RU2108166C1 - Method of foam separation and flotation - Google Patents
Method of foam separation and flotation Download PDFInfo
- Publication number
- RU2108166C1 RU2108166C1 RU96116315A RU96116315A RU2108166C1 RU 2108166 C1 RU2108166 C1 RU 2108166C1 RU 96116315 A RU96116315 A RU 96116315A RU 96116315 A RU96116315 A RU 96116315A RU 2108166 C1 RU2108166 C1 RU 2108166C1
- Authority
- RU
- Russia
- Prior art keywords
- pulp
- product
- flotation
- water
- grained
- Prior art date
Links
Images
Landscapes
- Paper (AREA)
Abstract
Description
Изобретение относится к обогащению полезных ископаемых, а именно к флотационным методам обогащения, и может быть использовано при переработке рудного и нерудного сырья. The invention relates to the beneficiation of minerals, namely to flotation methods of beneficiation, and can be used in the processing of ore and non-metallic materials.
Известен способ пенной сепарации, включающий кондиционирование исходного сырья с реагентами, предварительную подготовку пенного слоя путем введения в пульпу пенообразователя и газа в виде пузырьков равного размера, подачу кондиционирования сырья на пенный слой и удаление продуктов разделения [1]. A known method of foam separation, including conditioning the feedstock with reagents, preliminary preparation of the foam layer by introducing into the pulp a foaming agent and gas in the form of bubbles of equal size, feeding the conditioning of the raw materials on the foam layer and removing the separation products [1].
Недостатком известного способа является отсутствие в нем ряда последовательных операций, обеспечивающих повышение технологических показателей процесса. Способ не обеспечивает условий для качественной подготовки поверхности флотируемых частиц, а также дифференцированного подхода при обогащении фракций материала различной крупности. В нем отсутствуют операции для флотации частиц полезного компонента из объема аэрированной пульпы, условия для формирования флотокомплексов с повышенной несущей способностью и условия для вторичной минерализации частиц в пенном слое. The disadvantage of this method is the lack of a number of sequential operations that provide an increase in technological parameters of the process. The method does not provide conditions for high-quality surface preparation of floated particles, as well as a differentiated approach for the enrichment of fractions of material of various sizes. It lacks operations for flotation of particles of a useful component from the volume of aerated pulp, conditions for the formation of flotation complexes with increased bearing capacity, and conditions for the secondary mineralization of particles in the foam layer.
Наиболее близким по технической сущности и достигаемому результату является способ пенной сепарации и флотации, включающий кондиционирование исходного сырья с реагентами в присутствии маслообразных реагентов, приготовление пенного слоя путем введения в пульпу пенообразователя и газа в виде тонкодиспергированных пузырьков, подачу кондиционированного сырья на пенной слой и в объем пульпы, разделение в пенном слое и в объеме пульпы, получение и удаление пенного и камерного продуктов при одновременном их обезвоживании с получением твердой и жидкой фаз [2]. The closest in technical essence and the achieved result is a method of foam separation and flotation, including conditioning the feedstock with reagents in the presence of oily reagents, preparing a foam layer by introducing into the pulp a foaming agent and gas in the form of finely dispersed bubbles, supplying conditioned raw materials to the foam layer and into the volume pulp, separation in the foam layer and in the volume of pulp, receiving and removing foam and chamber products while dehydrating them to obtain solid water and liquid phases [2].
Данный способ во многом устраняет недостатками способа [1]. Однако и он не лишен недостатков, связанных с отсутствием ряда последовательных операций, обеспечивающих оптимальные условия для извлечения частиц полезного компонента различной крупности из объема аэрированной пульпы, а также для создания в аэрированной пульпе и в пенном слое оптимальных условий для формирования флотокомплексов с повышенной несущей способностью. В нем нет раздельных операций для оптимального перемешивания пульпы с тонкодиспергированными воздушными пузырьками в комплексе с поверхностно-активными и маслообразными веществами и для последующего флотационного разделения частиц различной крупности в отсутствии высокотурбулентных режимов. Способ [2], также, как и способ (1), не обеспечивает условий для качественной подготовки поверхности флотируемых частиц. This method largely eliminates the disadvantages of the method [1]. However, it is not without drawbacks associated with the absence of a number of sequential operations providing optimal conditions for the extraction of particles of a useful component of various sizes from the volume of aerated pulp, as well as for creating optimal conditions in the aerated pulp and in the foam layer for the formation of flotation complexes with increased bearing capacity. It does not have separate operations for optimal mixing of pulp with finely dispersed air bubbles in combination with surfactants and oily substances and for subsequent flotation separation of particles of various sizes in the absence of highly turbulent regimes. The method [2], as well as the method (1), does not provide conditions for high-quality surface preparation of floated particles.
Целью изобретения является повышение технологических показателей процесса за счет улучшения условий для гидрофобизации частиц полезного компонента и формирования флотокомплексов с повышенной несущей способностью. The aim of the invention is to improve the technological parameters of the process by improving the conditions for hydrophobization of particles of the useful component and the formation of flotation complexes with high bearing capacity.
Поставленная цель достигается тем, что в способе пенной сепарации и флотации, включающем кондиционирование исходного сырья с реагентами в присутствии маслообразных реагентов, приготовление пенного слоя путем введения в пульпу пенообразователя и газа в виде тонкодиспергированных пузырьков, подачу кондиционированного сырья на пенный слой и в объем пульпы, разделение в пенном слое и в объеме пульпы, получение и удаление пенного и камерного продуктов при одновременном их обезвоживании с получением твердой и жидкой фаз, подачу кондиционированного сырья на пенный слой и в объем пульпы осуществляют после механоактивации частиц полезного компонента в интенсивном режиме при одновременной термической их обработке высокотемпературным потоком жидкости, перегретым паром или горячим воздухом, в которые предварительно введены маслообразные и поверхностно-активные вещества (ПАВ), при этом интенсивный истирающий режим осуществляют с использованием воды или раствора ПАВ, прошедших электрохимическую обработку в электролизере непосредственно перед подачей их в процессе интенсивного измельчения, кондиционирование исходного сырья с реагентами осуществляют с использованием тонкодиспергированных в аэрогидросмеси поверхностно-активных м маслообразных веществ одновременно с фракционированием исходного сырья по крупности, при этом кондиционирование каждого из продуктов осуществляют перемешиванием с тонкодиспергированной аэрогидросмесью воды, воздуха, поверхностно-активных и маслообразных веществ, после чего продукт средней крупности подают на флотационное разделение в объем пульпы снизу вверх в центральной его части в направлении действия архимедовых сил, а мелкозернистый продукт в рассредоточенном виде по периферийной части под углом к ним, жидкую фазу от обезвоживания камерного продукта подают с крупнозернистым, среднезернистым и мелкозернистым продуктами для их распульповки, а жидкую фазу от обезвоживания пенного продукта подают в качестве напорной воды для пневмогидравлического приготовления тонкодиспергированной аэрогидросмеси воды, воздуха, поверхностно-активных и маслообразных веществ с последующим введение полученной смеси в операции кондиционировании исходных продуктов с реагентами, причем на пенный слой подают крупнозернистый продукт, при кондиционировании которого избыток жидкой фазы пульпы и реагентной смеси переводят в мелкозернистый продукт, процесс интенсивного истирания частиц пустой породы друг о друга осуществляют при объемном их сжатии принудительным полиградиентным перемещением концентрических слоев материала при одновременном воздействии на измельчаемый материал высокотемпературным потоком жидкости, перегретым паром или горячим воздухом. This goal is achieved by the fact that in the method of foam separation and flotation, including conditioning the feedstock with reagents in the presence of oily reagents, preparing a foam layer by introducing into the pulp a foaming agent and gas in the form of finely dispersed bubbles, supplying conditioned raw materials to the foam layer and into the volume of the pulp, separation in the foam layer and in the volume of pulp, receipt and removal of foam and chamber products while their dehydration to obtain solid and liquid phases, the supply of air conditioning After the mechanical activation of the particles of the useful component in intensive mode, they are simultaneously treated with a high-temperature liquid stream, superheated steam or hot air, into which oily and surface-active substances (surfactants) are preliminarily introduced, while intensive the abrasive regime is carried out using water or a surfactant solution that has undergone electrochemical treatment in the electrolyzer immediately before they are fed in the process of grinding, conditioning of the feedstock with reagents is carried out using finely dispersed surface-active oily substances in aerohydroxy mixture simultaneously with fractionation of the feedstock by size, while each product is conditioned by mixing water, air, surface-active and oily substances with a finely dispersed aerohydroxy mixture, after which the medium-sized product is fed to the flotation separation in the pulp volume from bottom to top in the central its parts in the direction of action of the Archimedean forces, and the fine-grained product dispersed over the peripheral part at an angle to them, the liquid phase from the dehydration of the chamber product is supplied with coarse, medium-grained and fine-grained products for their expansion, and the liquid phase from the dehydration of the foam product is served as pressure water for pneumohydraulic preparation of a finely dispersed aero-hydro mixture of water, air, surface-active and oily substances, followed by the introduction of the resulting mixture in the operation of conditioning the initial products with reagents, whereby a coarse-grained product is fed to the foam layer, upon conditioning of which the excess liquid phase of the pulp and the reagent mixture is transferred to a fine-grained product, the process of intensive abrasion of the gangue particles against each other is carried out during volumetric compression by forced polygradient movement of concentric layers material with simultaneous exposure to the milled material with a high-temperature liquid flow, superheated steam or hot air by ear.
При создани изобретения авторы исходили из следующего. When creating the invention, the authors proceeded from the following.
Эффективность процесса пенной сепарации и флотации можно повысить, если обеспечить условия для эффективной подготовки поверхности флотируемых частиц. Что касается алмазосодержащего сырья, то такие условия можно обеспечить, если подачу кондиционированного сырья на пенный слой и в объем пульпы осуществить после механоактивации извлекаемых частиц в интенсивном истирающем режиме при одновременной термической их обработке высокотемпературным потоком жидкости, перегретым паром или горячим воздухом, в которые предварительно введены маслообразные и поверхностно-активные вещества, при этом интенсивный истирающий режим осуществляют с использованием воды или раствора ПАВ, прошедших электрохимическую обработку в электролизере непосредственно перед подачей их в процесс интенсивного измельчения. В этом случае, наряду с очисткой поверхности алмазов обеспечивается более качественная ее подготовка, необходимая для эффективного их извлечения флотационным способом, особенно для "упорных" алмазов. Без этого такие алмазы могут циркулировать в замкнутом цикле (измельчение-обогащение) сколь угодно долго до тех пор, пока не получаю по тем или иным причинам каких-либо повреждений и не потеряются с хвостами в разрушенном виде. The efficiency of the process of foam separation and flotation can be improved if the conditions for effective surface preparation of floated particles are ensured. As for diamond-containing raw materials, such conditions can be ensured if the conditioned raw materials are fed into the foam layer and into the pulp volume after mechanically activating the extracted particles in an intensive abrasive mode while simultaneously heat treating them with a high-temperature liquid stream, superheated steam or hot air, into which they were previously introduced oily and surfactants, while the intensive abrasion regime is carried out using water or a surfactant solution that has passed elec Rochemical processing in the electrolyzer immediately before feeding them into the process of intensive grinding. In this case, along with cleaning the surface of diamonds, a better preparation is provided, which is necessary for their effective extraction by flotation, especially for “resistant” diamonds. Without this, such diamonds can circulate in a closed cycle (grinding-enrichment) as long as they like, until for some reason or other they receive any damage and are lost with their tails in a destroyed form.
Свежеобразованная поверхность частиц, включая алмазы при их раскрытии из руд, обладает исключительно высокой химической и адсорбционной активностью. Поэтому весьма важно защитить такую поверхность от нежелательной адсорбции веществ молекул, приводящих к снижению их природной флотационной активности. Это возможно сделать, если раскрытие алмазов производить в присутствии маслообразных и поверхностно-активных веществ. Маслообразные вещества адсорбируются преимущественно на гидрофобной поверхности и, адсорбируясь на ней, оказывают одновременное ингибирующее воздействие, не позволяя другим веществам, способным гидрофилизировать поверхность, адсорбироваться на этой поверхности. С другой стороны, гидрофилизированные участки поверхностных частиц, подлежащих флотационному извлечению, могут быть гидрофобилизрованы ПАВ в момент их высокой адсорбционной активности при раскрытии этих частиц. Маслообразные вещества, такие как мазут, который широко используется при флотационном извлечении алмазов, требуют для своего эффективного технологического воздействия весьма тонкой диспергации. Такая диспергация обеспечивается в условиях применения острого пара или горячего (раскаленного) воздуха при раскрытии алмазов в интенсивном истирающем режиме. Механоактивация поверхности извлекаемых при флотации алмазов, иницируемая измельчением в данном режиме, дополняется устройством ее гидрофобизацией, что обеспечивает повышение технологических показателей процесса. The freshly formed surface of particles, including diamonds when they are opened from ores, has an extremely high chemical and adsorption activity. Therefore, it is very important to protect such a surface from undesirable adsorption of substances of molecules, leading to a decrease in their natural flotation activity. This can be done if the disclosure of diamonds is carried out in the presence of oily and surfactants. Oily substances are adsorbed mainly on a hydrophobic surface and, being adsorbed on it, have a simultaneous inhibitory effect, preventing other substances capable of hydrophilizing the surface from being adsorbed on this surface. On the other hand, hydrophilized portions of surface particles to be flotation extracted can be hydrophobized with surfactants at the time of their high adsorption activity when these particles open. Oily substances such as fuel oil, which is widely used in the flotation extraction of diamonds, require very fine dispersion for their effective technological impact. Such dispersion is ensured under the conditions of using hot steam or hot (hot) air when diamonds are opened in an intensive abrasive regime. The mechanical activation of the surface of diamonds recovered during flotation, initiated by grinding in this mode, is complemented by a device for its hydrophobization, which ensures an increase in technological parameters of the process.
Гидрофилизированные участки поверхности частиц, подлежащих извлечению физико-химическими методами обогащения, можно более активно гидрофобизировать ПАВ в момент раскрытия этих частиц в интенсивном режиме измельчения, если повысить адсорбционную способность как ПАВ, так и поверхность частиц, на которой они закрепляются. Это возможно осуществить, проведя электрохимическую обработку используемой при интенсивном измельчении воды или раствора ПАВ в электролизере непосредственно перед подачей их в измельчительный процесс. Hydrophilized surface areas of particles to be extracted by physicochemical enrichment methods can more actively hydrophobize surfactants at the time of opening of these particles in the intensive grinding mode, if the adsorption capacity of both surfactants and the surface of the particles on which they are fixed are increased. This can be done by conducting an electrochemical treatment used for intensive grinding of water or a surfactant solution in the electrolyzer immediately before feeding them into the grinding process.
Для оптимизации любого разделительного процесса необходимо обеспечить условия максимально возможного снижения его турбулентности. Аэрогидродинамический режим флотационного процесса можно значительно улучшить, если отделить друг от друга зоны перемешивания пульпы при ее интенсивном насыщении воздушными пузырьками посредством пневмогидравлических аэраторов и зоны непосредственного флотационного разделения компонентов этой пульпы. При флотационном обогащении материала широкого диапазона крупности необходимо при этом обеспечить дифференцированный подход к фракциям различной крупности. Для высокопроизводительных процессов, где поток вводимого питания весьма велик, существенным для снижения турбулентности пульпы в таком процессе, а именно в разделительных его зонах, является максимальное рассредоточение вводимого питания, а также способ его введения во флотационный процесс в зависимости от крупности обогащаемого материала. To optimize any separation process, it is necessary to provide the conditions for the maximum possible reduction in its turbulence. The aerohydrodynamic regime of the flotation process can be significantly improved if the mixing zones of the pulp are separated from each other when it is saturated with air bubbles by means of pneumohydraulic aerators and the zone of direct flotation separation of the components of this pulp. In the flotation enrichment of a material with a wide range of particle sizes, it is necessary to ensure a differentiated approach to fractions of various sizes. For high-performance processes, where the feed feed stream is very large, it is essential to reduce pulp turbulence in such a process, namely in its separation zones, is the maximum dispersion of the feed input, as well as the method of its introduction into the flotation process, depending on the size of the material being enriched.
Что касается наиболее крупной и тяжелой части питания, то, как показывает опыт широко промышленного применения процесса сепарации и пневматической флотации, она должна подаваться во флотационный процесс по принципу пенной сепарации на поверхность пенного слоя при максимальном рассредоточении минеральных зерен между собой с минимальным количеством жидкой фазы пульпы. При этом вектор скорости подаваемого питания должен быть направлен вдоль поверхности пенного слоя в сторону выгрузки пенного продукта. Это соответствует требованиям механизма процесса пенной сепарации. As for the largest and heaviest part of the food, experience of the widely industrial application of the separation process and pneumatic flotation shows that it should be fed into the flotation process on the principle of foam separation on the surface of the foam layer with the maximum dispersion of mineral grains among themselves with a minimum amount of pulp liquid phase . In this case, the velocity vector of the supplied power should be directed along the surface of the foam layer towards the discharge of the foam product. This complies with the requirements of the mechanism of the foam separation process.
Грубозернистый материал меньшей крупности должен подаваться во флотационный процесс по оси камеры аппарата, где этот процесс реализуется, снизу вверх в виде хорошо перемешанной и достаточно сильно аэрированной пульпы, с тем, чтобы вектор скорости этого аэрированного потока пульпы совпадал с вектором архимедовых сил. Это соответствует условиям флотации более крупных минеральных зерен полезного компонента из объема аэрированной пульпы. Coarse-grained material of a smaller size should be fed into the flotation process along the axis of the apparatus chamber, where this process is realized, from the bottom up in the form of well mixed and sufficiently strongly aerated pulp, so that the velocity vector of this aerated pulp stream coincides with the vector of Archimedean forces. This corresponds to the flotation conditions of larger mineral grains of the useful component from the volume of aerated pulp.
Питание, содержащее мелкозернистую и шламистую фракции, целесообразно подавать в виде тщательно перемешанной и сильно аэрированной пульпы в наиболее рассредоточенном виде по периферии нижней части флотационной камеры. Для исключения механического выноса в пенный слой гидрофильных частиц мелких и шламистых фракций вектор скорости подачи во флотационный процесс питания данной крупности не должен совпадать с вектором архимедовых сил. It is advisable to supply food containing fine-grained and slimy fractions in the form of carefully mixed and highly aerated pulp in the most dispersed form along the periphery of the lower part of the flotation chamber. In order to exclude mechanical removal of small and slimy fractions of hydrophilic particles of hydrophilic particles into the foam layer, the feed rate vector into the flotation process of feeding this size should not coincide with the Archimedean force vector.
Для повышения качества флотационного концентрата и снижения его выхода целесообразно обеспечить во флотационном процессе условия эффективной вторичной минерализации частиц в пенном слое, а также условия внутрикамерных очистных и перечистных операций. To improve the quality of the flotation concentrate and reduce its yield, it is advisable to ensure in the flotation process the conditions for effective secondary mineralization of particles in the foam layer, as well as the conditions of in-chamber treatment and cleaning operations.
Всем этим требованиям удовлетворяет предлагаемый процесс пенной сепарации и флотации, реализованный в пневматических флотационных машин колонного типа, с предварительной подготовкой обогащаемого материала в истирающих мельницах и в аппаратах для фракционирования и одновременного его кондиционирования с флотационными реагентами. Данный способ предусматривает получение оборотных вод от обезвоживания пенного и камерного продуктов. Но в отличие от прототипа жидкую фазу от обезжиривания пенного продукта в данном способе подают в качестве напорной воды для пневмогидравлического приготовления тонкодиспергированной аэрогидросмеси воды, воздуха, поверхностно-активных и маслообразных веществ с последующим введением полученной смеси в виде высокоскоростных струй в операции кондиционирования исходных продуктов с реагентами. В этом случае получается аэрогидросмесь тонкодиспергированных между собой воды, воздуха, поверхностно-активных и маслообразных веществ, высоактивная во флотационном отношении, которая при контакте с частицами полезного компонента обеспечивает быструю коалесценцию закрепившихся на этих частицах воздушных пузырьков, обеспечивая тем самым повышенную несущую способность образованных флотокомплексов. Этому во многом способствует то, что распульповка обогащаемых продуктов производится жидкой фазой пульпы, полученной от обезвоживания камерного продукта, где концентрация этих веществ значительно ниже, чем в жидкой фазе, полученной от обезвоживания пенного продукта. All of these requirements are satisfied by the proposed process of foam separation and flotation, implemented in pneumatic flotation machines of column type, with preliminary preparation of the enriched material in abrading mills and in apparatus for fractionation and its conditioning with flotation reagents. This method involves obtaining circulating water from dehydration of foam and chamber products. But unlike the prototype, the liquid phase from the degreasing of the foam product in this method is supplied as pressurized water for pneumohydraulic preparation of a finely dispersed aero-hydro mixture of water, air, surface-active and oily substances, followed by the introduction of the resulting mixture in the form of high-speed jets in the conditioning operation of the starting products with reagents . In this case, an aerohydro mixture of finely dispersed water, air, surface-active and oily substances is obtained, highly flotation-active, which, when in contact with particles of a useful component, provides rapid coalescence of air bubbles fixed on these particles, thereby providing increased load-bearing capacity of the formed flotation complexes. This is largely facilitated by the fact that the pulp extraction of fortified products is carried out by the liquid phase of the pulp obtained from dehydration of the chamber product, where the concentration of these substances is much lower than in the liquid phase obtained from dehydration of the foam product.
Интенсивное слияние воздушных пузырьков в более крупные пузырьки на поверхности извлекаемых частиц обеспечивает (наряду с наибольшей плотностью среды) повышенную подъемную силу, необходимую для флотации крупных минеральных зерен полезного компонента из объема аэрированной пульпы и удержания наиболее крупных частиц в пенном слое, состоящем из мелкодисперсных пузырьков и в силу этого имеющем более высокую в сравнении с крупнопузырьчатой пеной плотность. Intensive merging of air bubbles into larger bubbles on the surface of the particles to be extracted provides (along with the highest density of the medium) the increased lifting force necessary for the flotation of large mineral grains of the useful component from the volume of aerated pulp and the retention of the largest particles in the foam layer, consisting of fine bubbles and therefore, having a higher density in comparison with coarse bubble foam.
Предлагаемый способ пенной сепарации и флотации за счет улучшения условий для гидрофобизации частиц полезного компонента и значительного улучшения гидродинамик флотационного процесса еще в большей степени чем прототип реализует преимущества коалесцентного механизма действия реагентов в этом процессе. The proposed method of foam separation and flotation by improving the conditions for hydrophobization of particles of the useful component and significantly improving the hydrodynamics of the flotation process, even more than the prototype realizes the advantages of the coalescence mechanism of action of the reagents in this process.
Предлагаемый способ поясняется фиг. 1-8. The proposed method is illustrated in FIG. 1-8.
Способ пенной сепарации и флотации реализуется в пневматических флотационных машинах колонного типа (фиг.1-5), оснащенных пневмогидравлическими аэраторами и имеющими приспособления для раздельной подачи крупнозернистого, среднезернистого и мелкозернистого питания. Подготовку питания осуществляют в истирающий мельнице (фиг.6-8) и в устройствах для подготовки пульпы к флотации и пенной сепарации, позволяющих фракционировать исходный материал и одновременно обрабатывать флотационными реагентами [2]. The method of foam separation and flotation is implemented in pneumatic flotation machines of the column type (Fig.1-5), equipped with pneumohydraulic aerators and having devices for the separate supply of coarse-grained, medium-grained and fine-grained food. Food preparation is carried out in an abrasive mill (Fig.6-8) and in devices for preparing pulp for flotation and foam separation, allowing fractionation of the source material and simultaneously process flotation reagents [2].
Колонная пневматическая флотационная машина состоит (фиг.1-3) из флотационной камеры 1 с днищем 2. Для снижения коалесценции воздушных пузырьков в объеме пульпы, камера выполнена в виде расширяющихся вверх конусообразного сосуда с раструбом в верхней части. По периферии верхней части камеры закреплен пеносборный желоб 3 с патрубком 4 для вывода пенного продукта. В нижней части камеры, по ее оси установлен трубообразный смеситель 5, выполненный в виде расширяющегося вверх конусообразного сосуда, с размещенным в нижней его части патрубком 6 для подвода грубозернистой пульпы. На уровне верхнего края флотационная камера имеет соосно расположенную щелевидную просеивающую поверхность 7 с сечением щелей 8, увеличивающимся от оси камеры. Над ней соосно расположено приспособление 9 для подачи крупнозернистого питания на пенный слой, выполненное в виде пустотелого кольца 10 с тангенциально расположенными по диаметру кольца входными патрубками 11. Кольцо с внешней стороны в нижней части имеет щелевидный выход 12 из внутренней своей полости непосредственно на щелевидную просеивающую поверхность. В нижней части флотационная камера имеет равномерно размещенные по ее периметру в шахматном порядке загрузочные окна 13, вокруг которых на боковых стенках камеры закреплено приспособление 14 для загрузки тонкозернистой пульпы, выполненное в виде кольцеобразной смесительной камеры 15 с распределительным коллектором 16 и патрубками 17 для приема пульпы. Смесительная камера снабжена в верхней своей части пневмогидравлическими аэраторами 18, равномерно размещенными по ее периметру в кольцеобразном блоке 19. В верхней части флотационной камеры по ее оси установлено аэрирующее приспособление 20, выполненное в виде полого конуса 21, состоящего из набора конических колец 22, установленных с зазором 23 между собой и частично входящих друг в друга. Диаметр конических колец уменьшается в направлении днища флотационной камеры. Со стороны широкой своей части полый конус имеет последовательно размещенные в две ступени по его оси пневмогидравлические аэраторы 24 и 25. В нижней части у днища флотационная камера имеет разгрузочное приспособление 26 с парубком 27 для выгрузки камерного продукта, имеющим регулируемую задвижку 28. Над парубком размещен направленный вверх в сторону пеносборного желоба пульпоотвод 29, имеющий у верхнего своего края пульпоприемник 30, снабженный внутри регулируемой заслонкой 31 и патрубком 32 для выгрузки тонкозернистых хвостов в виде пульпы. Column pneumatic flotation machine consists (Fig.1-3) of
В нижней части трубообразного смесителя на уровне патрубка для провода грубозернистой пульпы закреплена приемная камера 33 с патрубками 34 для подвода аэрированной жидкости, к которым присоединены аэрационные камеры 35, выполненные в виде полых усеченных конусов 36, симметрично расположенных по отношению к патрубку 6 под одинаковым углом к вертикали. Со стороны верхних больших оснований полых усеченных конусов аэрационные камеры снабжены водоподводящими патрубками 37 и последовательно размещенными в две ступени пневмогидравлическими аэраторами 38 и 39, с выходными отверстиями, направленными в сторону днища приемной камеры через внутреннее сечение парубков 34. При этом оси этих пневмогидравлических аэраторов при зеркальном отражении от днища приемной камеры направлены во внутреннюю полость трубообразного смесителя снизу вверх и пересекаются в точке, расположенной на его оси (фиг.2). Внутренние полости аэрационных камер сопряжены с внутренней полостью трубообразного смесителя посредством радиально установленных трубок 40. Это необходимо для того, чтобы накапливающиеся в верхних частях аэрационных камер воздушные пузырьки могли беспрепятственно перейти в трубообразный смеситель. Для этого трубки имеют наклон в сторону аэрационных камер. Для снижения помех при оседании хвостовых частиц во флотационной камере и их выгрузке трубки уплощены в вертикальной плоскости. Для вывода из трубообразного смесителя и приемной камеры случайных инородных предметов в ее днище установлен парубок 41. In the lower part of the tube-shaped mixer, at the level of the nozzle for the coarse-grained pulp wire, a
Кольцеобразный блок 19 имеет кольцевые баллон 42 для сжатого воздуха и коллектор 43 для напорной воды, при этом пневмогидравлические 18 аэраторы размещены внутри этого коллектора (фиг.4). Пневмогидравлические аэраторы имеют свой корпус 44, плотно (на сварке) вмонтированный в стенку кольцеобразного блока. В корпусе имеется входная 45 и выходная 46 втулки, выполненные из износостойкого материала, например, из силицированного графита или металлокерамики, имеющие осевые отверстия 47. Выходная втулка имеет в осевом отверстии участок 48 большого диаметра с тангенциальными проходами 49. Втулки закреплены в корпусе резьбовыми крышками 50 через эластичную прокладку 51. В корпусе выполнена кольцевая канавка 52, сообщенная через отверстие 53 с внутренней полостью баллона и через тангенциальные проходы и участок 48 с осевым отверстием. Кольцевой баллон для сжатого воздуха снабжен воздухоподводящим патрубком 54, в кольцевой коллектор для напорной воды водоподводящим патрубком 55 и люками 56 с герметичными крышками 57, расположенными на верхней его стенке напротив каждого единичного пневмогидравлического аэратора, предназначенными для замены изнашивающихся частей аэраторов. The
Конические кольца полого конуса аэрирующего приспособления 20 закреплены на диске 58 щелевидной просеивающей поверхности посредством радиально установленных ребер 59. На этом же диске закреплены пневмогидравлические аэраторы 24 и 25. Оси их совпадают с осью полого конуса, а выходные отверстия направлены в вершину этого конуса, где концентрично размещен параболический отражатель 60, выполненный из износостойкого материала, например из силицированного графита, металлокерамики или полиуретана. Отражатель помещен в съемный обтекатель 61, закрепленный за конусообразный фланец 62, приваренный к ребрам 59. The conical rings of the hollow cone of the aerating device 20 are mounted on the
Пневмогидравлический аэратор 24 первой ступени (аналогично пневмогидравлический аэратор 38 аэрационных камер) имеет трубчатый корпус 63 (фиг.4, 5) с водоподводящими 64 и воздухоподводящими 65 штуцерами, к которым посредством резьбовых соединений присоединены водоподводящий 66 и воздухоподводящий 67 гибкие рукава. Аэратор имеет резьбовое соединение 68 для сочленения его через диск 58 с пневмогидравлическим аэратором 25 второй ступени, который также, как и пневмогидравлический аэратор 39, представляет собой форсунку 69, выполненную из конусообразного набора коаксиально расположенных пустотелых колец 70 с щелевидными выходами 71, установленных с зазором 72 между собой и соединенных друг с другом радиальными ребрами 73. Форсунка помещена в цилиндрический кожух 74, имеющий по всему нижнему торцу фланец 75. Сверху кожух закрыт крышкой 76, к нижней поверхности которой приварены радиальные ребра 73. Крышка имеет осевое резьбовое отверстие 77, к которому через эластичную прокладку 78 прикручивается пневмогидравлический аэратор 24 первой ступени. Сквозь крышку внутрь цилиндрического кожуха подведены водоподводящий 79 и воздухоподводящий 80 патрубки, предназначенные для питания пневмогидравлического аэратора второй степени напорной водой и сжатым воздухом. Воздухоподводящий патрубок посредством трубок 81 сообщен с внутренней полостью пустотелых колец. Крышка посредством болтов плотно прижата к диску. Цилиндрический кожух приварен к диску и к радиальным ребрам 59. Вокруг кожуха диск и крышка имеют отверстия 82 для вывода воздуха, скапливающегося в верхней части внутренней полости конуса. Нижнее пустотелое кольцо форсунки опирается на фланец 75. The pneumatic-
Аэрирующее приспособление посредством радиальных ребер опирается на стенки раструба флотационной камеры. The aerating device by means of radial ribs rests on the walls of the flotation chamber bell.
При работе машины флотационную камеру 1 заполняют водой с пенообразователем. Одновременно в пневмогидравлические аэраторы под давлением через водоподводящие и воздухоподводящие патрубки и гибкие рукава подают воду и воздух. Во флотационной камере образуется аэрогидросмесь с тонкодиспергированным воздухом, а на ее поверхности образуется пенный слой, который при достижении аэрогидросмесью уровня верхней кромки камеры переливается в пеносборный желоб 3. When the machine is operating, the
Тонкую диспергацию воздуха в жидкости осуществляют следующим образом. При продавливании напорной воды из кольцевого коллектора 43 через осевые отверстия входной и выходной втулок пневмогидравлических аэраторы 18 в участке 48 осевого отверстия выходной втулки за счет высокоскоростной струи создается эжектирующий эффект, отсасывающий воздух из объема участка 48. Одновременно в участок 48 через тангенциальные проходы, кольцевую канавку и отверстия 53 поступает сжатый воздух из баллона 42, который компенсирует его убыль при струйном эжектировании. В результате на выходе из пневмогидравлических аэраторов формируется высокоскоростная струя воды тонкодиспергированным в ней воздухом. Тонкий его диспергации способствует тангенциальный ввод сжатого воздуха в участок 48 большого диаметра, создающий в нем высокоскоростной воздушный вихрь. При выходе из пневмогидравлического аэратора высокоскоростная струя аэрированной жидкости создает в кольцеобразной смесительной камере 15 наряду с аэрацией вводимой пульпы также эффект весьма интенсивного струйного ее перемешивания с тонкодиспергированными воздушными пузырьками. Fine dispersion of air in a liquid is as follows. When forcing pressure water from the
Пневмогидравлические аэраторы 24 и 38 первой ступени аэрации в аэрирующем приспособлении и в аэрационных камерах работают аналогично пневмогидравлическим аэраторам 18. Выходящая из осевого отверстия пневмогидравлических аэраторов 24 и 38 струя аэрированной жидкости с высокой скоростью входит в осевое отверстие пневмогидравлических аэраторов 25 и 39 второй ступени и создает сильную эжекцию во внутренней полости форсунки. Проходя первое по ходу своего движения пустотелое кольцо форсунки, эта высокоскоростная струя аэрогидросмеси эжектирует жидкость из внутренней полости кожуха 74 через зазор 72 и воздух из внутренней полости пустотелого кольца 70 через щелевой выход 71. К поверхности этой струи аэрогидросмеси за счет эжекции поочередно послойно прибавляются новые порции жидкости и воздуха из последующих зазоров и щелевых выходов. В результате этого многократного контакта жидкой и газообразной фаз образуется факел тонкодиспергированных между собой воды и воздуха, выходящий из отверстия крайнего наибольшего кольца 70 и обеспечивающий генерирование большого количества аэрогидросмеси во внутренней полости конуса 21 аэрирующего приспособления и аэрационных камер. При необходимости пневматическая флотационная машина может эксплуатироваться при работе аэрирующих приспособлений и аэрационных камер только с пневмогидравлическими аэраторами 24 и 38 первой ступени.
Высокоскоростная струя воды с тонкодиспергированным в ней воздухом, выходящая из осевого отверстия пневмогидравлического аэратора 24, и факел тонкодиспергированных между собой воды и воздуха ударяются в параболический отражатель 60 в износостойкую его часть и отражаются от него. Двигаясь в результате этого по внутренней поверхности полого конуса и выходя через зазоры между коническими кольцами, аэрогидросмесь поднимается, скользя по внешней поверхности конических колец и омывая их. Этот поток аэрогидросмеси объединяется с потоком аэрогидросмеси, генерируемым в аэрационныхк камерах пневмогидравлическими аэраторами 38 и 39 и выходящими через трубообразный смеситель. К общему потоку аэрогидросмеси присоединяется аэрированный поток жидкости, идущий через загрузочные окна из кольцеобразной смесительной камеры от пневмогидравлических аэраторов 18, формируя внутреннюю аэрогидроминамику потоков жидкости во флотационной камере. A high-speed jet of water with finely dispersed air in it, leaving the axial bore of a
После формирования во флотационной камере аэрогидродинамических потоков жидкости и создания пенного слоя на поверхности аэрированной жидкости в питающие патрубки подают флотационную пульпу, предварительно обработанную флотационными реагентами, причем в патрубки 11 приспособления для подачи крупнозернистого питания на пенный слой подают самую крупную и тяжелую фракции питания, в патрубок 6 для подвода грубозернистой пульпы через трубообразный смеситель подают средние по крупности и плотности фракции питания, а в патрубки 17 приспособления для загрузки тонкозернистой пульпы подают самые мелкие и легкие фракции питания, включая и шламистые. After the formation of aerohydrodynamic fluid flows in the flotation chamber and the creation of a foam layer on the surface of the aerated liquid, flotation pulp pretreated with flotation reagents is fed into the supply pipes, and the largest and heaviest feed fractions are fed into the
Из патрубка 6 для подвода грубозернистой пульпы грубозернистая часть питания поступает в виде пульпы в приемную камеру трубообразного смесителя. Туда же с обеих сторон от входящего потока грубозернистой пульпы вводится через патрубки 34 из аэрационных камер сильно аэрированная жидкость с генерируемыми в ней посредством последовательно размещенных в две ступени пневмогидравлических аэраторов 38 и 39 тонкодисперсными воздушными пузырьками. При этом вводимые потоки сильно аэрированной жидкости ударяются с двух сторон в днище приемной камеры, отражаются от него и вместе с потоком грубозернистой пульпы входят в трубообразный смеситель в направлении снизу вверх. В приемной камере происходит интенсивное перемешивание грубозернистой пульпы с находящимися в аэрированной жидкости тонкодиспергированными воздушными пузырьками, с последующим вводом полученной аэрогидросмеси через трубообразный смеситель во флотационную камеру вдоль ее оси в направлении действия архимедовых сил. При этом не происходит забивания отверстий пневмогидравлических аэраторов 38 и 39 зернистой массой, так как они расположены вне зоны непосредственного перемешивания пульпы и аэрированной жидкости, находясь выше этой зоны в верхней части аэрационных камер, куда дополнительно вводится жидкость (жидкая фаза пульпы) через водоподводящий патрубок 37. Скапливающиеся в верхних частях аэрационных камер воздушные пузырьки выводятся в трубообразный смеситель через трубки 40. Флотация грубозернистых частиц полезного компонента происходит в потоке сильно аэрированной пульпы, движущемся в направлении архимедовых сил, что обеспечивает их высокое извлечение и повышает технологические показатели процесса. From the
Из патрубков 17 для приема пульпы тонкозернистая часть питания через распределительный коллектор поступает в виде пульпы в кольцеобразную смесительную камеру. Туже же в виде высокоскоростных струй поступает из сопел пневмогидравлических аэраторов 18 сильно аэрированная жидкость с тонкодиспергированными воздушными пузырьками. Посредством этих струй производится интенсивное перемешивание пульпы в смесительной камере с одновременным ее насыщением тонкодиспергированными воздушными пузырьками. После этого полученная аэрогидросмесь в рассредоточенном виде вводится в нижнюю периферийную часть флотационной камеры через загрузочные окна. Траектория введения этой части пульпы во флотационную камеру не совпадает с направлением архимедовых сил. Это исключает возможность механического выноса частиц пустой породы в пенный слой и повышает технологические показатели процесса флотации. From the
Из входных патрубков 11 крупнозернистая часть питания в виде пульпы тангенциально вводится в пустотелое кольцо 10 приспособления для подачи крупнозернистого питания. Под действием пары сил двух потоков пульпы, так как патрубки 11 расположены по диаметру кольца, пульпа приобретает вращательное движение внутри пустотелого кольца. После раскручивания под действием центробежных сил она по касательной выгружается из кольца через щелевидный выход 12 непосредственно на щелевидную просеивающую поверхность, где происходят рассредоточение частиц по площади и между собой и поступление на поверхность пены, проходящей между щелей 8 и направлении к пеносборному желобу. Таким образом крупные частицы питания в рассредоточенном виде поступают на поверхность пены сверху. Гидрофобные и гидрофобизированные частицы полезного компонента удерживаются при этом пенным слоем и выносятся вместе с ним и с флотированными из объема пульпы частицами в пеносборный желоб, откуда выгружаются через патрубок для вывода пенного продукта. Гидрофильные частицы пустой породы проходят сквозь пену в объем флотационной камеры, опускаются на наклонные стенки камеры, скользят по ним вниз и попадают в поток аэрированной пульпы, выходящей из кольцеобразной смесительной камеры через загрузочные окна. Оставшиеся в них частицы полезного компонента вместе с такими же частицами мелкозернистых фракций направляются при этом в центральную часть камеры в восходящий поток аэрированной пульпы, выходящей из трубообразного смесителя. Внутрикамерная циркуляция пульпы обеспечивает возможность повторного извлечения частиц полезного компонента, случайно выпавших из пенного слоя, не достигнув пеносборного желоба. Конфигурация флотационной камеры, выполненной в виде расширяющегося вверх конусообразного сосуда с раструбом в верхней своей части, играет при этом существенную роль. Частицы полезного компонента флотируются в потоке аэрированной пульпы и поступают в движущийся к пеносборному желобу пенный слой. Частицы пустой породы оседают на днище флотационной камеры и грубозернистая их часть через патрубок 27 выгружается из машины. Выгрузка управляется при этом посредством регулируемой задвижки. Мелкозернистая и шламистая часть пустой породы вместе с жидкой фазой пульпы поднимается по пульпоотводу, поступает в пульпоприемник и выгружается из него через патрубок для выгрузки тонкозернистых хвостов в виде пульпы. Выгрузка ее управляется при этом посредством регулируемой заслонки, с помощью которой обеспечивается также поддержание уровня пульпы во флотационной камере. From the
Подача оборотных вод, полученных от обезвоживания пенного продукта, совместно с маслообразными реагентами и ПАВ в пневмогидравлические аэраторы способствует более тонкому диспергированию и стабилизации воздушных пузырьков в момент их диспергирования. На выходе из пневмогидравлических аэраторов часть реагентов переходит с поверхности пузырьков в жидкую фазу пульпы, которая имеет более низкую концентрацию этих веществ за счет того, что во флотационный процесс при распульповке обогащаемых продуктов поступает вода от обезвоживания камерного продукта, обедненного ПАВ и не имеющая маслообразных реагентов. Это, в свою очередь, (за счет интенсификации коалесцентных явлений на поверхности извлекаемых частиц) обеспечивает формирование флотокомплексов с повышенной несущей способностью и в конечном итоге повышает технологические показатели флотационного процесса. The supply of circulating water obtained from the dehydration of the foam product, together with oily reagents and surfactants in pneumohydraulic aerators contributes to a finer dispersion and stabilization of air bubbles at the time of dispersion. At the outlet of the pneumohydraulic aerators, part of the reagents passes from the surface of the bubbles to the liquid phase of the pulp, which has a lower concentration of these substances due to the fact that water from dehydration of the chamber product depleted in the surfactant and not having oily reagents enters the flotation process when the enriched products are pulverized. This, in turn, (due to the intensification of coalescence phenomena on the surface of the recoverable particles) ensures the formation of flotation complexes with increased bearing capacity and ultimately increases the technological parameters of the flotation process.
Истирающая мельница состоит (фиг. 6 - 8) из вертикально расположенной цилиндрической рабочей камеры 1, соосно размещенного внутри нее подвижного ротора 2, закрепленного на вертикальном валу 3 с нижним приводом, загрузочного 4 и разгрузочного 5 устройств, смонтированных на общей раме 6 и станине 7. The abrasive mill consists (Fig. 6 - 8) of a vertically arranged cylindrical working
Рабочая камера 1 прочно скреплена с рамой 5. Внутри по периферийной части рабочей камеры 1 по всей ее высоте закреплены с равными интервалами по окружности футеровочные ребра 8, сужающиеся к нижней своей части для лучшей выгрузки измельченного продукта. По периферии верхней части рабочей камеры 1 размещен кольцевой коллектор 9 для промывных вод с водоподводящим патрубком 10 и с расположенными равномерно между футеровочными ребрами 8 выходными отверстиями 11. The working
Ротор 2 выполнен в виде пустотелого прямого конуса 12 с футеровочными ребрами 13, расположенными по его образующей с равными интервалами по окружности. Нижний конец вертикального вала 3 и ротор 2 опираются на консоль 14. Пустотелый прямой конус 12 имеет в межреберных впадинах футеровки ротора 2 сквозные каналы 15, соединяющие его внутреннюю полость с зоной измельчения, расположенной непосредственно над и вокруг ротора 2 в рабочей камере 1. Оси сквозных каналов 15 наклонены к основанию пустотелого прямого конуса 12 для предотвращения их забивания частицами измельчаемого материала. Внутри пустотелого прямого конуса 12 по его оси расположены водоподводящий 16 и парогазоподводящий 17 патрубки. The
Загрузочное устройство 4 выполнено в виде вертикально расположенного шнека 18 с загрузочной воронкой 19 в верхней своей части, являющихся одновременно непрерывно действующим прижимным приспособлением, обеспечивающим постоянное объемное сжатие частиц материала в зоне измельчения. Корпус шнека 18 и загрузочная воронка 19 прочно закреплены на цилиндрической рабочей камере 1 мельницы и на ее раме 6. Вал шнека 18 нижним своим концом посредством резьбового соединения 20 жестко связан с ротором 2 в вершине конуса 12, а верхним своим концом подвижно закреплен в подшипниковом узле 21, установленном посредством радиально расположенных ребер 22 по оси мельницы внутри загрузочной воронки 19. The
Разгрузочное устройство 5 выполнено в виде горизонтально расположенной и закрепленной в основании пустотелого прямого конуса 12 приводной тарели 23, диаметр которой превышает диаметр цилиндрической рабочей камеры 1 мельницы. Нижний торец рабочей камеры 1 образует с верхней поверхностью тарели 23 кольцевой зазор 24 телескопически перекрываемый обечайкой 2 25 с зубчатым нижним торцем 26, расположенной с внешней стороны рабочей камеры 1 и кинематически связанной с силовыми гидроцилиндрами 27 для возвратно-поступательного перемещения в осевом направлении. Силовые гидроцилиндры 27 шарнирно связаны с опорными элементами 28 и 29. The
Над краем тарели 23 концентрично к ней установлено уплотнительное кольцо 30 с эластичной прокладкой 31, предотвращающие просыпание материала с тарели 23. Уплотнительное кольцо 30 и прокладка 31 имеют зазор 32, против которого закреплен касательно к цилиндрической рабочей камере 1 скребок 33, предназначенный для съема измельченного материала с поверхности тарели 23 при ее вращении. Под периферийной частью тарели 23 закреплены на раме 6 течка 34 для приема измельченного материала, расположенная напротив скребка 33, и кольцевой желоб 35 с наклонным днищем для сбора шламов, проходящих через контакт неподвижной эластичной прокладки 31 и подвижной тарели 23. Above the edge of the
В нижней части мельницы расположены коническая пара 36 и горизонтальный вал с подшипниковой опорой 37, предназначенные для вращения вертикального вала 3 с ротором 2 и с закрепленной на пустотелом прямом конусе 12 приводной тарелью 23 и в вершине конуса 12 шнека 18. Корпуса подшипникового узла вертикального вала 3 и подшипниковой опоры 37 закреплены на консоли 14 станины 7. In the lower part of the mill are a
Кольцевой желоб 35 в верхней своей части имеет патрубки 38 для подвода смывной воды. The
Водоподводящий патрубок 16 и парогазоподводящий патрубок 17 концентрично проходят через вертикальный вал 3. Для этого вал 3 имеет осевой канал 39. Водоподводящий патрубок 16 жестко скреплен с валом 3 посредством гаек 40 и бурта 41, выполненного за одно целое с патрубком 16 в верхней его части, и поэтому является подвижным, вращающимся заодно с валом 3. Парогазоподводящий патрубок 17 установлен внутри водоподводящего патрубка 16 с кольцевым зазором 42 и является неподвижным. Нижний конец водоподводящего патрубка 16 через сальниковое уплотнение 43 закреплен с возможностью осевого вращения патрубка 16 в стакане 44. Стакан 44 неподвижно закреплен в основании консоли 14 посредством фланцевого соединения 45 и имеет внутри на уровне нижнего конца водоподводящего патрубка 16 концентрическую полость с водоподводящим штуцером 47. Парогазоподводящий патрубок 17 посредством резьбового соединения 48 и бурта 49, выполненного за одно целое с патрубком 17 в нижней его части, жестко и плотно закреплен в стакане 44 в осевом его отверстии 50. К нижнему концу парогазоподводящего патрубка 17 прикреплен штуцер 51 для подвода парогазовой смеси. The
Большая шестерня конической пары 36 привода мельницы закреплена за вертикальный вал 3 посредством гаек 52. Вертикальный вал 3 установлен в подшипниках 53, размещенных в полости 54 консоли 14. Верхняя часть вертикального вала 3 выполнена за одно целое с ним в виде диска 55, на котором посредством штифтов 56 закреплен пустотелый прямой конус 12 ротора 2. The large gear of the
На горизонтальном участке пароподводящего патрубка 17 (см. фиг. 8) установлено устройство 57 для дозированной подачи маслообразных и поверхностно-активных веществ, закрепленное за консоль 14 с внешней ее стороны (на фиг. 6 не показано). Устройство 57 выполнено в виде герметичного сосуда 58 с расположенным внутри него шатунно-кривошипным механизмом 59, имеющим на возвратно-поступательной его части поршень 60 в виде стержня с кольцевыми канавками 61, предназначенными для забора маслообразных и поверхностно-активных веществ из сосуда 58 и переноса их во внутреннюю полость парогазоподводящего патрубка 17. Для этого поршень 60 помещен в цилиндр 62, внутренняя полость которого одним концом сообщена с внутренней полостью герметичного сосуда 58, а другим с внутренней полостью пароподводящего патрубка 17. Для большего вхождения нижней части цилиндра 60 с кольцевыми канавками 61 во внутреннюю полость пароподводящего патрубка 17 цилиндр 60 расположен под углом к этому патрубку. Герметичный сосуд 58 снабжен крышкой 63, плотно прижатой к верхнему его торцу через эластичную прокладку 64 посредством болтовых соединений 65, а также патрубком 66 для залива в него маслообразных и поверхностно-активных веществ. Шатунно-кривошипный механизм 59 имеет диск 67 с приводным валом 68, с уплотнением, проходящим через боковую стенку сосуда 58. On a horizontal section of the steam supply pipe 17 (see Fig. 8), a
При работе истирающей мельницы рабочую камеру 1 через шнек 18 и загрузочную воронку 19 загрузочного устройства 4 заполняют материалом, подлежащим измельчению. Воду, предварительно обработанную в электролизере, подают в рабочую камеру 1 через выходные отверстия 11 в кольцевом перфорированном коллекторе 9 с водоподводящим патрубком 10. During the operation of the abrasive mill, the working
Ротор 2 с закрепленной в основании пустотелого прямого конуса 12 тарелью 23 приводят во вращение через вертикальный вал 3, закрепленный в подшипниках 53 консоли 14, коническую пару 36 и горизонтальный вал с подшипниковой опорой 37. Одновременно в пустотелый прямой конус 12 ротор 2 подают через кольцевой зазор 42 в водоподводящем патрубке 16, концентрическую полость 46 в стакане 44 и штуцер 47 воду, либо раствор ПАВ, а через парогазоподводящий патрубок 17 и штуцер 51 острый (перегретый) пар, либо горячий (раскаленный) воздух с предварительно введенными в них маслообразными и поверхностно-активными веществами, которые через сквозные каналы 15 в пустотелом прямом конусе 12 поступают между футеровочных ребер 13 непосредственно в зону измельчения, расположенную непосредственно над и вокруг ротора 2, причем в верхнюю ее часть поступает острый (перегретый) пар либо горячий (раскаленный) воздух, а в нижнюю ее часть - вода либо раствор ПАВ. Утечку воды или раствора ПАВ из стакана 44 предотвращают при этом сальниковым уплотнением 43, установленным на контакте вращающегося водоподводящего патрубка 16 и неподвижного стакана 44. The
Дозированное введение маслообразных и поверхностно-активных веществ в парогазоподводящий патрубок 17 посредством устройства 57 производят следующим образом. Dosed introduction of oily and surfactants into the vapor-
Сосуд 58 через патрубок 66 заполняют жидкими маслообразными и поверхностно-активными веществами. При вращении вала 68 и диска 67 шатунно-кривошипный механизм 59 возвратно-поступательно перемещает поршень 60 с кольцевыми канавками 61 в цилиндре 62. При вхождении поршня 60 во внутреннюю полость сосуда 58 маслообразные и поверхностно-активные вещества заполняют канавки 61. Затем при возвратном вхождении поршня 60 во внутреннюю полость парогазоподводящего патрубка 17 маслообразные и поверхностно-активные вещества выходят из канавок 61 и поступают в паровоздушный поток, а вместе с ним в зону деформации и разрушения частиц материала. При этом поршень 60 при своем движении одновременно изолирует высокотемпературную область высокого давления внутри парогазоподводящего патрубка 17 и область с более низкой температурой и давлением в сосуде 58. Количество маслообразных и поверхностно-активных веществ дозируют посредством изменения числа оборотов вала 68, а также сечением кольцевых канавок 61.
При вращении шнека 18 находящийся во внутренней полости рабочей камеры 1 материал подвергается объемному сжатию. При вращении ротора 2 происходит истирание частиц материала друг о друга принудительным полиградиентным перемещением концентрических слоев материала при одновременном резком высокоградиентном температурном воздействии на частицы материалы в момент их деформации и разрушения в условиях объемного сжатия материала. Частицы материала перед своим разрушением претерпевают интенсивные механические и высокотемпературные деформации, что интенсифицирует процесс их разрушения. При этом процесс ведется непрерывно. Контрастность высокотемпературного воздействия на измельчаемый материал усиливается поочередным воздействием на разрушаемые частицы материала сначала острым (перегретым) паром, либо горячим (раскаленным) воздухом, а затем непосредственным низкотемпературным воздействием холодной воды, либо раствора ПАВ. В последнем случае молекулы ПАВ оказывают расклинивающее действие (эффект П.А. Ребиндера) по микротрещинам, образующимся в деформируемых частицах материала, а также по контакту минеральных вкраплений, способствуя их лучшему раскрытию. Маслообразные вещества, в частности мазут, адсорбируются при этом на гидрофобной поверхности алмазов и, адсорбируясь на ней, оказывают одновременное ингибирующее воздействие, не позволяя другим веществам, способным гидрофилизировать поверхность, адсорбироваться на этой поверхности. Гидрофилизированные участки поверхности алмазов гидрофобизируются при этом поверхностно-активными веществами в момент их высокой адсорбционной активности при раскрытии. When the
Наклон осей каналов 15 к основанию пустотелого прямого конуса 12 препятствует их забиванию частицами измельчаемого материала при объемном его сжатии. Нахождение слоя воды в нижней части пустотелого прямого конуса 12 предохраняет диск 55 вертикального вала 3 и подшипники 53 от возможного перегрева, экранируя их от высокотемпературной среды (острого пара, горячего воздуха). Роль теплового экрана выполняет при этом также слой воды или раствора ПАВ, проходящий по кольцевому зазору 42 в водоподводящем патрубке 16. The inclination of the axes of the
Разгрузку измельченного материала из рабочей камеры 1 осуществляют при подаче воды в кольцевой перфорированный коллектор 9 через водоподводящий патрубок 10. Выходя через выходные отверстия 11, расположенные между футеровочных ребер 8, из кольцевого перфорированного коллектора 9 и двигаясь вниз по рабочей камере 1, она уносит измельченные частицы материалы в нижние его слои. При вращении приводной тарели 23 измельченный материал в виде пульпы выходит из рабочей камеры 1 через щели зубчатого торца 26 обечайки 25 и затем снимается с ее поверхности скребком 33 в течку 34 для приема измельченного материала, установленным напротив зазора 32 в кольце 30 с эластичной прокладкой 31, служащие для предотвращения просыпания материала с тарели 23 при ее вращении. Шламы, прошедшие с тарели 23 под эластичную прокладку, попадают в кольцевой желоб 35 с наклонным днищем, откуда они смываются в течку 34 водой, подаваемой через патрубки 33 для подвода смывной воды. Разгрузка измельченного материала из рабочей камеры 1 мельницы регулируется путем поднятия или опускания обечайки 25 над поверхностью тарели 23 посредством силовых гидроцилиндров 27. The discharge of crushed material from the working
Недоизмельченный остаток вместе с алмазами с качественно очищенной и подготовленной поверхностью направляют на пенную сепарацию и флотацию, после чего пустую породу выводят в отвал. Unfinished residue, together with diamonds with a qualitatively cleaned and prepared surface, is sent to foam separation and flotation, after which the waste rock is dumped.
Таким образом, предложенный способ пенной сепарации и флотации по сравнению с прототипом позволит за счет улучшения условий для гидрофобизации частиц полезного компонента и формирования флотокомплексов с повышенной несущей способностью повысить технологические показатели процесса. Thus, the proposed method of foam separation and flotation in comparison with the prototype will allow, due to improved conditions for hydrophobization of the particles of the useful component and the formation of flotation complexes with increased load-bearing ability to increase the technological parameters of the process.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU96116315A RU2108166C1 (en) | 1996-08-07 | 1996-08-07 | Method of foam separation and flotation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU96116315A RU2108166C1 (en) | 1996-08-07 | 1996-08-07 | Method of foam separation and flotation |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2108166C1 true RU2108166C1 (en) | 1998-04-10 |
RU96116315A RU96116315A (en) | 1998-12-10 |
Family
ID=20184356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU96116315A RU2108166C1 (en) | 1996-08-07 | 1996-08-07 | Method of foam separation and flotation |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2108166C1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2622970C2 (en) * | 2014-12-17 | 2017-06-21 | Общество ограниченной ответственности "Сибирский научно-исследовательский институт углеобогащения" ООО Сибнииуглеобогащения" | Pulp conditioning device |
RU203651U1 (en) * | 2018-05-11 | 2021-04-14 | Оутотек (Финлэнд) Ой | Flotation chamber |
-
1996
- 1996-08-07 RU RU96116315A patent/RU2108166C1/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2622970C2 (en) * | 2014-12-17 | 2017-06-21 | Общество ограниченной ответственности "Сибирский научно-исследовательский институт углеобогащения" ООО Сибнииуглеобогащения" | Pulp conditioning device |
RU203651U1 (en) * | 2018-05-11 | 2021-04-14 | Оутотек (Финлэнд) Ой | Flotation chamber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI94598B (en) | Flotation | |
US2787374A (en) | Centrifugal classifier | |
RU2108166C1 (en) | Method of foam separation and flotation | |
RU2169616C2 (en) | Conical grinder | |
RU2100097C1 (en) | Method of foam separation and flotation | |
RU2011424C1 (en) | Pneumatic flotation machine | |
US2992740A (en) | Ore classifier | |
US3730423A (en) | Mineral dressing centrifuge | |
RU204882U1 (en) | Ultrasonic Extractor | |
RU2104093C1 (en) | Method for foam separation and flotation | |
RU2167722C1 (en) | Method of foam separation and flotation | |
RU2016657C1 (en) | Method for processing materials and mill for carrying out the method | |
RU2100096C1 (en) | Method of foam separation and flotation | |
RU2038863C1 (en) | Device for preparation of pulp to flotation and froth separation | |
RU2100098C1 (en) | Pneumatic flotation machine | |
RU2113907C1 (en) | Hydraulic classifier | |
RU2132732C1 (en) | Material processing method | |
RU2086305C1 (en) | Device for preparation of pulp for flotation and foam separation | |
RU2104787C1 (en) | Method of processing of materials | |
RU2151646C1 (en) | Pneumatic flotation machine | |
US2903191A (en) | Disintegrating and dispersion apparatus and method | |
RU1810117C (en) | Pneumatic flotation plant | |
RU2167723C1 (en) | Method of foam separation and flotation | |
RU2113910C1 (en) | Pneumatic flotation machine | |
US2718353A (en) | Continuous centrifuge |