктов с реагентами и для аэрации пульпы и приготовления пенного слоя. В этом случае получается аэрогидросмесь с тонко- и сверхтонкодиспергированными газовоздушной фазой и поверхностно-активными и маслообразными веществами, высокоактивная во флотационном отношении. Такая смесь при контакте с частицами полезного компонента обеспечивает быструю коалесценцию закрепившихся на этих частицах газовых и воздушных пузырьков, обеспечивая тем самым повышенную несущую способность образованных флотокомплексов. Этому способствует то, что распульповка обогащаемых продуктов производится жидкой фазой пульпы, полученной от обезвоживания камерного продукта, где концентрация таких веществ значительно ниже, чем в жидкой фазе, полученной от обезвоживания пенного продукта. The proposed method of foam separation and flotation provides for separate production of recycled water from dehydration of foam and chamber products. But unlike the prototype, the liquid phase from the dehydration of the foam product is supplied in this method as pressurized water for the pneumohydraulic preparation of a finely dispersed gas-air mixture with ultra-thin gas-air bubbles and surface-active and oily substances, previously introducing compressed air into the pressure water, and only then the mixture is introduced into the conditioning operations of the starting products with reagents and for aeration of the pulp and preparation of the foam layer. In this case, an aerohydro mixture with a finely and ultrafine dispersed gas-air phase and surface-active and oily substances is obtained, highly active in flotation. Such a mixture, upon contact with particles of a useful component, provides rapid coalescence of gas and air bubbles fixed on these particles, thereby providing increased load-bearing capacity of the formed flotation complexes. This is facilitated by the fact that the extraction of the enriched products is carried out by the liquid phase of the pulp obtained from dehydration of the chamber product, where the concentration of such substances is much lower than in the liquid phase obtained from dehydration of the foam product.

Пример конкретного выполнения изобретения. An example of a specific implementation of the invention.

Способ пенной сепарации и флотации реализуется в пневматических флотационных машинах колонного типа, оснащенных пневмогидравлическими аэраторами и имеющими приспособления для раздельной подачи крупнозернистого и мелкозернистого питания. Подготовку питания осуществляют в гидравлических классификаторах и устройствах для подготовки пульпы к флотации и пенной сепарации, позволяющих фракционировать исходный материал и одновременно обрабатывать флотационными реагентами, например, по патентам Российской Федерации N 2108163 и N 2113907. The method of foam separation and flotation is implemented in pneumatic column flotation machines equipped with pneumohydraulic aerators and having devices for separate supply of coarse-grained and fine-grained feed. Food preparation is carried out in hydraulic classifiers and devices for preparing the pulp for flotation and foam separation, allowing fractionation of the source material and simultaneously process flotation reagents, for example, according to the patents of the Russian Federation N 2108163 and N 2113907.

Колонная пневматическая флотационная машина (фиг. 1, 2} состоит из флотационной камеры 1 с патрубком 2 для вывода хвостов, выполненной в виде расширяющегося вверх конусообразного сосуда с раструбом в верхней части. По периферии верхней части флотационной камеры 1 закреплен пеносборный желоб 3 с патрубком 4 для вывода пенного продукта. На уровне верхнего края флотационная камера 1 имеет дискообразную соосно расположенную щелевидную просеивающую поверхность 5 с сечением щелей 6, увеличивающимся от оси флотационной камеры, над которой соосно расположено приспособление 7 для подачи крупнозернистого питания на пенный слой, выполненное в виде пустотелого кольца 8 с тангенциально расположенными по диаметру кольца входными патрубками 9. Пустотелое кольцо 8 в нижней части внешней стенки 10 имеет щелевидный выход 11 из внутренней своей полости непосредственно на щелевидную просеивающую поверхность 5. Внешняя стенка 10 в нижней части непосредственно над щелевидным выходом 11 выполнена конусообразной. A columned pneumatic flotation machine (Fig. 1, 2} consists of a flotation chamber 1 with a nozzle 2 for outputting tails made in the form of a cone-shaped vessel expanding upwards with a bell in the upper part. A foam collecting chute 3 with a nozzle 4 is fixed along the periphery of the upper part of the flotation chamber 1 for outputting the foam product At the level of the upper edge, the flotation chamber 1 has a disk-shaped coaxially located slit-like screening surface 5 with a section of slots 6 increasing from the axis of the flotation chamber, above which is coaxially a device 7 for supplying coarse-grained food to the foam layer, made in the form of a hollow ring 8 with inlet pipes tangentially spaced along the diameter of the ring 9. a hollow ring 8 in the lower part of the outer wall 10 has a slot-like exit 11 from its internal cavity directly to the slot-like screening surface 5 The outer wall 10 in the lower part directly above the slit-like outlet 11 is conical.

По оси камеры 1 размещено приспособление 12 для загрузки мелкозернистой пульпы, выполненное в виде вертикально расположенного цилиндра 13, к нижнему торцу которого присоединен выполненный в виде эжектора трубообразный смеситель 14, опирающийся на стенки камеры 1 посредством радиальных ребер 15 и 16. Над приспособлением 12 для загрузки мелкозернистой пульпы соосно закреплен блок пневмогидравлических аэраторов 17. Под трубообразным смесителем 14 соосно размещен с кольцевым забором 18 параболический отражатель 19, открытой своей частью обращенный во встречном к пневмогидравлическим аэраторам 17 направлении и опирающийся через радиальные ребра 20 на стенки камеры 1. Параболический отражатель 19 для сохранения своей конфигурации при эксплуатации машины выполнен из износостойкого материала, например из силицированного графита, металлокерамики или полиуретена. Диаметр торцевой части параболического отражателя 19 превышает торцевой диаметр трубообразного смесителя 14. A device 12 for loading a fine-grained pulp made in the form of a vertically arranged cylinder 13 is placed along the axis of the chamber 1, to the lower end of which there is attached a tube-shaped mixer 14, which is supported by the walls of the chamber 1 by means of radial ribs 15 and 16. Above the loading device 12 a block of fine-grained pulp is coaxially mounted with a block of pneumohydraulic aerators 17. Under the tube-shaped mixer 14, a parabolic reflector 19 is coaxially placed with an annular fence 18, its open part facing in the direction opposite to the pneumohydraulic aerators 17 and resting through the radial ribs 20 on the walls of the chamber 1. The parabolic reflector 19 for maintaining its configuration during operation of the machine is made of wear-resistant material, for example, siliconized graphite, cermet or polyurethane. The diameter of the end part of the parabolic reflector 19 exceeds the end diameter of the tube-shaped mixer 14.

Приспособление 12 для загрузки мелкозернистой пульпы снабжено расположенной над приспособлением 7 кольцеобразной приемной камерой 20 с входными патрубками 21 и с кольцевым выходом 22 во внутреннюю полость цилиндра 13. Для предотвращения обводненности крупнозернистого питания, подаваемого на пенный сдой, внутренняя полость приспособления 7 плотно отделена конусообразной стенкой 23 от внутренней полости кольцеобразной приемной камеры 20. Внутри пустотелого кольца 8 ниже уровня его входных патрубков 9 установлен с зазором 24 по отношению к внешней стенке кольца 8 распределительный диск 25, предназначенный для рассредоточения крупнозернистого питания, подаваемого на пенный слой. Блок пневмогидравлических аэраторов 17 снабжен водоподводящим патрубком 26 и воздухоподводящим штуцером 27. The device 12 for loading a fine-grained pulp is provided with an annular receiving chamber 20 located above the device 7 with inlet pipes 21 and with an annular exit 22 into the internal cavity of the cylinder 13. To prevent watering of the coarse-grained power supplied to the foam sd, the internal cavity of the device 7 is tightly separated by a conical wall 23 from the inner cavity of the annular receiving chamber 20. Inside the hollow ring 8 below the level of its inlet pipes 9 is installed with a gap 24 in relation to the external s wall 8 ring distributing disc 25, intended for dispersal coarse power supplied to the foam layer. The block of pneumohydraulic aerators 17 is equipped with a water supply pipe 26 and an air supply fitting 27.

Трубообразный смеситель 14 с внутренней своей стороны снабжен кольцеобразным блоком пневмогидравлических аэраторов 28, конструктивно аналогичных аэраторам 17, ступенчато расположенным по периметру боковых стенок трубообразного смесителя в низшей его половине. Внутренний диаметр кольцеобразного блока аэраторов 28 превышает внутренний диаметр вышерасположенной части трубообразного смесителя 14. Выходные сопла пневмогидравлических аэраторов 28 кольцеобразного блока направлены в сторону параболического отражателя 19. В большеобъемных флотационных камерах количество ступенчато расположенных в трубообразном смесителе 14 кольцеобразных блоков пневмогидравдических аэраторов 28 может быть, при необходимости, больше, чем один. Кольцеобразный блок пневмогидравдических аэраторов 28 имеет кольцеобразные коллектор 29 для напорной воды и рессивер 30 для сжатого воздуха с водоподводящим патрубком 31 и воздухоподводящим штуцером 32, соответственно. Последние расположены вдоль радиальных ребер 16, крепящих трубообразный смеситель 14. The tube-shaped mixer 14 is provided on its inner side with an annular block of pneumohydraulic aerators 28, structurally similar to aerators 17, stepwise located around the perimeter of the side walls of the pipe-shaped mixer in its lower half. The inner diameter of the annular block of aerators 28 exceeds the inner diameter of the upstream part of the tube-shaped mixer 14. The output nozzles of the pneumohydraulic aerators 28 of the annular block are directed toward the parabolic reflector 19. In large-volume flotation chambers, the number of ring-shaped blocks of pneumohydraulic aerators 28 located in the tube-shaped mixer 14 may be necessary more than one. The annular block of pneumohydraulic aerators 28 has an annular manifold 29 for pressure water and a receiver 30 for compressed air with a water supply pipe 31 and an air supply fitting 32, respectively. The latter are located along the radial ribs 16 securing the tube-shaped mixer 14.

При работе машины флотационную камеру 1 заполняют водой с пенообразователем. Одновременно в блоки пневмогидравлических аэраторов 17 и 28 под давлением через водоподводящие патрубки 26 и 31 и воздухоподводящие штуцера 27 и 32 подают воду и воздух. В питающие патрубки 9 и входные патрубки 21 подают флотационную пульпу, предварительно обработанную флотационными реагентами. Из патрубков 9 крупнозернистая пульпа тангенциально вводится в пустотелое кольцо 8 приспособления 7 для подачи крупнозернистого питания на пенный слой. Под действием пары сил двух потоков, так как патрубки 9 расположены тангенциально по диаметру кольца 8, пульпа приобретает вращательное движение внутри кольца. После раскручивания пульпы крупнозернистая ее фракция, двигаясь под действием центробежных сил по конусообразной поверхности внешней стенки 10 кольца 8, выгружается в сгущенном виде из кольца через щелевидный выход 11, расположенный в низшей его части, непосредственно на щелевидную просеивающую поверхность 5 с сечением щелей 6, увеличивающимся от оси флотационной камеры 1, где происходят рассредоточение частиц по площади и между собой. Этому способствует то, что выходящий из патрубков 9 крупнозернистый материал частично попадает на распределительный диск 25, где производится его предварительное рассредоточение, а затем поступает через зазор 24 на коническую поверхность внешней стенки 10 кольца 8. When the machine is operating, the flotation chamber 1 is filled with water with a foaming agent. At the same time, air and water are supplied to the blocks of pneumohydraulic aerators 17 and 28 under pressure through water supply pipes 26 and 31 and air supply fittings 27 and 32. In the supply pipe 9 and the inlet pipe 21 serves flotation pulp, pre-treated with flotation reagents. From the nozzles 9, the coarse-grained pulp is tangentially introduced into the hollow ring 8 of the device 7 for supplying coarse-grained food to the foam layer. Under the action of a pair of forces of two flows, since the nozzles 9 are located tangentially along the diameter of the ring 8, the pulp acquires a rotational movement inside the ring. After unwinding the pulp, its coarse-grained fraction, moving under the action of centrifugal forces along the conical surface of the outer wall 10 of the ring 8, is discharged in a condensed form from the ring through a slit-like outlet 11 located in its lower part, directly onto the slit-like screening surface 5 with a section of slots 6 increasing from the axis of the flotation chamber 1, where the dispersion of particles over the area and between themselves. This is facilitated by the fact that the coarse-grained material emerging from the nozzles 9 partially enters the distribution disk 25, where it is preliminary dispersed, and then enters through the gap 24 onto the conical surface of the outer wall 10 of the ring 8.

Мелкозернистая пульпа, вводимая в машину через входные патрубки 21, сначала поступает в кольцеобразную приемную камеру 20, затем через кольцевой выход 22 поступает в приспособление 12, где смешивается с аэрированной жидкостью, выходящей из сопел блока пневмогидравлических аэраторов 17, и далее через выполненный в виде эжектора трубообразный смеситель 14 поступает в объем камеры 1. При этом в трубообразном смесителе 14 она дополнительно насыщается мелкодисперсными воздушными пузырьками, выходящими с аэрированной жидкостью из сопел кольцеобразного блока пневмогидравлических аэраторов 28. Во флотационной камере 1 образуется аэрогидросмесь с тонкодиспергированным воздухом, а на ее поверхности образуется пенный слой, который переливается в пеносборный желоб 3. The fine-grained pulp introduced into the machine through the inlet pipes 21 first enters the annular receiving chamber 20, then through the annular outlet 22 it enters the device 12, where it is mixed with aerated liquid coming out of the nozzles of the block of pneumatic-hydraulic aerators 17, and then through it made in the form of an ejector the tube-shaped mixer 14 enters the volume of the chamber 1. At the same time, in the tube-shaped mixer 14 it is additionally saturated with fine air bubbles leaving the aerated liquid from the nozzles of the annular Nogo pneumatichydraulic aerator unit 28. In the flotation cell 1 formed aerogidrosmes with finely dispersed air, and forms a foam layer on its surface, which is poured into groove 3 penosborny.

В цилиндре 13 приспособления 12 происходит смешение потоков пульпы и аэрированной жидкости и выравнивание их скоростей, после чего объединенный поток направляется в диффузор трубообразного смесителя 14, где происходит преобразование его кинетической энергии в потенциальную энергию сжатого потока. В этот же поток дополнительно поступает в виде высокоскоростных струй аэрированная жидкость из сопел пневмогидравлических аэраторов 28 кольцеобразного блока, после чего поток аэрированной пульпы ударяет в параболический отражатель 19. Последний изменяет траекторию входящего потока аэрированной пульпы на обратную с формированием более ламинарной и рассредоточенной кольцевой его конфигурации при входе через кольцевой зазор 18 во флотационную камеру 1. При этом вектор скорости этого аэрированного потока пульпы совпадает с вектором архимедовых сил, что соответствует условиям флотации более крупных минеральных зерен полезного компонента из объема аэрированной пульпы. В трубообразном смесителе 14 наряду с интенсивной аэрацией вводимой пульпы происходит также весьма интенсивное ее перемешивание с тонкодиспергированными воздушными пузырьками. После ввода аэрированной пульпы во флотационную камеру 1 в ней формируется оптимальная внутренняя аэрогидродинамика потоков жидкости, а также направленное движение пенного слоя от места загрузки на него через щели 6 щелевидной просеивающей поверхности 5 крупнозернистой фракции питания до пеносборного желоба 3. Крупные частицы питания в рассредоточенном виде поступают на поверхность пены сверху. Гидрофобные и гидрофобизированные частицы полезного компонента удерживаются при этом пенным слоем и выносятся вместе с ним и с сфлотированными из объема пульпы частицами в пеносборный желоб 3, откуда выгружаются через патрубок 4 для вывода пенного продукта. Гидрофильные частицы пустой породы проходят сквозь пену в объем флотационной камеры 1, опускаются на наклонные стенки камеры 1, скользят по ним вниз и попадают в зону восходящего потока аэрированной пульпы, выходящей из кольцевого зазора 18. Этот поток захватывает пульпу из камеры, формируя внутрикамерную ее циркуляцию, которая обеспечивает возможность повторного извлечения частиц полезного компонента, случайно выпавших из пенного слоя, не достигнув пеносборного желоба 3. Большую роль при этом играет конфигурация самой флотационной камеры 1, выполненной в виде расширяющегося вверх конусообразного сосуда с раструбом в верхней своей части. Частицы полезного компонента флотируются в ламинарном потоке аэрированной пульпы и поступают в движущийся к пеносборному желобу 3 пенный слой. Частицы пустой породы оседают по стенке флотационной камеры 1 и выгружаются из машины через патрубок 2. Полученную от обезвоживания пенного продукта твердую фазу, с целью большего ее сокращения, направляют на обработку с использованием пленочной флотации. In the cylinder 13 of the device 12, the flows of pulp and aerated liquid are mixed and their velocities are equalized, after which the combined stream is directed to the diffuser of the tube-shaped mixer 14, where its kinetic energy is converted into the potential energy of the compressed stream. The aerated liquid from the nozzles of pneumohydraulic aerators 28 of the annular block additionally enters the same stream in the form of high-speed jets, after which the aerated pulp stream hits the parabolic reflector 19. The latter changes the path of the incoming aerated pulp stream to the opposite one with the formation of a more laminar and dispersed ring configuration with entering through the annular gap 18 into the flotation chamber 1. In this case, the velocity vector of this aerated pulp stream coincides with the archim vector food forces, which corresponds to the flotation conditions of larger mineral grains of the useful component from the volume of aerated pulp. In the tube-shaped mixer 14, along with intensive aeration of the introduced pulp, its very intensive mixing with finely dispersed air bubbles also takes place. After entering the aerated pulp into flotation chamber 1, optimal internal aerohydrodynamics of fluid flows is formed in it, as well as the directional movement of the foam layer from the place of loading through the slots 6 of the slit-like screening surface 5 of the coarse-grained feed fraction to the foam trough 3. Large particles of power are dispersed to the surface of the foam on top. The hydrophobic and hydrophobized particles of the useful component are held in this case by the foam layer and are carried out together with it and with particles flotted from the volume of the pulp into the foam collecting trough 3, from where they are discharged through the pipe 4 to discharge the foam product. Hydrophilic waste rock particles pass through the foam into the volume of the flotation chamber 1, fall onto the inclined walls of the chamber 1, slide down them and fall into the zone of upward flow of aerated pulp leaving the annular gap 18. This flow captures the pulp from the chamber, forming its intracameral circulation , which provides the possibility of re-extraction of particles of a useful component that accidentally precipitated from the foam layer without reaching the foam collecting trough 3. The configuration of the flotation chamber itself plays an important role in this s 1, configured as a cone expanding upward from the socket receptacle in its upper part. Particles of the useful component are floated in the laminar flow of aerated pulp and enter the 3 foam layer moving towards the foam collecting trough. Particles of waste rock settle on the wall of the flotation chamber 1 and are discharged from the machine through the nozzle 2. The solid phase obtained from the dehydration of the foam product, in order to reduce it more, is sent for processing using film flotation.

Подача в пневмогидравлические аэраторы оборотных вод, полученных от обезвоживания пенного продукта совместно с маслообразными реагентами и ПАВ, и насыщение их при высоком давлении сжатым воздухом способствует наиболее тонкому диспергированию и стабилизации газовых и воздушных пузырьков в момент их выделения из аэрированной жидкости и при диспергировании воздуха. На выходе из пневмогидравлических аэраторов часть реагентов переходит с поверхности пузырьков на гидрофобную поверхность частиц полезного компонента и в жидкую фазу пульпы, которая имеет более низкую концентрацию этих веществ за счет того, что во флотационный процесс при распульповке обогащаемых продуктов поступает вода от обезвоживания камерного продукта, обедненного поверхностно-активными веществами, не имеющая маслообразных реагентов. Это в свою очередь (за счет интенсификации коалесцентных явлений на поверхности извлекаемых частиц) обеспечивает формирование флотокомплексов с повышенной несущей способностью и в конечном итоге повышает технологические показатели флотационного процесса. Использование водной фазы в качестве напорной воды с растворенным в ней воздухом при пневмогидравлической аэрации обеспечивает интенсивное насыщение пульпы мельчайшими газовыми пузырьками, необходимыми для быстрого и надежного их закрепления на гидрофобной поверхности извлекаемых частиц, а также интенсифицирует адсорбционные процессы во флотационной пульпе, что в условиях повышенной коалесценции пузырьков, уже закрепившихся на поверхности этих частиц, и формирования в результате этого флотокомплексов с повышенной несущей способностью повышает технологические показатели флотационного процесса. The supply to the pneumohydraulic aerators of circulating water obtained from the dehydration of the foam product together with oily reagents and surfactants, and their saturation at high pressure with compressed air, contributes to the finest dispersion and stabilization of gas and air bubbles at the time of their separation from the aerated liquid and when the air disperses. At the outlet of the pneumohydraulic aerators, part of the reagents passes from the surface of the bubbles to the hydrophobic surface of the particles of the useful component and to the liquid phase of the pulp, which has a lower concentration of these substances due to the fact that water from dehydration of the depleted chamber product enters the flotation process during pulping of enriched products surfactants that do not have oily reagents. This, in turn (due to the intensification of coalescence phenomena on the surface of recoverable particles), ensures the formation of flotation complexes with increased bearing capacity and ultimately increases the technological parameters of the flotation process. The use of the aqueous phase as pressurized water with air dissolved in it during pneumohydraulic aeration provides intensive saturation of the pulp with the smallest gas bubbles necessary for their fast and reliable fixation on the hydrophobic surface of the extracted particles, and also intensifies the adsorption processes in the flotation pulp, which in conditions of increased coalescence bubbles, already fixed on the surface of these particles, and the formation of flotation complexes with an increased bearing capacity as a result of this osty increases the technological parameters of the flotation process.

Таким образом, предложенное техническое решение по сравнению с прототипом позволит за счет улучшения условий для формирования флотокомплексов с повышенной несущей способностью повысить технологические показатели процесса. Thus, the proposed technical solution in comparison with the prototype will allow, due to improved conditions for the formation of flotation complexes with increased load-bearing ability to increase technological parameters of the process.

Источники информации
1. Авторское свидетельство СССР N 1426638, кл. B 03 D 1/02, 1986, Бюл. 1993, N 36.
Sources of information
1. USSR author's certificate N 1426638, cl. B 03 D 1/02, 1986, Bull. 1993, N 36.

2. Патент Российской Федерации N 2002512, кл. B 03 D 1/02, B 03 B 7/00, 1991. Бюл. 1993, N 41-42. 2. Patent of the Russian Federation N 2002512, cl. B 03 D 1/02, B 03 B 7/00, 1991. Bull. 1993, N 41-42.

Claims (2)

1. Способ пенной сепарации и флотации, включающий кондиционирование исходного сырья с реагентами в присутствии маслообразных реагентов, приготовление пенного слоя путем введения в пульпу пенообразователя и газа в виде тонкодиспергированных пузырьков, подачу кондиционированного сырья на пенный слой и в объем пульпы, разделение в пенном слое и в объеме пульпы, получение и удаление пенного и камерного продуктов при одновременном их обезвоживании с получением твердой и жидкой фаз, отличающийся тем, что кондиционирование исходного сырья с реагентами в присутствии маслообразных реагентов осуществляют пофракционно после предварительной его гидравлической классификации и обезвоживания, причем операцию кондиционирования полученных при этом крупнозернистой песковой и мелкозернистой шламистой фракции осуществляют с использованием оборотных флотационных вод при одновременном гидравлическом удалении избытка маслообразных реагентов и мелкозернистых шламистых фракций из крупнозернистого материала, подачу кондиционированного сырья на пенный слой и в объем пульпы осуществляют, направляя полученные мелкозернистые шламистые фракции с избытком флотационных реагентов в объем пульпы, а крупнозернистый материал на пенный слой. 1. The method of foam separation and flotation, including conditioning the feedstock with reagents in the presence of oily reagents, preparing a foam layer by introducing into the pulp a foaming agent and gas in the form of finely divided bubbles, supplying conditioned raw materials to the foam layer and into the volume of the pulp, separation in the foam layer and in the volume of pulp, receiving and removing foam and chamber products while simultaneously dehydrating them to obtain solid and liquid phases, characterized in that the conditioning of the feedstock with agents in the presence of oily reagents are carried out fractionally after preliminary hydraulic classification and dehydration, and the conditioning operation of the coarse-grained sand and fine-grained slurry fractions is carried out using reverse flotation water while simultaneously removing excess oily reagents and fine-grained slurry fractions from coarse-grained material raw materials on the foam layer and in the volume of pulp vlyayut steered slimy obtained fine fraction with an excess amount of flotation reagents to the slurry, and the coarse material in the foam layer. 2. Способ по п. 1, отличающийся тем, что кондиционирование исходного сырья с реагентами и приготовление пенного слоя осуществляют с использованием пневмогидравлической аэрации, в которой в напорную воду предварительно вводят сжатый воздух, в качестве напорной воды используют жидкую фазу от обезвоживания пенного продукта, с получением после пневмогидравлической аэрации тонкодиспергированной газоводовоздушной смеси со сверхтонкими газовоздушными пузырьками и поверхностно-активными и маслообразными веществами, полученную от обезвоживания пенного продукта твердую фазу направляют на обработку с использованием пленочной флотации. 2. The method according to p. 1, characterized in that the conditioning of the feedstock with reagents and the preparation of the foam layer is carried out using pneumohydraulic aeration, in which compressed air is previously introduced into the pressure water, the liquid phase from the dehydration of the foam product is used as pressure water, obtaining after pneumohydraulic aeration of a finely dispersed gas-air mixture with ultra-thin gas-air bubbles and surface-active and oily substances, obtained from dehydration When the foam product is formed, the solid phase is sent for processing using film flotation.
RU99125360A 1999-11-30 1999-11-30 Method of foam separation and flotation RU2167723C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99125360A RU2167723C1 (en) 1999-11-30 1999-11-30 Method of foam separation and flotation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99125360A RU2167723C1 (en) 1999-11-30 1999-11-30 Method of foam separation and flotation

Publications (1)

Publication Number Publication Date
RU2167723C1 true RU2167723C1 (en) 2001-05-27

Family

ID=20227634

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99125360A RU2167723C1 (en) 1999-11-30 1999-11-30 Method of foam separation and flotation

Country Status (1)

Country Link
RU (1) RU2167723C1 (en)

Similar Documents

Publication Publication Date Title
FI94598B (en) Flotation
EA015086B1 (en) Equipment and method for flotating and classifying mineral slurry
CA2849569C (en) Dispersion nozzle, flotation machine equipped therewith, and method for operating same
US4070274A (en) Coarse concentrated iron ore for catalytic purposes
RU2167722C1 (en) Method of foam separation and flotation
RU2167723C1 (en) Method of foam separation and flotation
RU2125911C1 (en) Method of foam separation and flotation
RU2151646C1 (en) Pneumatic flotation machine
RU2393023C2 (en) Pneumatic flotation machine
RU2011424C1 (en) Pneumatic flotation machine
RU2165800C1 (en) Pneumatic flotation machine
RU2104093C1 (en) Method for foam separation and flotation
RU2284224C1 (en) Pneumatic floater
RU2100096C1 (en) Method of foam separation and flotation
RU2113910C1 (en) Pneumatic flotation machine
RU2038863C1 (en) Device for preparation of pulp to flotation and froth separation
RU2614170C1 (en) Pneumatic flotation machine
RU2183998C2 (en) Flotation method and centrifugal flotation machine
RU2100098C1 (en) Pneumatic flotation machine
RU2108166C1 (en) Method of foam separation and flotation
RU2007220C1 (en) Pneumatic flotation machine
RU2100097C1 (en) Method of foam separation and flotation
RU2736251C1 (en) Foam flotation machine
UA61704A (en) Method for flotation separation of fine minerals and flotation plant for realisation thereof
RU2151647C1 (en) Pneumatic floatation machine